# Model Selection and Estimation of Multi-Compartment Models in Diffusion MRI with a Rician Noise Model

Xinghua Zhu, Yaniv Gur, Wenping Wang, and P. Thomas Fletcher



www.sci.utah.edu

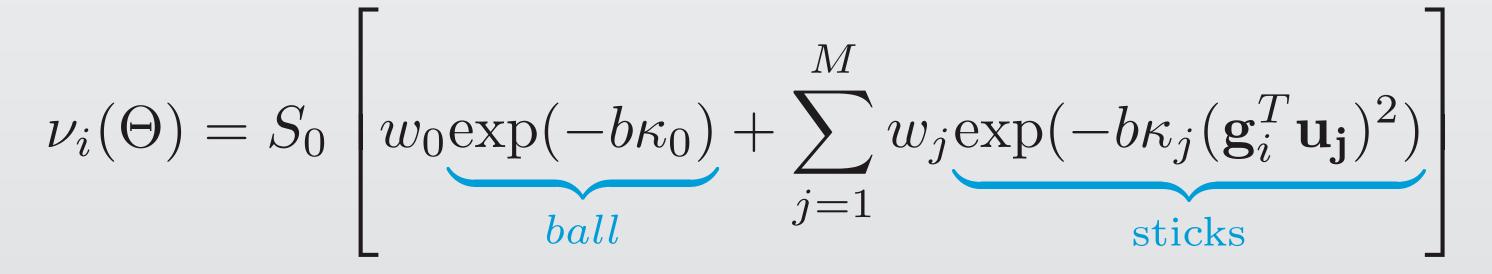
 $(\Theta)^2$ 

# Introduction

• Existing multi-compartment model estimation methods generally assume Gaussian noise distribution

In this paper:

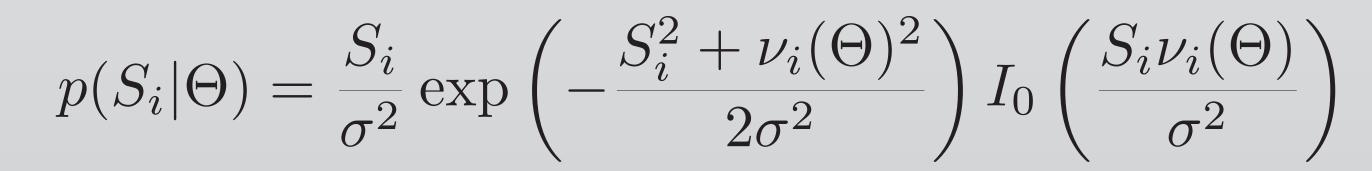
- Estimate ball-and-sticks model under Rician noise distribution.
- An automatic model selection scheme to select the number of fibers.


## **The Expectation Maximization Algorithm**

 Raw data of MRI scans are contaminated by additive complex Gaussian noise, which becomes Rician after taking magnitude
Hidden variable: the complex Gaussian affected signal of each compartment:

$$Y_{ij} = \nu_{ij}(\Theta) + \epsilon, \ \epsilon \sim \mathcal{CN}\left(0, \frac{2\sigma^2}{M+1}\right)$$

