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Abstract 

 
This paper describes the efforts to model vorticity laden flowfields using the CREATE-AV 
Helios platform. Helios employs a dual-mesh paradigm: near body unstructured grids, and 
high order accurate off-body Cartesian grids, and information exchange is facilitated by an 
automated, implicit hole cutting method.  Further, an automatic mesh refinement 
capability is employed to refine regions of intense vorticity. Two different scenarios are 
considered: (a) the vortical flow field off a high-angle-of-attack aircraft, (b) the helical 
wake of a model rotor in hover. The ease of use, efficiency, and power of the Helios dual-
mesh paradigm is demonstrated through high fidelity solutions for the aforementioned 
unsteady, vortical fields. 
 
1. Introduction 
 
1.1 Background  
 
Vortical wakes introduce important aerodynamic phenomena in certain classes of aerospace 
vehicles.  Rotary-wing vehicles, in particular, fly  in their own wake and experience numerous 
aerodynamic effects, affecting vehicle handling qualities, vibration, and noise.  The wake of the 
vehicles also complicates near-ground operations, from shipboard landings to ``brownout'' 
conditions in desert flight.  Fixed-wing aircraft also experience problems such as tail buffet[1] 
from tip vortices emanating from the nose  and swept wing in high angle-of-attack fighter jets.   
The availability of accurate and efficient computational models to better predict vortex wake 
behavior   could help to minimize the onset of these sometimes disastrous phenomena.  
 
High-fidelity Reynolds-Averaged Navier-Stokes (RANS) CFD methods have demonstrated the 
ability to give accurate predictions of  aerodynamic loads, but their ability to predict the wake is 
often limited by numerical  dissipation.  This can be mitigated by using very fine grids in the 
wake, but this quickly exhausts available computational resources.  For problems where key 
solution features, like tip vortices, occur only in localized regions of the computational domain, 
spatial adaptive mesh refinement (AMR) can be an effective tool. AMR involves automatically 
refining and coarsening the grid locally to resolve important flow features.  By focusing memory 
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usage and computational effort in these localized regions, a highly resolved solution may be 
obtained much more efficiently than a globally  refined grid of equal resolution. 
 
The use of AMR has been studied extensively for wakes of hovering rotors.  Strawn and Barth[2] 
first demonstrated the concept using AMR in an unstructured Euler solver.  Potsdam[3] also 
applied unstructured AMR to wind turbine wake predictions.   Deitz et al. [4] introduced an 
overset-grid based approach that moved tubular curvilinear grids to align with the tip vortices. 
Hariharan [5] used Cartesian overset vortex-grids to analyze tip vortex from wings.  Meakin[6] 
proposed a Cartesian-based AMR scheme within  the Overflow[7] code.  This approach was 
recently extended by Holst and Pulliam[8,9].   The aforementioned efforts all adopted AMR 
techniques targeting  steady-state solutions; a solution is computed on an initial mesh, the mesh 
is reconstructed to adapt to features in the solution, then the simulation is run again on the new 
mesh.  This steady-AMR approach is useful for isolated rotors in hover conditions, but many of 
the more complex problems in rotorcraft require time-dependent moving body capabilities.  An 
AMR scheme that can resolve unsteady effects like rotor-fuselage interactions or rotor vehicles 
in forward flight or maneuver conditions requires an unsteady-AMR approach, for which the grid 
is adapted continually in a time dependent manner throughout the simulation. 
 
 
Another important strategy for CFD-based wake resolution is the use of high-order numerics.  
High-order schemes are effective because they resolve features like tip vortices with much fewer 
points across the vortex core, so it is possible to achieve better resolution of the vortex wake with 
a coarser mesh.  The benefits of high-order schemes for rotor wakes have been shown by 
Hariharan[4,10],  Sankar[11], Yeshala[12] and Duque et al.[13]. Cartesian grids offer the most 
computationally efficient approach to high-order accuracy. Unlike Discontinuous Galerkin 
schemes on unstructured grids, which can be as much as an order of magnitude more expensive 
than standard second order schemes, finite-difference-based high-order schemes on Cartesian 
grids are only marginally more expensive than a second-order scheme. 
 
