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administrivia. ..



-grades out for time series assighment
-scalar data assighment up; new due date

-what to do about last assignment!?
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last time . ..



e Visualization of 1D, 2D, or 3D scalar fields

— 1D scalar field: () € R — R

— 2D scalar field: {2 € R2 — R

_ 3D scalar field: {2 € R3 — R
— Volume visualization!



Grids (Meshes)

 Meshes combine positional information (geometry) with
topological information (connectivity).

* Mesh type can differ substantial depending in the way mesh
cells are formed.

scattered uniform rectilinear structured unstructured

From Weiskopf, Machiraju, Moller



INnterpolation
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http://en.wikipedia.org/wiki/Bicubic_interpolation

Rilinear Interpolation x5

* |n rectangle
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CS530 - Introduction to Scientific Visualization Sep 26,2014,



Irilinear Interpolation

* |n a cuboid (axis parallel)

* general

formula
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o(xz,y,2) =aryz + bxy + cxz + dyz + ex + fy+ gz + h

e with local coordinates

(CS530 - Introduction to Scientific Visualization
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What is "Correct” Interpolation®

Oxygen Levels in Flue Gas — Cubic Spline
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-overview of visualization for 2D scalar fields
-isocurves with marching squares

-isosurfacing with marching cubes



» 2D visualization
slice images
(or multi-planar
reformating MPR)

 Indirect
3D visualization
Isosurfaces
(or surface-shaded
display SSD)

* Direct
3D visualization
(direct volume
rendering DVR)




« 2D visualization
slice images

(or multi-planar
reformating MPR)

e [ndirec
3D visualization
Isosurfaces |
(or surface-shaded
display SSD)

* Direct
3D visualization
(direct volume
rendering DVR)




Techniques for 2D Scalar
Field Vis

 (Geometry-based:
* Height fields, surface plots
* Contours

* Color-based

* Transfer Function / LUT Selection



Color Mapping

* Display scalar value through a color map, transfer
function, color scale, or lookup table (LUT)

* Map Iinterval on the real line to a path through the
color space.

f:R— {RGB, HSV)



In Visualization, we Use the Concept of a Transfer
Function to set Color as a Function of Scalar Value

A

Color
| ESSOE |

- >
Scalar Value

Scalar values ->[0,1] -> Colors



Use the Right Transfer Function Color Scale
to Represent a Range of Scalar Values

* Gray scale

* Intensity Interpolation
* Saturation interpolation
* Two-color interpolation
* Rainbow scale

* Heated object interpolation
* Blue-White-Red



A Gallery of Color Scales
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 Example

— Special color table to visualize the

brain tissue

— Special color table to visualize the
structure

Original

one




More Examples

Penny Rheingans (1999). Task-based Color Scale Design. Proceedings of
Applied Image and Pattern Recognition '99, SPIE, pp. 35-43.


http://www.cs.umbc.edu/%7Erheingan/pubs/scales.pdf.gz

Figure 1. Grey scale.



Figure 2. Saturation scale.



Figure 3. Spectrum scale.



Figure 4. Limited spectrum scale.



Figure 5. Redundant hue/lightness scale.



I ol ) savii

jod ] 415
©INN——

Figure 6. Heated-object scale.



Helght Flelds

 We use height in 1D plots, let's use it in 2D plots
* Direct intuition of the topography

* Letthe geometry convey the data






Contour Lines

 Draw lines of constant value.
* [hese bound regions of contiguous hues

* LLoops or lines through end of the dataset

* Usually best to use multiple contours

e Why"



—y

"
300 mb Wind Barhs (k) 05011780000
300 mb» Hesoht (m) Analvsls 0507 170000

300 oy Temperature (C) Analysis 0507 170000






» 2D visualization
slice images
(or multi-planar
reformating MPR)

 Indirect
3D visualization
Isosurfaces
(or surface-shaded
display SSD)

* Direct
3D visualization
(direct volume
rendering DVR)




» 2D visualization
slice images
(or multi-planar
reformating MPR)

 Indirect
3D visualization
Isosurfaces
(or surface-shaded
display SSD)

3D visualization
(direct volume
rendering DVR)




http://www.lib.berkeley.edu/EART/digital/topo.html
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Other examples



Oct 7,2014,

(CS530 - Introduction to Scientific Visualization



(CS530 - Introduction to Scientific Visualization Oct 7,2014,



ISOCONTOURS 1n 2D

38



properties '~

-concepts generalize to any dimension(
-closed, except at boundaries

-nested isocontours that don’t cross
-can consider the zero-set case (generalizes)

fxy) =v —— fxy)-v=0

-normals given by gradient vector of f()

39



Where are the data values?