# **Proposed Method**


## **The Ball-And-Sticks Diffusion Model**

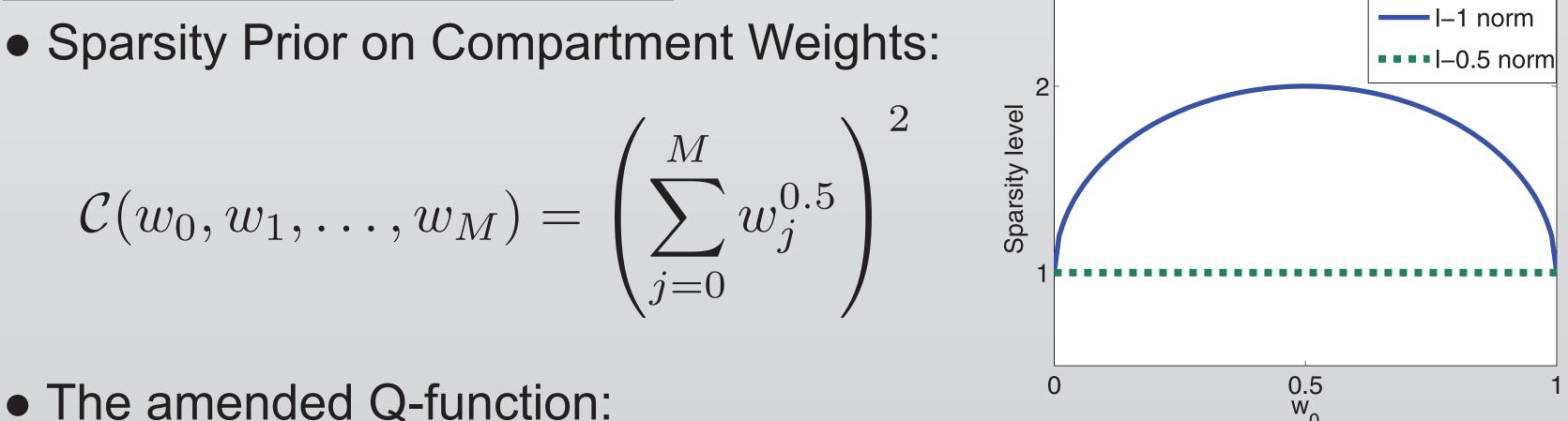


Unknown parameters

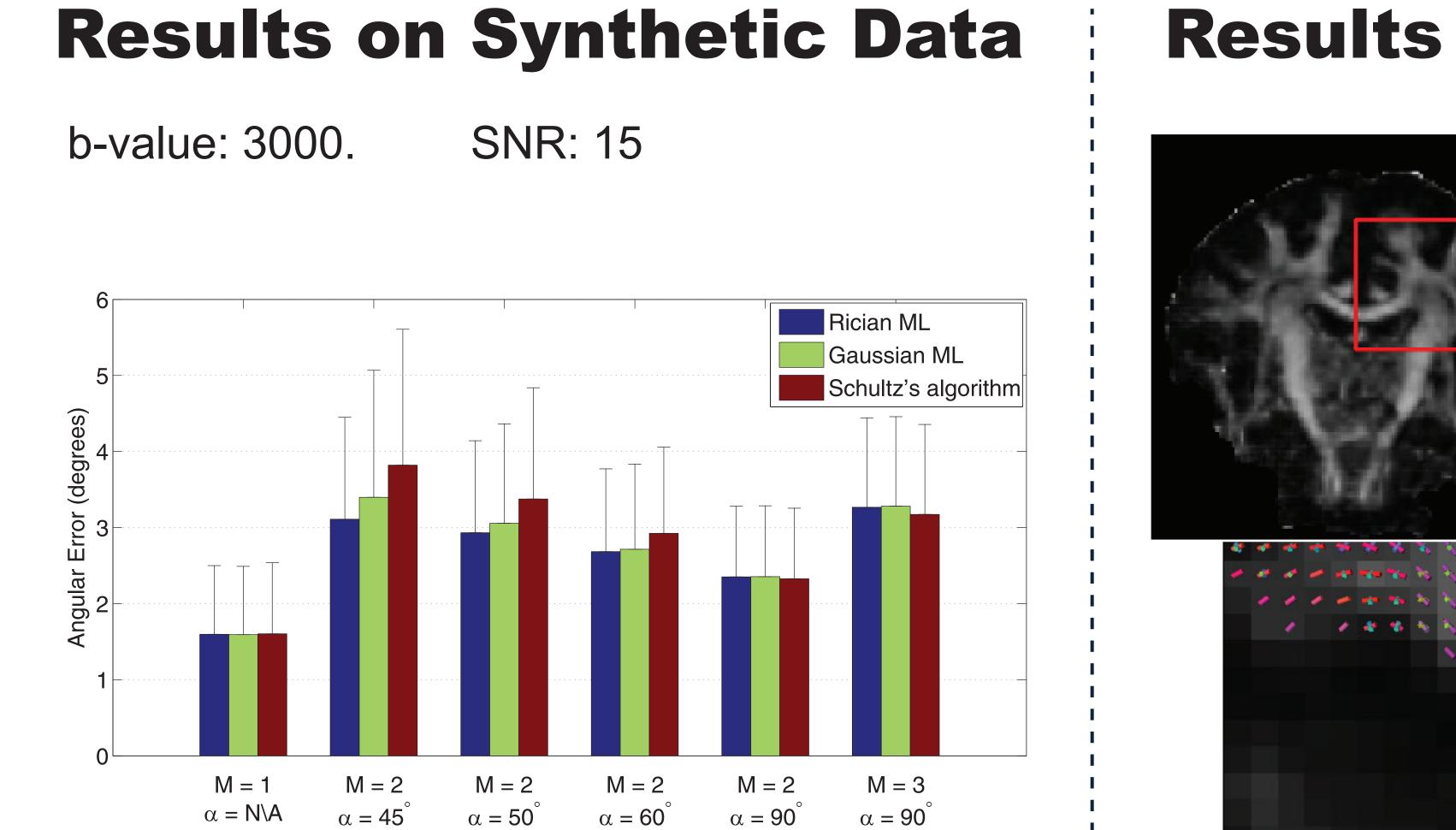
 $\Theta = \{\mathbf{u}_1, \dots, \mathbf{u}_M; \text{ stick directions} \\ w_0, \dots, w_M; \text{ compartment fractions} \\ \kappa_0, \dots, \kappa_M\} \text{ diffusivities}$ 