 
1.2 CREATE-AV Helios Computing Platform 
 
Helios is a new computational platform under the CREATE-AV umbrella targeted towards Aero-
mechanics simulations. Details of the underlying platform design, validational cases, and 
targeted applications can be found in Reference [14]. At the heart of the Helios platform is an 
innovative dual-mesh paradigm with an unstructured mesh solution in the near-body, and 
Cartesian meshes in the off-body and using automated overset information exchange as a means 
of communication. The unstructured near-body solver facilitates ease of grid generation for 
complex body shapes, and the solution is computed using the second-order accurate flow solver 
NSU3D [15]. The off-body Cartesian grid generation is automatically done using SAMRAI [16]. 
Cartesian grid infrastructure, and employs an efficient fifth-order spatially accurate solver, 
SAMARC [17].  
 
The Helios platform deploys overset hole cutting using an implicit methodology [18] that does 
not require any user interference. The overset connectivity is handled by PUNDIT [19], and the 
entire process supports parallel/distributed computation. Figure 1.1 illustrates the various 
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components of the Helios platform. Further, the SAMRAI infrastructure supports the ability 
automatically to perform Cartesian refinement and adapt to geometric and flow features. The 
CREATE-AV release of Helios (named �“Whitney�”) does not support the automated refinement 
functionality, but the 2011 release (�“Shasta�”) will officially support the feature.  
 
In this paper, the application of the Helios dual-mesh paradigm �–with automated adaption- is 
explored for resolving two-different vorticity laden flow fields: (i) Aircraft high-AoA vortex 
system, (ii) Wake vortex system of a rotor-blade in hover. 
 
 
2.  High Angle-of-Attack Aircraft Flowfield  
 
 
2.1 Baseline Solution  
 
Effects of aerodynamic vortex-shedding impinging on the tail empennage typically occur during 
maneuvers at high angles of attack (AoA) ranging from 15-25 degrees. A range of such cases 
were first simulated for an AV-8B aircraft geometry using USM3D - a widely used, second-
order, unstructured flow solver. Details of the geometry and the unstructured grid are described 
in Reference [20]. Figure 2.1a-d shows vorticity contours at several streamwise sections across 
the aircraft at a twenty degree angle of attack. Clearly, several geometric features feed the vortex 
generation process. Figure 2.1e shows vorticity iso-surface of the wing-vortex system. The 
vortices are seen to be largely dissipated by the time it reaches the tail structures. Inadequate grid 
density distributions and lower spatial order of accuracy of computations contribute to the 
dissipation. Typically a second order accurate flow solver would require 20-30 points across the 
core of the vortex to numerically convect the vortices without dissipation. In this context there 
are several impediments in using a computational strategy as this as a means for engineering 
predictions of buffet drivers, for a large range of flight conditions. 

i. Global refinement over the entire aircraft providing 20-30 grid points across all the 
vortices produced over the aircraft will result in untenable number of grid points for 
engineering computations.  

ii. Targeted unstructured refinements to vorticity and gradients may work if automated, 
but has historically been proven difficult to achieve without a good deal of expertise 
in controlling the refinements. Moreover, even with targeted refinements, it is 
difficult to provide ~30 grid points across the path of the evolving vortices when 
second order accurate computations are employed. 

 
 
2.2 Helios Overset Simulation  
 
Next, the same simulation was attempted using the Helios dual-mesh paradigm. The process 
involved providing the original unstructured mesh to the Helios infrastructure, and allowing it to 
arrive at the background meshing, and all the required interfaces. Figure 2.2a,b show the side, 
and front sectional view of the dual-mesh. As can be seen in Figure 2.2a, the finest off-body 
mesh uniformly covers the expected path of the aerodynamically generated vortices. 
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Figure 2.3a-d shows directional vorticity contours over a number of streamwise sections along 
the length of the aircraft, similar to Figure 2.1. The vorticity content generated over the fore-part 
of the aircraft is much better preserved by the fifth-order off-body Cartesian-grid solution, and a 
richer, stronger vortex field impacts the empennage. Figure 2.3e shows iso-vorticity contours 
colored by w-velocity over the entire aircraft, similar to Figure 2.1e, and shows in considerably 
more detail the computed vorticity field, including the wing-tip vortex. 
 
2.3 Helios Simulation with Cartesian Off-body Grid Refinement 
In the simulation described in Section 2.2, the total number of off-body Cartesian points is fixed 
at the beginning of the simulation at a given fine level. In this section the ability to selectively 
refine off-body grids to geometric features, and flowfield vorticity is explored. This functionality 
will be a feature of the 2011 Helios Shasta release. In this simulation the resolution of the finest 
off-body grid is not specified apriori, but Helios automatically determines the finest grid levels.  
 