=;= Pata value f defined on grid points only
-
=== flxy,z)
-
N But we want a continuous,
HER V. closed surface

Two solutions:

+ Interpolate fo get the “right” answer
»  Subsampling or raycasting
Dividing Cubes
»  Approximate to get a “good” answer
Geometric primitives
Go cell by cell

40



Approach to Contouring in 2D

* ldea: Assign geometric primitives to individual cells

 Will use line segments

Method: Consider the “sign” of the values at vertices
relative to if they are above or below the isovalue

* Intersections MUST occur on edges with sign
change

Determine exact position of intersection by interpolate
along grid edges



Approach to Contouring in 2D

e Contour must cross every grid line connecting two
grid points of opposite sign

Get cell !dentify grd FInd crossings
ines w/cross
@ ® @ @ @ @ L
X
Interpolate
along grid lines
O o o \7;r ggﬂ\ s
\l/ J

Primrtives naturally chain together
gy ® o

- -




Cases

Case Polarity | Rotation | Total
No Crossings X2 2 [I Ij
Single e | x| s [I I I I I E
Double adjacent X2 X2 (4) 4 [I Ij I I I I
Double Opposite X2 x1(2)

- [ 1] ]

16 = 24

(x2 for
polarity)



@

Ambiguities

e How to form lines?

N/
/\




Ambiguities

* Right or Wrong”




The Asymptotic Decider:
Resolving the Ambiguity in Marching Cubes

Gregory M. Nielson

Bermnd Hamann

Computer Science
Arizona State University
Tempe, AZ 85287-5406

Abstract

A method for computing isovalue or contour
surfaces of a trivariate function is discussed. The
input data are values of the trivariate function, Fijk, at
the cuberille grid points (x;, yj, zx) and the output is a
collection of triangles representing the surface
consisting of all points where F(x, y, z) is a constant
value. The method described here is a modification
that is intended to correct a problem with a previous
method.

1.0 Introduction

The purpose of this paper is to describe a method
for computing contour or isovalue surfaces of a
trivariate function F(x, y, z). It is assumed that the
function is continuous and that samples over a
cuberille grid (see Figure 1 ) are available. These
values are denoted by Fiyx = F(x;, yj, zk);1=1, ...,
Nx,j=1, ..,Ny, k=1, .., Nz. The problem is to
compute the isovalue or contour surface

Sa={ X v.,2):Fx,y,2)=a}.

e ——

marked indicates Fijjx > o. While there are 28 =256
possible configurations, there are only 15 shown in
Figure 2. This is because some configurations are
equivalent with respect to certain operations. First
off, the number can be reduced to 128 by assuming
two configurations are equivalent if marked grid
points and unmarked grid points are switched. This
means that we only have to consider cases where there
are four or fewer marked grid points. Further
reduction to the 15 cases shown is possible by
equivalence due to rotations.
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A Case Table Can Be Used
To Implement The Algorithm
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0132315003386320261101231
5x5 grid

what Is th.e iIsocontour
for 1sovalue = 4/



01328150083868:20261101:481

¥
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5x5 grid

what Is thle iIsocontour
for 1sovalue = 4/
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ISOSURFACES in 3D

51



Isosurfacing

* You're given a big 3D block of numbers
 Make a picture

» Slicing shows data, but not its 3D shape
* |sosurfacing is one of the simplest ways

52



A little math

Dataset: v = flxy,z)

£:R[->R

Want to find S, = {(xy,z) | flxy,2) = v}
All the locations where the valuve of fis v

+ §,:isosurface of f at v
+ In 20: isocontours (some path)
» |n 30: isosurface

» Why is this useful?

