cs6630 | October 302014

GRIDS

Miriah Meyer
University of Utah

administrivia...

- parallel coordinates assignment due tonight
-scalar data assignment out today
last time . . .

MAPS

landmarks

what do they mean?

data as points

data : ordered/ quantitative
encoding : size

Map of the Damage From the Japanese Earthquake

An interactive map and photographs of places in Japan that were damaged by the March 11 earthquake and tsunami.

Lines of Equal Magnetic Declination

 first contour map
isopleth map which overlays continuous data using a third encoding channel

Edmond Halley, I70I

Illiteracy in France

first choropleth map

choropleth

 map in which areas are shaded, colored, or patterned relative to a data attribute value

Charles Dupin, I826

Land Area

first cartogram

STATISTIQUE FIGURATIVE

cartogram map in which areas are scaled and distorted relative to a data attribute value

azimuthal

 preserves directionequal-area
preserves area

conformal
preserves local shapes

today . . .

-data sources
-data representation
-interpolation

DATA SOURCES

data sources

- Medical Imaging (MRI, CT, PET)
- Geographical information systems (GIS)
- Electron microscopy
- Meteorology and environmental sciences (satellites)
- Seismic data
- Crystallography

- High energy physics
- Astronomy (e.g. Hubble Space Telescope 100MB/day)
- Defense

THEORETICAL MEASUREMENTS

- Sciences
- Molecular dynamics
- Quantum chemistry
- Mathematics

MB

- Molecular modeling
- Computational physics
- Meteorology

GB

- Computational fluid mechanics (CFD)

- Architectural walk-throughs
- Structural mechanics
- Car body design

DATA REPRESENTATION

- Discrete representations
- objects we want to visualize are continuous
- but, data only given at discrete locations
- grids (meshes) consist of cells generated from data points
- Primitives in different dimensions

dimension	cell	mesh
0D	points	polyline(-gon)
1D	lines (edges)	2D mesh
2D	triangles, quadrilaterals (rectangles)	3D mesh
3D	tetrahedra, prisms, hexahedra	

Types and Classification of Field Data - dimension of domain (the field)
 - dimension of the data to visualize (the geometry)

Examples:
A: gas station along a road
B: map of cholera in London
C: temperature along a rod
D: height field of a continent
E: 2D air flow
F: 3D air flow in the atmosphere
G: stress tensor in a mechanical part
H : ozone concentration in the atmosphere

Types and Classification of Field Data - dimension of domain (the field)
 - dimension of the data to visualize (the geometry)

Examples:
A: gas station along a road
B: map of cholera in London
C: temperature along a rod
D: height field of a continent
E: 2D air flow
F: 3D air flow in the atmosphere
G: stress tensor in a mechanical part
H : ozone concentration in the atmosphere

Types and Classification of Field Data - dimension of domain (the field)
 - dimension of the data to visualize (the geometry)

Examples:
A: gas station along a road
B: map of cholera in London
C: temperature along a rod
D: height field of a continent
E: 2D air flow
F: 3D air flow in the atmosphere
G: stress tensor in a mechanical part
H : ozone concentration in the atmosphere

Types and Classification of Field Data - dimension of domain (the field)
 - dimension of the data to visualize (the geometry)

Examples:
A: gas station along a road
B: map of cholera in London
C: temperature along a rod
D: height field of a continent
E: 2D air flow
F: 3D air flow in the atmosphere
G: stress tensor in a mechanical part
H : ozone concentration in the atmosphere

Types and Classification of Field Data - dimension of domain (the field)
 - dimension of the data to visualize (the geometry)

Examples:
A: gas station along a road
B: map of cholera in London
C: temperature along a rod
D: height field of a continent
E: 2D air flow
F: 3D air flow in the atmosphere
G: stress tensor in a mechanical part
H : ozone concentration in the atmosphere

Types and Classification of Field Data - dimension of domain (the field)
 - dimension of the data to visualize (the geometry)

Examples:
A: gas station along a road
B: map of cholera in London
C: temperature along a rod
D: height field of a continent
E: 2D air flow
F: 3D air flow in the atmosphere
G: stress tensor in a mechanical part
H : ozone concentration in the atmosphere