Vorticity magnitude is computed on the Cartesian grid by SAMARC.  Any cell with vorticity 
greater than a specified magnitude is tagged for refinement.  On the next refine step these tagged 
cells are clustered to form a new Cartesian block with one level finer (2X) resolution.  This 
process continues until the specified maximum number of levels is reached.  An issue with this 
approach is that careful tuning is required to control mesh size.  If the threshold vorticity chosen 
is too large, no cell in the wake is tagged for refinement.  If it is too small, too many cells may be 
tagged causing the problem size to exceed available computational resources. A new approach 
[21] that avoids the need for user tuning is currently being tested and is planned to be part of   the 
future release of Helios.   
 
The Automatic Mesh Refinement (AMR) case used the same near-body mesh used in the fixed-
refined case (5.55M nodes).  Each new finer level in the Cartesian grid framework has double the 
resolution of the underlying coarser level. The refinement is isotropic, i.e., all three axes are 
refined. The AMR case uses one level finer grid resolution than the fixed-refined case shown 
earlier.  The case was first run with refinement applied to the problem geometry (i.e. no solution 
refinement) in order to dissipate non-physical startup transients.  It has been found from past 
calculations that the AMR scheme attempts to track and preserve the startup transients if it is 
turned on at initialization, and it is helpful to first converge a solution on the geometry-refined 
mesh before turning on solution-based refinement.  The geometry-refined off-body mesh system 
contained 12.7M off-body nodes, the time/step for the dual-mesh calculation was 3.61sec on 64 
processors, with 75% of the total time spent in the near-body solver (NSU3D) and 25% of the 
time in the off-body solver (SAMARC). Figure 2.4a shows a cross-section of the grids showing 
the near-body, and off-body grids if Helios is allowed to adapt the off-body Cartesian grids based 
on the geometric features, and near-body grid resolution. The difference between the off-body 
Cartesian grid structures of the current simulation, and the simulation described in Section 2.2 
can be seen by comparing Figures 2.2 and 2.4a. In Figure 2.4a, the finest levels mesh is adapted 
to the geometry and is not uniformly fine over a region covering the entire aircraft as in Figure 
2.2. Figure 2.4b shows the evolving vorticity field with only the geometry based adaption active. 
 
Initially, the geometry-refined solution was converged. Then the case was run further with the 
vorticity based solution refinement turned on.  Mesh adaptation takes place every 250 steps, 
totaling 40 adapt cycles over the simulation.  The final mesh system at the end of the simulation 
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contained 20.0M off-body nodes, the time per step is 4.18 sec on 64 processors, with 68% of the 
time spent in the near-body solver (NSU3D) and 32% in the off-body solver (SAMARC). 
 
Figure 2.5a-c shows several streamwise sections of the refined Cartesian grid along the length of 
the aircraft. The grid refinement is seen to track the approximate evolution of the vortices 
generated. Figure 2.6a shows vorticity contours overlaid with the refined grid at a spanwise 
section along the wing. The vorticity transported from the near body solution near the wing is 
convected in the off body grid all the way to the empennage, with no noticeable loss due to the 
localized refinement of the Cartesian grid.   
 
Figure 2.6b shows iso-vorticity contours colored by w-velocity over the entire aircraft, similar to 
figure 2.3e. The richness of the vorticity field in the vicinity of the empennage sections is 
remarkably well captured without any noticeable dissipation �– due to a combination of 5th order 
special accurate algorithm and adaptive provision of enough Cartesian grid points across the path 
of the vortex structures. Figure 2.7 compares the second order, the fixed Cartesian, and AMR 
Cartesian solutions. The AMR Cartesian solution provides detailed resolution of the high-AoA 
vortex field for a marginal increase in the cost of CPU/time step (Unstructured only: 3.83 sec/iter 
to AMR Cartesian: 4.18 sec/iteration).  A central advantage in this approach is the ability of the 
method to automatically adapt the background Cartesian grid with changing flight conditions 
without having to go back and regenerate the near-body unstructured grid. 
 
