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Introduction

We propose a 3D object recognition technique to con-
struct rotation invariant feature vectors for high an-
gular resolution diffusion imaging (HARDI).
• This method uses the expansion of spherical

functions by means of spherical harmonics (SH).

• It is based on generating rank-1 contravariant
tensors using the SH coefficients and contracting
them with covariant tensors to obtain rotation
invariants.

• The proposed technique enables the systematic
construction of rotation invariants for spherical
functions (e.g. orientation distribution functions -
ODFs) of any expansion order using simple
mathematical operations.

• These invariants are more robust to noise than
other invariants perviously used in medical image
analysis.

Spherical Harmonics Expansion

• While there are no restrictions on the expansion
order, L, most HARDI reconstruction techniques
are based on even order expansions using real cm

l ’s.

• The method presented here is based on complex
SH representation. Therefore, we map the real
coefficients to the complex domain as follows:
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where ĉlm denotes the real coefficients, and ∗ stands
for the complex conjugate.

Power Spectrum SH Descriptors

I-invariants

A contraction of the SH coefficients with their com-
plex conjugates
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The power spectrum SH descriptors are used in vari-
ous shape and image analysis tasks [1, 2], as well as
in clinical studies [3].

Rotation Invariants using CG

coefficients

• The subspace
Vl = Span{Y −l

l , Y −l+1
l , . . . , Y l−1

l , Y l
l } is globally

rotational invariant.

• As proposed in [4], using the Clebsch-Gordan
(CG) coefficients contravariant rank-1 tensors in Vl

can be generated as follows:
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where k
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are the CG coefficients.

• These tensors can be contracted with the SH
coefficients to create rotation invariants:

J-invariants

A contraction of the T-tensors with the complex
conjugates of the SH coefficients
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• In addition, they can be contracted with each
other to construct a different set of invariants:

K-invariants

A contraction of the T-tensors with their complex
conjugates
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• The process of generating tensors and contracting
them can be continued repeatedly to generate as
many invariants as needed.

• The conditions under which these invariants can
be computed are |l1 − l2| ≤ l ≤ (l1 + l2) for J , and
the additional condition |l3 − l4| ≤ l ≤ (l3 + l4) for
K, whereas the I invariants can be computed for
any l.

Simulated Data Results

• Using constrained spherical deconvolution (CSD)
[5] we generated three groups of 100 noisy FODs
(SNR=20, L=8). The FODs were randomly
rotated in space.

• Each group of FODs represents one, two, or three
crossing fibers.

• For each FOD we computed 10 different invariants
(5 for each invariant type): Il, l = 0, 2, . . . , 8 and
J0,2,2, J2,2,2, J4,2,2, J6,4,4, J8,4,4.

• We showed that the J -invariants are more robust
to noise than the I-invariants by mapping the
FODs to a 3D feature space using the first three
invariants of I and J .

• We used PCA to compare the performance of
these invariants using the complete set of
invariants we generated.

Figure 1: Number of fibers classification using the I-invariants

(left), and the J-invariants (right). The point clouds correspond

to one fiber (blue), two fibers (green), and three fibers (red).

Variance

1F
I 0.0336 0.0176 0.0065 0.0040 0.0013
J 0.0190 0.0063 0.0011 0.0008 0.0008

2F
I 0.0246 0.0193 0.0153 0.0049 0.0040
J 0.0063 0.0038 0.0034 0.0019 0.0007

3F
I 0.0263 0.0125 0.0074 0.0052 0.0035
J 0.0040 0.0030 0.0011 0.0010 0.0007

Table 1: Variance comparisons using PCA. The labels 1F, 2F

and 3F correspond to one, two, or three fibers, respectively. The

labels I and J indicate the invariant type, and each row presents

the vector of invariants beginning with l = 0 (left).

ISBI Phantom Results

Figure 2: Voxel-wise classification of the simulated ISBI’12 chal-

lenge phantom. From left to right: the ground-truth number of

fibers map, the same map segmented according to the principal

diffusivities, and voxel-wise classification using the J-invariants.

Brain Data

Figure 3: Maps of the J-invariants extracted from in vivo brain

data. Top (L to R): J0,0,0, J0,2,2, J2,2,2, and J2,2,0. Bottom: J4,2,2,

J4,4,2, J6,4,4, and GFA.
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