Types and Classification of Field Data - dimension of domain (the field) - dimension of the data to visualize (the geometry)

Examples:
A: gas station along a road
B: map of cholera in London
C: temperature along a rod
D: height field of a continent
E: 2D air flow
F: 3D air flow in the atmosphere
G: stress tensor in a mechanical part
H : ozone concentration in the atmosphere

Types and Classification of Field Data - dimension of domain (the field) - dimension of the data to visualize (the geometry)

Examples:
A: gas station along a road
B: map of cholera in London
C: temperature along a rod
D: height field of a continent
E: 2D air flow
F: 3D air flow in the atmosphere
G : stress tensor in a mechanical part
H : ozone concentration in the atmosphere

Types and Classification of Field Data - dimension of domain (the field) - dimension of the data to visualize (the geometry)

dimension data type m D			G	
3D			F	
2D		E		
1D	C	D	H	
OD	A	B		
				dimension of domain
	1D	2D	3D	

Examples:
A: gas station along a road
B: map of cholera in London
C: temperature along a rod
D: height field of a continent
E: 2D air flow
F: 3D air flow in the atmosphere
G : stress tensor in a mechanical part
H : ozone concentration in the atmosphere

Types and Classification of Field Data - dimension of domain (the field) - dimension of the data to visualize (the geometry)

 Examples:

A: gas station along a road
B: map of cholera in London
C: temperature along a rod
D: height field of a continent
E: 2D air flow
F: 3D air flow in the atmosphere
G : stress tensor in a mechanical part
H : ozone concentration in the atmosphere

- Visualization of 1D, 2D, or 3D scalar fields
- 1D scalar field: $\Omega \in R \rightarrow R$
- 2D scalar field: $\Omega \in R^{2} \rightarrow R$
- 3D scalar field: $\Omega \in R^{3} \rightarrow R$ \rightarrow Volume visualization!
- Mapping to geometry
- Function plots
- Height fields
- Isolines and isosurfaces
- Color coding
- Specific techniques for 3D data
- Indirect volume visualization
- Direct volume visualization
- Slicing
- Visualization method depend heavily on dimensionality of domain
-NIH project established in 1989
-male: I994
- I,87| 4mm slices
- 15 GB
-female: 1995
-5, I 890.33 mm slices
-40GB
-MRI, CT, and color

-NIH project established in 1989

-male: I994

- I,87| 4mm slices
- 15 GB
-female: 1995
-5, I 890.33 m
-40GB
The National Library of Medicine's
Visible Human Project (TM)

Human-Conquter Interaction Lab Univ. of Maryland at College Park

-MRI, CT, and color

T. Fogal, J. Krueger. Size Matters - Revealing Small Scale Structures in Large Datasets, In IFMBE Proceedings, Vol. 25/13, Springer Berlin Heidelberg, pp. 41--44. 2009.

- Representation of scalar 3D data set $\Omega \in R^{3} \rightarrow R$
- Analogy: pixel (picture element)

- Voxel (volume element), with two interpretations:
- Values between grid points are resampled by interpolation

- Collection of voxels
- Uniform grid

Input Data

- Discrete positions (vertices)
- N dimensions, $N=1,2,3, \ldots$
- With or without connectivity information
- Structured
- Unstructured
- Scattered

Grid Structure

Classification

- Geometry
- Position of vertices in Euclidean space
- Structured / unstructured
- Topology
- Cells
- Connectivity information
- Neighborhood definition
- Structured / unstructured

Grid Geometry

Uniform

- implicit relationship between points
- positions can be computed (procedural)

$$
P_{i, j, k}=P_{0,0}+i \Delta_{x} \vec{e}_{x}+j \Delta_{y} \vec{e}_{y}+k \Delta_{z} \vec{e}_{z}
$$

Arecibo Message

- Way of understanding mechanics of raster image representation
- Radio telecope in Puerto Rico
- built in 1964, renovated in 1974
- To celebrate: Frank Drake and Carl Sagan (Cornell University) sent message to M13 in Hercules (25,000 light years away)
- 1679 bits, frequency modulate 2380 MHz五