Figure 2.8 shows the unsteady pressure imprint of the fore-body generated vortical flowfield on 
the vertical tail. The unsteady excitation can be fed to a structural solver to analyze fatigue 
response. Figure 2.9 show vorticity iso-surface of the flowfield being captured several body 
lengths behind the aircraft, when the Cartesian adaption is allowed to refine further. Such an 
ability to preserve vortical fluctuations over multiple-aircraft lengths will be very useful to study 
interactional aerodynamics of multi-aircrafts in flight (i.e., mid-air refueling, close-proximity 
flights, impact of engine jet-exhaust etc.). 
 
3. Vortex-wake of a  Rotor in Hover  
 
A substantial portion of this study also focused upon the physics and numerics of computing the 
vortical wake of a rotor in hover. The Caradonna-Tung [22] rotor-blade - a two bladed rotor 
model tested in 1981- was used to explore several aspects of predicting hover using Helios. The 
blade planform consists of untwisted, non-tapered NACA0012 sections with an aspect ratio of 6. 
An unstructured blade grid was generated using AFLR3 volume grid generator.  
 
3.1 Out-of-Ground Hover  
 
To initiate the calculations the blade grid was set in a prescribed Cartesian grid setting. The 
finest grid level was initiated at 9-grid-cells per chord (referred to as Level-5 grid). The 
background Cartesian grid was intentionally solved employing a second-order spatially-accurate 
method. The Helios code was run in the rotational-mode. The run collective pitch was set at 8 
degrees, and the tip Mach number was 0.44. The blade grid had 3.3 million grid points, and the 
coarse, Level-5 off-body grid had 2.2 million grid points. Figure 3.1 shows vorticity contours 
across a chordwise-cross section in the middle of the middle of the blade. The tip vortex 
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originates in the blade-grid, and transfers to the Cartesian grid. The large amounts of diffusion 
associated with the second-order scheme and coarser Cartesian grid causes the vortex system to 
settle-down to a ring-state within a single-revolution. As the computation proceeds, the solution 
arrives at a numerically stable vortex structure as seen in figure 3.2. The presence of the 
cumulative vortex ring so close the rotor-blade results in much larger induced flow, and hence a 
much lower predicted thrust coefficient of 0.003118 (experimental thrust coefficient = 0.0046).  
 
The background Cartesian grid finest-level resolution was doubled to 18-grid-cells per chord 
(referred to as Level-6 grid). The off-body Cartesian grid count was 22.5 million. Figure 3.3(a, b) 
shows similar vorticity magnitude contours, and vorticity iso-surfaces (colored by z-velocity) 
with the computational order of accuracy in the Cartesian grid still being retained at the second-
order level. The wake system evolves below the vortex further down before being consumed by 
the ring-vortex. Figure 3.4 shows on vorticity iso-surfaces focusing on the structure of the wake-
sheet. The helical wake sheet system that descends faster than the tip-vortex system is seen to be 
well captured.  
 
Figure 3.5 shows wake vorticity contours when the computational order of accuracy of the 
Cartesian grid was increased to 5th. The wake vortex system is sharply defined with the vortex-
ring structure pushed further down, but persisting in the eventual converged solution. Figure 3.6 
(a,b) show two different views of helical tip vortex structure using iso-surfaces in the wake 
(colored by z-velocity). The helical system convects down due to its own self-induced velocity, 
but eventually rolls up into a toroidal vortex ring. Figure 3.7(a) shows vorticity iso-surfaces of 
both the computed tip-vortex, and the wake-sheet systems.  Figure 3.7(b) shows the well-known 
idealized schematic of a rotor-wake. The agreement between figures 3.7(a) and 3.7(b) is striking.  
The computed thrust coefficient converged to a value of 0.0052, approximately 10% higher than 
the experimental value. 
 