## **Rician Likelihood**




$$Q(\Theta|\Theta^{(k)}) = E\left[l(\Theta|\mathbf{Y})|\mathbf{S},\Theta^{(k)}\right]$$
$$= \sum_{i,j} 2\nu_{ij}(\Theta) \left[\frac{S_i}{M+1}A\left(\frac{S_i\nu_i^{(k)}}{\sigma^2}\right) - \frac{\nu_i^{(k)}}{M+1} + \nu_{ij}^{(k)}\right] - \nu_{ij}$$

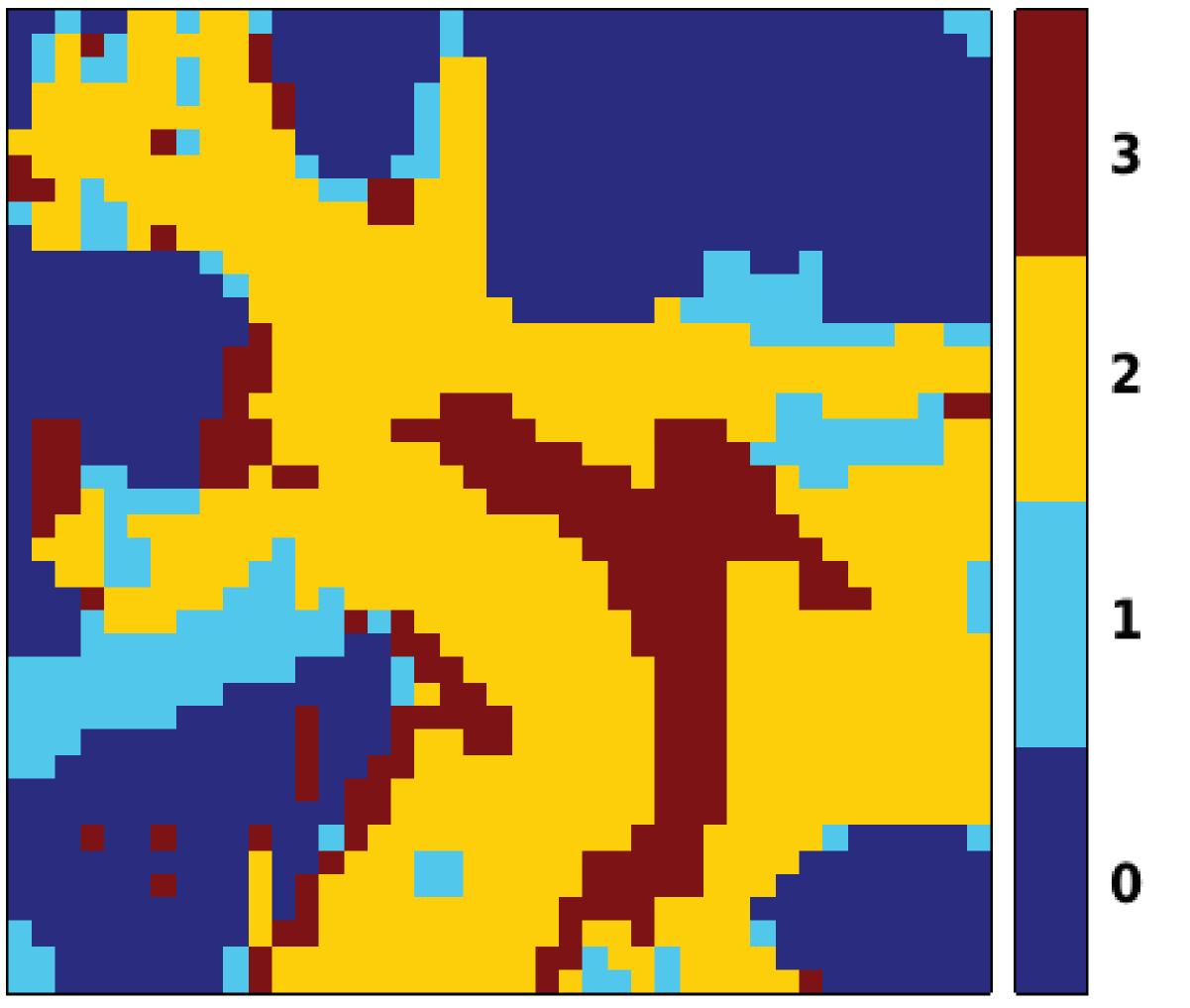
M-step: gradient ascent of the Q-function