The Message

1679 bits were encoded as 2380 MHz plus and minus some frequency

000000101010100000000000010100000101000000010010001000100010010110010101 010101010101001001000000000000000000000000000000000000011000000000000000 000011010000000000000000000110100000000000000000010101000000000000000000 111110000000000000000000000000000000011000011100011000011000100000000000 00110010000110100011000110000110101111110111110111111011111000000000000000 000000000001000000000000000001000000000000000000000000000010000000000000 000011111100000000000001111100000000000000000000000110000110000111000110 001000000010000000001000011010000110001110011010111110111110111110111110 000000000000000000000000010000001100000000010000000000011000000000000000 100000110000000000111111000001100000011111000000000011000000000000010000 000010000000010000010000001100000001000000011000011000000100000000001100 010000110000000000000001100110000000000000110001000011000000000110000110 000001000000010000001000000001000001000000011000000001000100000000110000 000010001000000000100000001000001000000010000000100000001000000000000110 000000001100000000110000000001000111010110000000000010000000100000000000 000100000111110000000000001000010111010010110110000001001110010011111110 111000011100000110111000000000101000001110110010000001010000011111100100 000010100000110000001000001101100000000000000000000000000000000000111000 001000000000000001110101000101010101010011100000000010101010000000000000 000101000000000000001111100000000000000001111111110000000000001110000000 111000000000110000000000011000000011010000000001011000001100110000000110 011000010001010000010100010000100010010001001000100000000100010100010000 000000001000010000100000000000010000000001000000000000001001010000000000 01111001111101001111000

This is a 1-D sequence of bits in time How will an alien understand this list of bits? (will have different symbols than " 0 " " 1 ") No meta-information!

Understanding the message

- Perhaps some "visual" representation of bits

- (what is black vs white?)
- Aliens notice $1679=23 \times 73$ (product of two primes)
- Perhaps its not a linear sequence: 2-D array
-Two ways of sequencing values in 2D array
-Various ways of laying them out in 2D space
-Then: have to decipher it!

4 basic pieces of image metadata

- Interpretation of individual values
- units, scalars, vectors, tensors, measurement frame
- Dimension of array
- dimension of domain sampled
- \# axes, or \# indices for getting a single sample
- Choice of axis ordering (fast-to-slow, or slow-to-fast)
- Culturally specific
- \# samples along each axis
- "640-by-480 image" or "N-by-M matrix"

Grid Geometry

Structured

- implicit relationship between points
- positions can be computed (procedural)

Grid Geometry

Unstructured

- No underlying structure
- Requires explicit knowledge of every vertex's position: (x_{0}, y_{0}, z_{0}), ($\left.\mathrm{X}_{\mathrm{l}}, \mathrm{y}_{\mathrm{l}}, \mathrm{z} \mathrm{I}\right), \ldots$,

Grid Topology

Structured (quadrilateral / hexahedron)

- Implicit connectivity between vertices
- Implicit cell definition

Associated with

structured geometry very efficient position location

Grid Topology

Structured (quadrilateral/ hexahedron)

- Implicit connectivity between vertices
- Implicit cell definition

$m n-1$

unstructured geometry:

GridTopology

Structured (quadrilateral / hexahedron)

- Implicit connectivity between vertices
- Implicit cell definition

Grid Topology

Unstructured (any cell type)

- Explicit cell definition
- Types
- Vertices

Tetrahedron

Hexahedron

Wedge

Grid Types

	Structured	Unstructured
Uniform	Image	Unstructured
Structured	Rectilinear	Unstructured
Unstructured	Curvilinear	Unstructured

GridTopology

- Mesh-free (no grid, no connectivity)

Grids (Meshes)

- Meshes combine positional information (geometry) with topological information (connectivity).
- Mesh type can differ substantial depending in the way mesh cells are formed.