There are several possible reasons on why the thrust comes out higher: (i) accuracy of the near-
body solution, (ii) effect of center-body, (iii) far-field conditions (wind-tunnel vs. free-stream) 
etc. We explored some of these issues, starting with the near-body solution. In the Helios dual-
mesh paradigm, the near-body solution is computed using NSU3D, a second-order spatially 
accurate unstructured solver. Figure 3.8(a) shows a streamwise cross-section of the baseline 
near-body unstructured grid (R0: 3.3 million grid points). A grid refinement tool developed by 
the CREATE-AV Kestrel team was used to refine the tip region of the rotor-blade grid. Figure 
3.8(b) shows the new blade grid (R1: 8.3 million grid points), refined to double the grid density 
in the tip region. The resulting solution improves the resolution of the tip vortex formation over 
the blade-tip. Figure 3.9(a, b) compares the tangential peak-to-peak velocity across the tip-vortex 
at a streamwise station near the blade trailing edge, between the Level-0, and Level-1 grid 
solutions. The peak-to-peak tangential velocity magnitude from the Level-1 simulation is 
approximately 30% more than the Level-0 value. Figure 3.10 compares resulting wake vorticity 
in the Cartesian grid between the two simulations (R0: colored by z-velocity, R1: black grid 
surface), and no significant difference in the wake location is noted.  The computed thrust 
coefficient from the R1 simulation converged to a value of 0.0050, trending towards the 
experimental value.  
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Concurrently, the study started focusing on automated mesh refinement (AMR) of the Cartesian 
solution. In the AMR method, a maximum adaption cell size, and a minimum vorticity threshold 
to adapt to are prescribed. Figure 3.11 shows vorticity contours, and the resulting grid for a 
vorticity threshold of 0.005, and maximum grid level of 6 (18 cells per chord). The vorticity 
threshold is small enough to include refinement in the entire wake. Figure 3.12 compares the 
wake vortex peak-to-peak strength at several azimuthal angles ( =30, 210, 390, 570 degrees). 
The number of nodes the peak-to-peak variation is capture is plotted for each of the azimuthal 
angles.   The strength drops off from =30 degrees where the vortex is captured with ~9 cells till 
the point it spreads to ~12 cells across (~ =210 degrees), and thereafter maintains the resolution. 
This is in line with expectations for a fifth-order spatially accurate scheme. Further off-body 
refinement work is in progress. 
 
It is instructive to compare the current simulation from an earlier, 7th order spatially accurate, 
overset grid simulation by Hariharan and Ekaterinaris [23] using the NSHOCS code. Figure 
3.13(a) shows a near-body C-grid, and off-body clustered Cartesian grid. The solution was run in 
a fully transient mode, for the same flow conditions, and both near and off-body grids were 
computed using a ENO-based 7th order accurate scheme. Figure 3.13(b) shows the wake vortex 
structure, and the simulation predicts a similar vortex ring as seen in the current Helios 
simulations. Figure 3.14 shows tangential peak-to-peak variations across various tip-vortex 
azimuthal locations. The peak-to-peak values compare similar to the Helios wake structure in 
figure 3.12. However, the computed thrust coefficient in the Hariharan and Ekaterinaris [23] 
simulation was reported at a value of 0.00462 �– very close to the experimental thrust coefficient. 
The only substantial difference between the NSHOCS simulation and the current Helios 
simulation is the computational accuracy of the near-body computation. Coupled with the fact 
that the R1 Helios solution trended in the right direction compared to the R0 Helios solution, it is 
quite suggestive that the near-body flow solution accuracy (especially the creation of the tip 
vortex and its evolution over the wing) plays a large role in closing the last 10% gap in computed 
vs. experimental loads. In Helios, this increase in near-body tip-flowfield accuracy could be 
achieved either by further near-body tip-grid refinement, or adding a higher-order 
structured/strand grid near-body solution option �– both of which are in the works for future 
releases. 
 
Thus far, all the rotor-wake simulations presented in this section utilized the steady hover 
formulation, which uses a fixed grid with rotational source terms applied to the equations solved 
on the grid, and is usually accepted as a good approximation for isolated hover predictions.  
However, problems involving rotor-fuselage interactions, multiple rotors, or helicopters in 
forward flight which are ultimately of interest to helicopter engineers require an inertial 
formulation with moving grids capable of simulating bodies in relative motion.  A useful 
validation is an investigation into whether the two formulations -- steady hover vs. inertial hover 
-- give the same answers.  Figure 3.15a shows the tip vortex wake structure from an inertial 
simulation (R0 near-body, L6-Level Cartesian, 5th order accuracy in the Cartesian), and it 
exhibits the helical structure feeding a persistent vortex ring similar to the rotational solution. 
Figure 3.15b plots the tip-vortex iso-surfaces for the inertial (colored by z-velocity) and the 
earlier rotational solution (grayscale). The vortex-ring stands off at a slightly different z-location, 
and the helical vortex structure z-locations vary a bit after the wake azimuthal angle exceeds 360 
degrees. However, the net thrust coefficient levels for the inertial simulation converge to a value 
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of 0.00518, close to the rotational mode predictions. Further, a tear-drop shaped center-body was 
inserted into the simulation. Figure 3.16 shows the tip vortex of the resulting system. No major 
changes were observed either in the vortex structure or the resulting integrated thrust. 
 