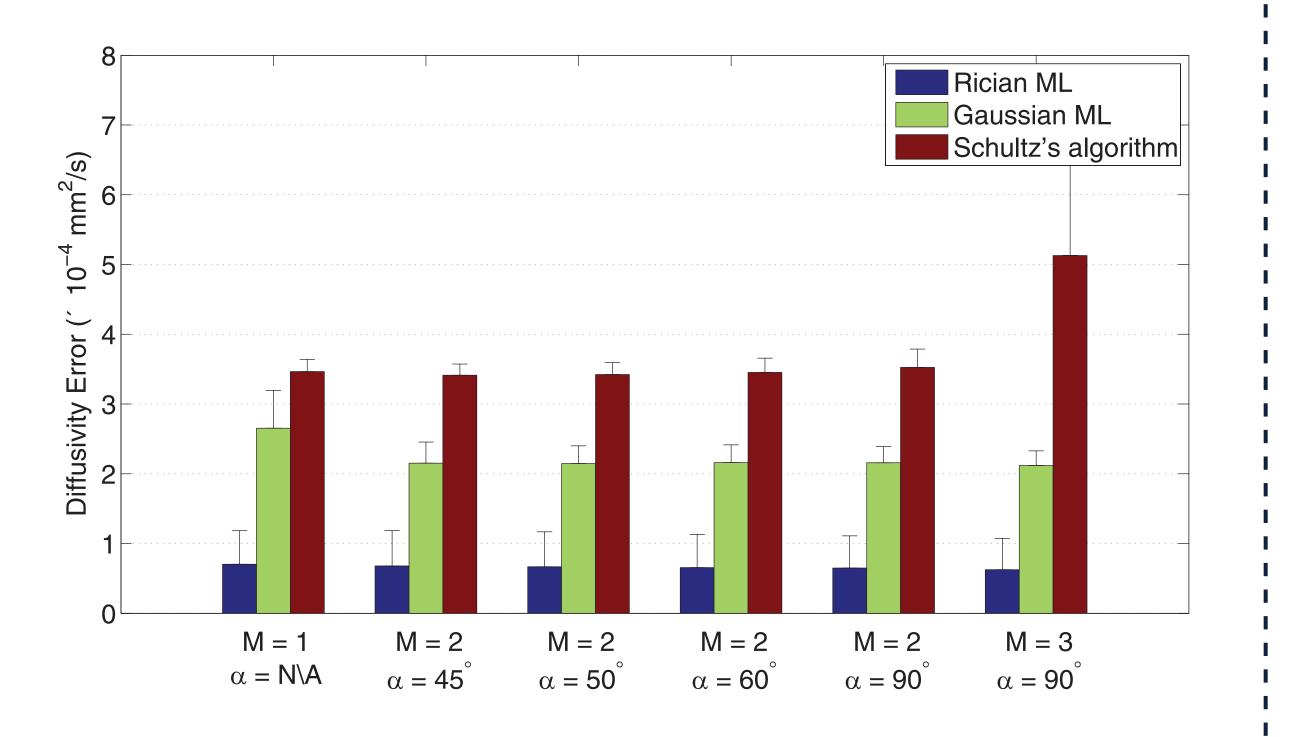

#### Advantage of the EM algorithm:

The optimization parameters are no longer variables of the modified Bessel function. Therefore, maximizing the Q-function is more numerically stable and tractable.