53



MARCHING CUBES: A HIGH RESOLUTION
3D SURFACE CONSTRUCTION ALGORITHM

William E. Lorensen
Harvey E. Cline

General Electric Company
Corporate Research and Development
Schenectady, New York 12301

Abstract

We present a new algorithm, calied marching cubes, that
creates triangle models of constant density surfaces from 3D
medical data. Using a divide-and-conquer approach lo gen-
erate inter-slicc connectivity, we creale a case table that
defines (riangle topology. The algorithm processes the 3D
medical data in scan-line order and calculates triangle vertices
using linear interpolation. We find the gradient of the origi-
nal data. normalize i1, and use it as a basis for shading the
models. The detail in images produced from the generated
surface models is the result of maintaining the inter-slice
connectivity, surface data, and gradicnt information present
in the original 3D data. Results from computed tomography
(CT), magnetic resonance (MR, and single-photon emission
computed tomography (SPECT) illustrate the quality and
functionality of marching cubes We also discuss improve-
ments that decrease processing time and add solid modeling
capabihtics.

CR Categories: 3.3, 3.5

Additionat Keywords: computer graphics, medical imaging,
surface reconstruction

acetabular fractures [6], craniofacial abnormalities [17,18],
and intracranial structure [13] illustrate 3D’s potential for the
stiudy of complex bone structures. Applications in radiation
therapy [27.11] and surgical planning [4,5,31] show interac-
tive 3D techniques combined with 3D surface images. Cardi-
ac applications include artery visualization [2,16] and non-
graphic modeling applications to calculate surface area and
volume [21].

Existing 3D algorithms lack detail and sometimes intro-
duce artifacts. We present a new, high-resolution 3D surface
construction algorithm that produces models with unpre-
cedented detail. This new algorithm. called marching cubes,
creales a polygonal representation of constant density sur-
faces from a 3D array of data. The resulting model can be
displayed with conventional graphics-rendering algorithms
implemented in software or hardware.

After describing the information flow for 3D medical ap-
plications, we describe related work and discuss the draw-
backs of that work. Then we describe the algorithm as well
as efficiency and functional enhancements, followed by case
studies using three different medical imaging techniques to il-
lustrate the new algorithm's capabilities.

10,887 citations on Google Scholar

T

able medical tool. Images of these surfaces, constructed
from multiple 2D slices of computed tomography (CT), mag-
netic resonance (MR), and single-photon emission computed
tomography (SPECT), help physicians 1o understand the
complex anatomy present in the slices. Interpretation of 2D

R R T T . . e 1

ure 17.
one algorithm, we logically decompose the process as follows:

1TIEENTY

1. Data acguisition.
This first step, performed by the medical imaging
hardware, samples some property in a patient and pro-

P VLT . T o N Iy L R o . . do.4a e



Marching Cubes

“The” isosurface algorithm

Lorensen + Cline ('87), Wyvill et al. ('8 6)
Approximate, Efficient

lnvolves many pre-computed tables

Easy to understand, w..v easy to implement
The foundation of how most people do
isosurfacing

55



 The core MC algorithm

— Cell consists of 4(8) pixel (voxel) values:
(1+[01], j+[01], k+[01])

1. Consider a cell
2. Classity each vertex as inside or outside

3. Build an index

4. Get edge list from table[index]

5. Interpolate the edge location 2

& o

A
8. Go to next cell f




o Step 1: Consider a cell defined by eight data
values

(ii+1 k+1) (i+1,j+1 k+1)
(L)k*1) (i+1,jJk+1)
(i.ji+1.k) (i+1,j+1 k)

(1.),k) (i+1,5,k)



Step 2: Classity each voxel according to
whether 1t lies

— Outside the surface (value > 1sosurface value)

— Inside the surface (value <= 1sosurface value)

10

10

/

10

|s0=9 =

\

> oo

lso=7
=Inside
=outside

»

=




e Step 3: Use the binary labeling of each

voxel to create an index

v8

v/

e

v1

Inside =1
v3| @ outside=0
v
/ vO
V2. |ndex:

v1 |v2|v3|v4|v5|v6|v7|v8

»

=

\

=

»
y
L

./.