3.2 Near-Ground Hover  
 
The Caradonna-Tung rotor-blade configuration was then used to study if Helios can reproduce 
the beneficial effects on thrust and efficiency when hovering near-ground. Figure 3.17 shows the 
vorticity contours of the wake when the rotor-blade is hovering at 0.5 rotor radius above the 
ground. Inviscid wall conditions were set at the lower boundary of the Cartesian box.  The vortex 
system flares out (consistent with ground image vortices), and the vortex ring is pushed out 
further. Figure 3.18 shows vorticity iso-surfaces at different levels to �“see-through�” the complex 
vortical structures near the ground. Figure 3.18(a) �– high iso-vortex level �– shows the internal 
structure of the tip vortices feeding the flared out toroidal ring vortex. Figure 3.18(c) �– low iso-
vortex level �– shows the radial location of the ground effect roll of the entire wake tip-vortex, 
and wake-sheet. Figure 3.18(b) �– medium iso-vortex level is the most interesting - shows 
formation of intense braided vortex structures around the ring-vortex enhancing mixing in all 
directions. A well-known operational issue of hovering/landing near a dusty-ground is the 
�“brownout�” phenomena, where dust-particles mix so thoroughly to reduce pilot visibility quickly 
to near-zero levels. The vortex structure in figure 3.18(b) begins to explain why the dust 
transport mixing is so thorough and fast. Figure 3.18(b) shows a flared out toroidal ring vortex 
braided by secondary small-scale vortices forming rings all around the circumference. Such a 
vortex structure enhances mixing across scales, and hence aids quick and uniform distribution of 
dust particles that are picked up from the ground surface. Figure 3.19 shows streamline contours 
(colored by velocity magnitude) of particles seeded near the ground surface. The high level of 
internal mixing �–near the ground- distorts the classical solenoidal flow field of free flight hover.   
 
Figure 3.20 compares the vortex strength evolving off the blade between free flight (a) and near-
ground flight (b). The vortex strength reduces on theoretically expected lines implying higher 
predicted hover efficiency near the ground.  Figures 3.21 compares similar vorticity contours, 
and figure 3.22 compares similar near-ground seeded particle streamlines when the hover 
distance is increased to 0.625 times the rotor diameter. The flow-field begins to tend towards a 
free-flight hover mode. Figure 3.23 plots the near-ground to out-of ground thrust ratios computed 
by Helios for these two locations, and compares it with historical data, and an image-vortex 
theory based predictions (figure reproduced from Leishman [24]). The Helios simulations predict 
near-ground thrust gains that conform to image-vortex theory. 
 
5. Conclusions & Recommendations 
 
This paper describes the efforts to model vorticity laden flowfields using the CREATE-AV 
Helios platform. Helios employs a dual-mesh paradigm: near body unstructured grids, and high 
order accurate off-body Cartesian grids, and information exchange is facilitated by an automated 
implicit hole cutting method.  Further, an automatic mesh refinement capability within Helios 
was employed to refine regions of intense vorticity. Two different scenarios were considered: (a) 
the vortical flow field off a high-angle-of-attack aircraft, (b) the helical wake of a model rotor in 
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hover. The ease of use, efficiency, and power of the Helios dual-mesh paradigm was 
demonstrated through high fidelity solutions for the aforementioned unsteady, vortical fields. 
 
The geometric complexities of a full-up aircraft with all the associated pylons, and missiles, and 
pods require flexible and efficient CFD simulation tools that utilize unstructured meshes. One of 
the charters of CREATE-AV is to propagate the use of Computational Based Engineering (CBE) 
to non-CFD experts, and therefore the process utilized to arrive at the solution cannot be too 
dependent on fine-tuned expertise of the user. Hence the right process to arrive at a good-quality 
engineering solution becomes equally important.  
 