#### **Automatic Model Selection**

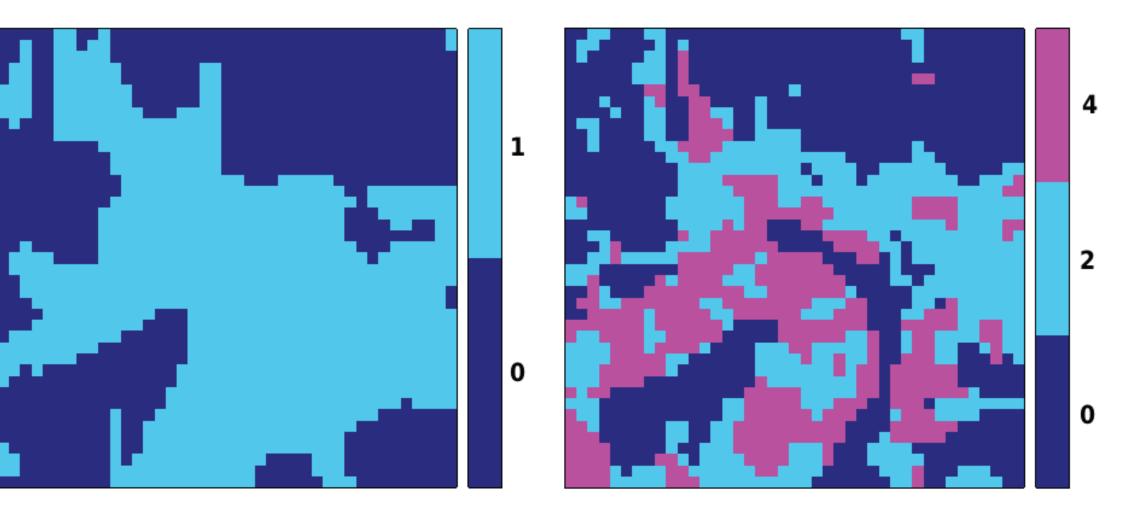



 $\hat{Q}(\Theta|\Theta^{(k)}) = Q(\Theta|\Theta^{(k)}) - \lambda_C \cdot \mathcal{C}(w_0, \dots, w_M)$ 