11110100

00110000



e Step 4: For a given index, access an array
storing a list of edges

— All 256 cases can be derived from 1+14=15
base cases due to symmetries

()60 ) () 8
=
T .0

The 15 Cube Combinations







8 Abhove
0 Below

1 case

e

Case 14




7 Above
1 Below

1 case

e

Case 14













e Step 4 cont.. Get edge list from table

— Example for

Index = 10110001
triangle 1 = ed,e7.ell
triangle 2 =el, €7, e4
triangle 3 =¢l, €6, €7
triangle 4 = el, €10, €6




e Step 35: For each triangle edge, find the
vertex location along the edge using linear
interpolation of the voxel values

i MY




e Step 6: Calculate the normal at each cube
vertex (central differences)
— Gy = Vx+l,y,z - Vx—l,y,z
Gy — Vx,y+l,z B Vx,y—l,z
G, = Vx,y,z+1 - Vx,y,z—l
— Use linear interpolation to

compute the polygon vertex
normal (of the 1sosurface)




o Step 7: Consider ambiguous cases

— Ambiguous cases:
3,6,7,10,12,13

— Adjacent vertices:

different states

— Diagonal vertices:
same state

— Resolution: choose
one case
(the right one!)

or
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* Summary
— 256 Cases

— Reduce to 15 cases by symmetry (z) Volume data (b |§ns¥(ﬁacej
=1~ 2
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— Ambiguity 1n cases
3,6,7,10,12,13

— Causes holes 1f arbitrary choices SN
are made

L rA Ty
WA R Y Y
4

PY Up to 5 triangles per Cllbe (c) Polygonal Apploximation

e Several 1sosurfaces
— Run MC several times

— Semi-transparency requires spatial sorting



3 Isosurfaces

 Examples

1 Isosurface

-ty
2 Isosurfaces



challenges

-ambiguities
-looking at every voxel
-what is a good isovalue!

-poorly shaped, nonadaptive triangles

73
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Dynamic Particles for
Adaptive Sampling of
Implicit Surfaces




dynamic particle system

Robust Particle Systems for Curvature Dependent Sampling of Implicit Surfaces
M. Meyer, P. Georgel, R. Whitaker, SMI 2005.




dynamic particle system

Robust Particle Systems for Curvature Dependent Sampling of Implicit Surfaces
M. Meyer, P. Georgel, R. Whitaker, SMI 2005.




| 1k particles
2.3 minutes

42k particles
6.2 minutes

44k particles
3.5 minutes
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| 3k parucles,-.-,, f e .
SRt

3.4 mmutes'.g‘

5k partlcles
0.5 minutes

Particle Systems for Efficient and Accurate High-Order Finite Element Visualization
M. Meyer et al, TVCG 2006.



| 82k triangles
4| minutes
0.18 min rr
0.94 avg rr
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Topology, Accuracy, and Quality of Isosurface
Meshes Using Dynamic Particles.

M. Meyer et al.,Vis 2007.



ing cubes

march

advancing front

particle system
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M. Meyer et al.,Vis 2008.

Particle-based Sampling and Meshing of Multimaterial Volumes.
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L18: 3D Graphics
REQUIRED READING

84



16

Background:
Computer Graphics

This chapter is designed to be a tutorial on computer graphics tech-
niques, which are the core building blocks for scientific visualization.

First we give an introduction to color models because they are
key to a robust visualization. Next is a section describing key el-
ements of the graphics pipeline. This section describes the trans-
formations needed to convert a 3D triangle mesh to 2D pixels on
the screen, resulting in the desired orientation and giving a 3D ap-
pearance. To give the mesh more realism, we apply an illumination
model. Three techniques are described: local illumination, which can
be computed in real time; global illumination, which generally is not
computed in real time but results in more realistic rendering than lo-
cal methods; and nonphotorealistic rendering (illumination), which
simulates methods such as cartoon or hand-drawn renderings. Tex-
ture mapping is introduced next as a method to create complexity

in an imacgo anthnlt the ovnoncs nf ogonmotrrie ramnloaviivy IIndor.