A combination of Helios capabilities - (i) to compute 5th order spatial accuracy in the Cartesian 
grids, and (ii) to automatically refine the Cartesian grid to vortical flow features - enabled 
accurate convection of the vortex structures hitting the empennage. A central advantage in this 
approach is the ability of the method to automatically adapt the background Cartesian grid with 
changing flight conditions without having to go back and regenerate the near-body unstructured 
grid. Such an ability to preserve vortical fluctuations over multiple-aircraft lengths will also be 
very useful to study interactional aerodynamics of multi-aircrafts in flight (i.e., mid-air refueling, 
close-proximity flights, impact of engine jet-exhaust etc.). Further detailed studies are 
recommended to validate the Helios methodology by incorporating engine exhaust effects, and 
coupling the tail unsteady loads to a structural model.  
 
Similarly, the off-body Cartesian solver in Helios resolved the helical tip-vortex and wake sheet 
of the hover field adequately. The Cartesian grid resolution needs to be of the order of ~12 points 
across the vortex core for propagating the tip-vortex without noticeable dissipation. AMR needs 
to be further explored to refine just around the helical wake structure. For a blunt tipped blade 
such as the Caradonna-Tung model rotor, the near-body second-order solver resolution needs 
further refinement in order to resolve the high tangential and axial gradients across the tip vortex 
as the vortex forms over the wing. This lack of adequate grid resolution near the blade tip to 
capture the vortex formation has a definite bearing on the final predicted thrust.  
 
Helios calculations accurately predicted the near-ground hover thrust gains compared to out-of 
ground hover. Helios also captured rich details of a flared out toroidal ring vortex braided by 
secondary small-scale vortices forming rings all around the circumference, and thus provided 
some insights into the multi-scale mixing process during brownouts.  Such a vortex structure 
enhances mixing across scales, and hence aids quick and uniform distribution of dust particles 
that are picked up from the ground surface. Helios can potentially be useful for simulating 
helicopter brownouts, and any strategies to mitigate their effects. 
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Figure 1.1. Dual-mesh paradigm used in the Helios platform with unstructured near-body grids to capture geometric 
features and boundary layer near the body surface, and block-structured Cartesian grids to capture far-field flow 

features.  

 
 

  

Figure 2.1. (a-d) Directional vorticity contours at several streamwise locations across a AV-
8B aircraft configuration. Twenty degrees angle of attack conditions, USM3D simulation.  

Inset (e): Vorticity iso-surface over the entire aircraft colored by z-velocity.  

(a) (b) 

(c) 
(d) 

(e) 
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Figure 2.2.  Sectional views of  coupled  near-body (NSU3D) and off-body (SAMARC) computation using HELIOS. 

  

  

Figure 2.3. (a)-(d)Directional vorticity contours at several streamwise locations across the aircraft. (e)Vorticity iso-
surface over the entire aircraft colored by z-velocity. Twenty degrees angle of attack conditions. Computations from 
composite near-body (NSU3D), and off-body (SAMARC) overset computations under the Helios environment. Off-

body solutions is 5th order accurate in spatial resolution. 

(a) (b) 

(c) 
(d) 
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Figure 2.4. (a) Off-body Cartesian grids adapted to geometry by Helios platform. (b)Vorticity iso-surface in the 
evolving flowfield colored by z-velocity from a first-pass solution prior to flow-based Cartesian adaptation 

Figure 2.5. Streamwise sectional views of the off-body Cartesian grids refined to track vorticity. 

Figure 2.6.  (a) Spanwise cut showing AMR along the vortex path (b) Vorticity iso-surface over the entire 
aircraft colored by z-velocity. Twenty degrees angle of attack conditions. Helios computation employing off-

body Cartesian grid refinement (5th order accuracy). 

(a) (b) 

(a) (b) (c) 

(a) (b) 
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Figure 2.9.  AMR based on vortex resolution carried out to multiple-body lengths behind the aircraft. Second 
aircraft (hypothetical) could potentially be analyzed for interactional effects. 

Figure 2.7.  Comparison of vortical flowfield resolution, and the time-step per iteration required to achieve 
the solution between the three solution methodologies. 

Figure 2.8.  Unsteady pressure contours at different time instances on the vertical tail due to the presence of 
the unsteady vortex flowfield. 
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Figure  3.1. Vorticity magnitude contours. Cartesian: Level-5, 2nd Order. 

Figure  3.2. Iso-vorticity contours colored by z-velocity. Cartesian: Level-5, 2nd Order. 
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Figure 3.3 . Vorticity magnitude and Iso-vorticity contours colored by z-velocity. Cartesian: 
Level-6, 2nd Order. 