## **Results on Real Data**




#### **Model Selection Results:**





|          | -   |   |           |    |     |   |   |   |            |    |   |    |     |    |    |    |    |    |    |     |    | -  |     |    |    |            |    |    |            |    |              |     |     | -   |     |                |     |     |    |     |
|----------|-----|---|-----------|----|-----|---|---|---|------------|----|---|----|-----|----|----|----|----|----|----|-----|----|----|-----|----|----|------------|----|----|------------|----|--------------|-----|-----|-----|-----|----------------|-----|-----|----|-----|
|          | -   | ۲ | ۲         |    |     |   |   | ٠ | ۰          | ٠  | 2 | 1  | 1   | ł  | 1  | *  | *  | *  | ×  | *   | *  | *  | 2   | *  | *  | **         | *  | *  | **         | *  | ٠            | **  | ~   | ~   | -   |                | -   | *   | 1  | 14  |
|          | ٠   | 8 | •         | •  |     |   |   | • | <b>e</b> 4 | #  | • | 1  | 1   | •• | •• | 76 | 36 | ×  | ×  | ×   | ×  | ×  | 28  | ** | *  | 8 <b>7</b> | ** | 82 | **         | ** | **           |     | ••  | -20 |     | -              | -1- | -   | 75 | *   |
|          | 8   | Ð | Ŷ         | •  | \$2 | • | - | ø | *          | *  | 1 | ×  | #   | *  | •• | 26 | *  | ×  | ×  | ×   | ×  | ×  | 25  | 8  |    | ٠          | ** |    | 47         | 88 | <b>\$</b> \$ | *   | ••• | *   | +   | ÷              | -   |     | +  | +   |
|          | e i | 4 | ٠         |    | 5   | • | • | • | 1          | 1  | R | H. | A   | 14 | *  | ×  | ×  | 20 | 20 | *   | ** | ** | 20  | ÷. | *  |            | -  | -  | <b>8</b> 8 | 98 | <b>\$</b> \$ | ¥¢. | *   |     | 1   | -17 <b>-</b> 1 | ÷   | -2- |    | -   |
|          | •   |   | a.        |    |     | ø | ø | 0 | 1          | ß  | 1 | 1  | 1/1 | 12 | ×  | ×  | ×  | -  | 44 | 20  | -  |    | 6.8 | *  | -  | 4          |    | -  | -          | 55 | 94           | *   | ×   | -   | ÷   | ÷.             | -   | -   | 4. | -   |
|          |     | ÷ |           | \$ |     | 3 | 1 | A | 1          | 1  | 1 | 1  | #   | *  | 24 | ** | ×  | -  | 4  | 4.  | 4  | 4  | 4   | 4  | -  | -          | 4  |    | **         |    |              | **  | -   |     | -   | -              | 4   | -   |    | -   |
|          |     |   | <b>**</b> |    |     | a | 1 | / | 1          | 1  | 1 | 1  | JP. | ** | ** | ** | *  | -  | -  | -   | •  | 4  | 4.  | 4  | 4  | -          | -  | -  | 88         | -  |              | -   | -   |     | -   | -              | 4   | -   |    | -   |
|          |     |   |           | -  | e e | / | / | 1 | 1          | 1  | 1 | 1  | 1   |    |    | *  | *  | -  |    | -   | -  | 4  | 4   |    | 4. | 4          | -  | -  | 88         | -  | -            |     | ••• | -   | ••• | •••            | -   | -   | -  | -   |
|          |     | _ |           | _  |     |   |   |   |            | 1  |   |    |     |    |    |    |    |    |    |     |    |    |     |    |    |            |    |    |            |    |              |     |     |     |     |                |     |     |    |     |
| <u>,</u> | -   | - | -         |    |     |   |   |   |            | 1  |   |    |     |    |    | •  |    | -  | •  | -   | ** | 1  | 4   | 4  | 4  | ••         |    | -  | -          | -  | -            |     |     |     |     | -              | -   | -   | -  | -   |
| _        | -   | _ |           |    | -   | - | - |   | *          |    |   |    |     |    |    |    |    |    |    |     |    |    |     |    |    |            |    |    |            |    |              |     |     |     |     |                |     | -   |    | 100 |
| _        | -   | _ | -         |    | -   | - |   |   |            |    |   |    |     |    |    |    |    |    |    |     |    |    |     |    |    |            |    |    |            |    |              |     |     |     |     |                |     |     |    |     |
| _        |     |   |           |    |     |   |   |   |            |    |   |    |     |    |    |    |    |    |    |     |    |    |     |    |    |            |    |    |            |    |              |     |     |     |     |                |     | -   |    |     |
| -        |     |   |           |    |     |   |   |   |            |    |   |    |     |    | 38 |    | _  |    |    |     |    |    |     |    |    |            |    |    |            |    |              |     |     |     |     |                |     |     |    |     |
|          |     |   |           |    |     |   |   |   |            |    | 2 |    |     |    | -  |    | _  |    |    |     |    |    |     |    |    |            |    |    |            |    |              |     |     |     |     |                |     | -   |    |     |
|          |     |   |           |    | 4   |   |   |   |            |    | 7 | 2  |     | -  |    | 1  |    |    |    |     |    |    |     |    |    |            |    |    |            |    |              |     |     |     |     |                |     | -   |    |     |
|          |     |   | 2         |    |     |   |   |   |            |    |   |    |     |    | 11 | 11 |    |    |    | 4   |    |    |     |    |    |            |    |    |            |    |              |     |     |     |     |                |     |     |    | _   |
|          |     |   |           | •  |     |   |   |   |            |    |   |    | -   | -  | 10 |    |    |    |    | 1/2 |    |    |     |    |    |            |    | ÷. |            |    |              |     | *   |     |     |                |     |     |    |     |
|          |     |   |           |    |     |   |   |   |            |    |   |    |     |    |    |    |    |    |    | 12  |    |    |     |    |    |            |    |    |            |    |              | 4   |     |     |     |                |     |     |    |     |
|          |     |   |           |    |     |   |   |   |            | •  |   | -  |     |    |    |    |    |    |    |     |    |    |     |    |    |            |    |    |            |    |              |     |     |     |     |                |     |     |    |     |
| •        |     |   |           |    |     |   |   |   |            | *  |   |    |     |    |    |    |    |    |    | 2   |    | 20 |     |    |    |            |    |    |            |    |              |     |     |     |     |                |     |     |    |     |
|          |     |   |           |    |     |   |   |   |            |    |   |    |     |    |    |    |    |    |    | *   |    |    |     |    |    |            |    |    |            |    |              |     |     |     |     |                |     |     |    |     |
| 8        | 8   |   |           |    |     |   |   |   |            | ø  |   |    |     |    |    |    |    |    |    |     |    |    |     |    |    |            |    |    |            |    |              |     |     |     |     |                |     |     |    |     |
|          |     |   |           |    |     |   |   |   |            | ų. | * | *  | 2   | Y  | *  | 4  | 14 | 12 | K  | 1   | *  | *  |     | *  |    | *          | 1  | 1  | 1          | 1  |              |     |     |     |     |                |     |     |    |     |

Proposed method





F-test