scattered

uniform

rectilinear

structured

unstructured

LINEAR CELLS

(c) Quadratic Linear Quad

(d) Quadratic Quad

(e) Bi-Quadratic Quad

(f) Quadratic Tetrahedron

(g) Quadratic Pyramid

(h) Quadratic Hexahedron

(k) Quadratic Linear Wedge

(1) Quadratic Wedge

(m) Bi-Quadratic Wedge

INTERPOLATION

Mesh Choice Impacts How the Continuous Data is Interpreted

- Two key questions:
- Sampling, or the choice of where attributes are measured
- Interpolation, or how to model the attributes in the rest of space

Interpolation

- Continuous reconstruction of discrete input data

$$
\forall i \in\{1, . ., n\}, F\left(\mathbf{x}_{i}\right)=f_{i}
$$

- Depends on grid structure (when available)
- Interpolation vs. approximation

Nearest Neighbor Interpolation

- Consider a 1-dimensional, grayscale image I spread horizontally
- What value is I[1.3] ?

Nearest Neighbor Interpolation

- Consider a 1-dimensional, grayscale image I spread horizontally
- What value is I[1.3] ?

Nearest Neighbor Interpolation

- Consider a 1-dimensional, grayscale image I spread horizontally
- What value is I[1.3] ?

Nearest Neighbor Interpolation

- Consider a 1-dimensional, grayscale image I spread horizontally
- What value is I[1.3] ?
- $|[1.3]=|[$ round $(1.3)]=\mid[1]$

Nearest Neighbor Interpolation

- Consider a 1-dimensional, grayscale image I spread horizontally
- What value is I[1.3] ?
- $|[1.3]=|[$ round $(1.3)]=\mid[1]$

Linear Interpolation

- Consider a 1-dimensional, grayscale image I spread horizontally
- What value is I[1.3] ?

Linear Interpolation

- Consider a 1-dimensional, grayscale image I spread horizontally
- What value is I[1.3] ?

Linear Interpolation

- Consider a 1-dimensional, grayscale image I spread horizontally
- What value is I[1.3] ?

Linear Interpolation

- Consider a 1-dimensional, grayscale image I spread horizontally
- What value is I[1.3] ?

Linear Interpolation

- Consider a 1-dimensional, grayscale image I spread horizontally
- What value is I[1.3] ?
- Let $\mathrm{s}=1.3$ - round(1.3)

Linear Interpolation

- Consider a 1-dimensional, grayscale image I spread horizontally
- What value is I[1.3] ?
- Let $\mathrm{s}=1.3$ - round(1.3)
- $\left|[1.3]=0.7^{*}\right|[1]+0.3^{*}\left|[2]=(1-s)^{*}\right|[1]+s^{*} \mid[2]$

Linear Interpolation

- Consider a 1-dimensional, grayscale image I spread horizontally
- What value is I[1.3] ?
- Let $\mathrm{s}=1.3$ - round(1.3)
- $\left|[1.3]=0.7^{*}\right|[1]+0.3^{*}\left|[2]=(1-s)^{*}[1]+\mathrm{S}^{*}\right|[2]$

Bilinear Interpolation

- In rectangle

Bilinear Interpolation

- In rectangle

$$
\begin{aligned}
P & =(1-v) Q_{b}(u)+v Q_{t}(u) \\
& =(1-u) R_{l}(v)+u R_{r}(v)
\end{aligned}
$$

Bilinear Interpolation

- In rectangle

$$
\begin{gathered}
P=P_{1}+u\left(P_{2}-P_{1}\right)+v\left(P_{4}-P_{1}\right) \\
+u v\left(P_{1}-P_{2}+P_{3}-P_{4}\right)
\end{gathered}
$$

Bilinear Interpolation

$$
\begin{gathered}
\left(x_{1}, y_{2}\right) \quad\left(x_{2}, y_{2}\right) \\
0-1 \\
0
\end{gathered}
$$

- Alternate interpretation is a weighted sum of the four pixel values
- Weights defined by the area opposite each corner

Visualization of Linear vs. Cubic Interpolation

\& Add to $<$ Share ... More
1670

Uploaded on Feb 19, 2011

Interpolation is a technique to calculate unknown data points from known samples. There exist many
variations having their own advantaces and disadvantaces In this video two narticular internolation