Figure 3.4.  Vorticity magnitude and Iso-vorticity contours colored by z-velocity, showing 
wake-vortex sheet structure. Cartesian: Level-6, 2nd Order. 

(a) (b)
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Figure 3.6 .  Vorticity Iso-vorticity contours colored by z-velocity, showing tip vortex structure. 
Cartesian: Level-6, 5th  Order. 

Figure  3.5.  Vorticity magnitude contours in the wake, showing wake-vortex sheet structure. 
Cartesian: Level-6, 5th Order. 

(a) (b) 



 

19 

 

  

Figure 3.7.  Vorticity Iso-vorticity contours colored by z-velocity, showing  the helical wake 
structure comprising of the tip vortex, and the vortex sheet structure. Cartesian: Level-6, 5th  
Order. 

 

 

 

Figure 3.8 .  Vorticity contours in a streamwise plane off the blade trailing edge. Solution in the 
near-body grid, 2nd order accuracy. (a) Level-0 grid (b) Level-1 refined grid. 

(a) 

(b) 

(a) (b) 
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Figure 3.9.  Tangential velocity profile across the tip vortex in the NBE grid (inset: w-velocity 
contours in a streamwise plane off the blade trailing edge). Solution in the near-body grid, 2nd 
order accuracy:  (a) Level-0 grid (b) Level-1 refined grid. 

Figure  3.10.  Vorticity iso-surface contours.  Cartesian solutions from NBE-R0 (colored by z-
velocity), and NBE-R1 (black grid lines) grids overlaid on top of each other. 

(a) (b) 
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Figure 3.11 .  Vorticity iso-surface contours colored by z-velocity.  Automated Cartesian Mesh 
Refinement applied (Maximum Level-6), vorticity  threshold=0.005. 

  

Figure 3.12.  Tangential velocity profile across the wake tip vortex at several wake-age stations. 
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Figure 3.14.  Fully high ordered structured overset simulation of the C-T rotor. Near-body C-
grids, Cartesian background grid. Seventh order spatial accuracy (Hariharan and 
Ekaterinaris[23]) 

Figure 3.13.  Fully high ordered structured overset simulation of the C-T rotor. Near-body C-
grids, Cartesian background grid. Seventh order spatial accuracy (Hariharan and 
Ekaterinaris[23]) 

(a) (b) 
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Figure 3.15 .  Vorticity magnitude iso-surface colored by z-velocity. Level-6: (a) Inertial, (b) 
Inertial (colored by z-velocity) vs. Rotational (grey). 
 

(a) (b) 

 

Figure 3.16 .  Vorticity magnitude iso-surface colored by z-velocity. Level-6: Inertial run with a 
tear-drop center-body. 
 



 

24 

Figure  3.17.  Vorticity magnitude countours. Level-6: Rotor blade hovering above ground (ground 
clearance=0.5 rotor radius).  
 

 

 

Figure 3.18 .  Vorticity magnitude countours, Level-6: Rotor blade hovering above ground (ground 
clearance=0.5 rotor radius).  (a) High level iso-surface, (b) Medium level iso-surface, (c) Low level 
iso-surface. Secondary vortical structures enhance mixing �– aiding �“Brownout�” scenarios. 

(a) (b) 

(c) 
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Figure 3.19 .  Streamlines of particles released near the ground plane, colored by velocity magnitude 
(ground clearance=0.5 rotor radius).  High level of mixing in the internal structures distorts the free-flight 
pure solenoidal field. 

 

Figure 3.20 .  Tangential velocity profile across the tip vortex in the NBE grid (inset: w-velocity contours 
in a streamwise plane off the blade trailing edge). Solution in the near-body grid, 2nd order accuracy. (a) 
Out-of-ground hover (b) Near-ground hover (0.5 rotor radius ground clearance). 

 

(a) (b) 
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Figure  3.22.  Streamlines of particles released near the ground plane, colored by velocity 
magnitude (ground clearance=1.25 rotor radius). Velocity field approaching free-flight pure 
solenoidal pattern. 

Figure 3.21 .  Vorticity magnitude countours. Level-6: Rotor blade hovering above ground 
(ground clearance=1.25 rotor radius).  
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Figure  3.23.  Comparison of predicted thrust gains (In-ground effect vs. out-of-ground effect) 
with historical data, and image-vortex theory (reproduced from Leishman[24]). 
 


