Generalized HARDI Invariants by Method of Tensor Contraction
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Introduction

We propose a 3D object recognition technique to con-
struct rotation invariant feature vectors for high an-
gular resolution diffusion imaging (HARDI).

« This method uses the expansion of spherical
functions by means of spherical harmonics (SH).

« It is based on generating rank-1 contravariant
tensors using the SH coeflicients and contracting

them with covariant tensors to obtain rotation
Invariants.

« The proposed technique enables the systematic
construction of rotation invariants for spherical
functions (e.g. orientation distribution functions -
ODFs) of any expansion order using simple
mathematical operations.

» These invariants are more robust to noise than
other invariants perviously used in medical image
analysis.
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« While there are no restrictions on the expansion
order, L, most HARDI reconstruction techniques
are based on even order expansions using real ¢;'*’s.

« The method presented here is based on complex
SH representation. Therefore, we map the real

coefficients to the complex domain as follows:
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where ¢;,,, denotes the real coefficients, and * stands
for the complex conjugate.

Power Spectrum SH Descriptors

I-invariants

A contraction of the SH coefficients with their com-
plex conjugates
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The power spectrum SH descriptors are used in vari-
ous shape and image analysis tasks |1, 2|, as well as
in clinical studies |3].
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Rotation Invariants using CG
coeflicients

« T'he subspace
Vi = Span{Y; ", Y, YL Y)Y s globally
rotational invariant.

« As proposed in 4], using the Clebsch-Gordan
(CQG) coefficients contravariant rank-1 tensors in V;
can be generated as follows:
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where &, are the CG coefficients.

= These tensors can be contracted with the SH
coeflicients to create rotation invariants:

J-1invariants

A contraction of the T-tensors with the complex

conjugates of the SH coeflicients
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« In addition, they can be contracted with each
other to construct a different set of invariants:

K-invariants

A contraction of the T-tensors with their complex

conjugates
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« The process of generating tensors and contracting
them can be continued repeatedly to generate as
many invariants as needed.

« The conditions under which these invariants can
be computed are |l; — o] <1 < (l; 4+ [y) for J, and
the additional condition |l3 — I| <[ < (I3 4+ l4) for
K, whereas the I invariants can be computed for
any (.

Simulated Data Results

- Using constrained spherical deconvolution (CSD)
5| we generated three groups of 100 noisy FODs

(SNR=20, L=8). The FODs were randomly
rotated in space.

« Bach group of FODs represents one, two, or three
crossing fibers.

« For each FOD we computed 10 different invariants
(5 for each invariant type): I;, [ =0,2,...,8 and

Jo22, J229, J129, Joa4, J344.
« We showed that the J-invariants are more robust
to noise than the [-invariants by mapping the
FODs to a 3D feature space using the first three
invariants of 1 and J.

« We used PCA to compare the performance ot
these invariants using the complete set of
invariants we generated.

Figure 1. Number of fibers classification using the [-invariants
(left), and the J-invariants (right). The point clouds correspond
to one fiber (blue), two fibers (green), and three fibers (red).
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Table 1: Variance comparisons using PCA. The labels 1F, 2F

and 3F correspond to one, two, or three fibers, respectively. The
labels [ and J indicate the invariant type, and each row presents

the vector of invariants beginning with [ = 0 (left).

ISBI Phantom Results

Figure 2: Voxel-wise classification of the simulated ISBI'12 chal-
lenge phantom. From left to right: the ground-truth number of
fibers map, the same map segmented according to the principal

diffusivities, and voxel-wise classification using the J-invariants.

Brain Data

Figure 3: Maps of the J-invariants extracted from in vivo brain
data. Top (L to R): Jo 0.0, Jo2.2, J222, and Joo. Bottom: Jy9o,
J47472, J67474, and GFA.
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