Trilinear Interpolation

- In a cuboid (axis parallel)
- general formula

$$
\phi(x, y, z)=a x y z+b x y+c x z+d y z+e x+f y+g z+h
$$

- with local coordinates

$$
\begin{aligned}
& \text { ith local coordinates } \\
& P= P_{1} \\
&+u\left(P_{2}-P_{1}\right) \\
&+v\left(P_{4}-P_{1}\right) \\
&+w\left(P_{5}-P_{1}\right) \\
&+u v\left(P_{1}-P_{2}+P_{3}-P_{4}\right) \\
&+u w\left(P_{1}-P_{2}+P_{6}-P_{5}\right) \\
&+v w\left(P_{1}-P_{4}+P_{8}-P_{5}\right) \\
&+u v w\left(P_{1}-P_{2}+P_{3}-P_{4}+P_{5}-P_{6}+P_{7}-P_{8}\right)
\end{aligned}
$$

But Also...

- Nearest Neighbor interpolation

Voronoi diagram

But Also...

- Higher-order interpolation schemes
- splines, local polynomial fit (interpolation, least sq., ...)
- smooth reconstruction kernels (on uniform grids)

L17: Isosurfaces
REQUIRED READING

Chapter 8

Arrange Spatial Data

8.1 The Big Picture

For datasets with spatial semantics, the usual choice for arrange is to use the given spatial information to guide the layout. In this case, the choices of express, separate, order, and align do not apply because the position channel is not available for directly encoding attributes. The two main spatial data types are geometry, where shape information is directly conveyed by spatial elements that do not necessarily have associated attributes, and spatial fields, where attributes are associated with each cell in the field. (See Figure 8.1.) For scalar fields with one attribute at each field cell, the two main visual encoding idiom families are isocontours and direct volume rendering. For both vector and tensor fields, with multiple attributes at each cell, there are four families of encoding idioms: flow glyphs that show local information, geometric approaches that compute derived geometry from a sparse set of seed points, texture approaches that use a dense set of seeds, and feature approaches where data is derived with global computations using information from the entire spatial field.

MARCHING CUBES: A HIGH RESOLUTION 3D SURFACE CONSTRUCTION ALGORITHM

William E. Lorensen
Harvey E. Cline
General Electric Company
Corporate Research and Development
Schenectady, New York 12301

Abstract

We present a new algorithm, called marching cubes, that creates triangle models of constant density surfaces from 3D medical data. Using a divide-and-conquer approach to generate inter-slice connectivity, we create a case table that defines triangle topology. The algorithm processes the 3D medical data in scan-line order and calculates triangle vertices using linear interpolation. We find the gradient of the original data, normalize it, and use it as a basis for shading the models. The detail in images produced from the generated surface models is the result of maintaining the inter-slice connectivity, surface data, and gradient information present in the original 3D data. Results from computed tomography (CT), magnetic resonance (MR), and single-photon emission computed tomography (SPECT) illustrate the quality and functionality of marching cubes. We also discuss improvements that decrease processing time and add solid modeling capabilities.

CR Categories: 3.3, 3.5
Additional Keywords: computer graphics, medical imaging,
acetabular fractures [6], craniofacial abnormalities [17,18], and intracranial structure [13] illustrate 3D's potential for the study of complex bone structures. Applications in radiation therapy [27,11] and surgical planning [4,5,31] show interactive 3D techniques combined with 3D surface images. Cardiac applications include artery visualization $[2,16]$ and nongraphic modeling applications to calculate surface area and volume [21].

Existing 3D algorithms lack detail and sometimes introduce artifacts. We present a new, high-resolution 3D surface construction algorithm that produces models with unprecedented detail. This new algorithm, called marching cubes, creates a polygonal representation of constant density surfaces from a 3D array of data. The resulting model can be displayed with conventional graphics-rendering algorithms implemented in software or hardware.

After describing the information flow for 3D medical applications, we describe related work and discuss the drawbacks of that work. Then we describe the algorithm as well as efficiency and functional enhancements, followed by case studies using three different medical imaging techniques to il-

