

BUT THEN WHY ARE OLD PANTTINGS IN COLOR?! IF THE WORLD WIS BLACK AND WHITE, WOULDNT ARTISTS HAVE PAINTED IT THAT WAY?

cs6630 | September 112014

COLOR

Miriah Meyer
University of Utah

administrivia...
-data exploration assignment due on Tuesday
last time . . .

MARK TYPES

marks as nodes (items)

marks as links
containment

connection
Θ Magnitude Channels: Ordered Attributes
Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation
()))

Curvature

Volume (3D size)
Θ Identity Channels: Categorical Attributes
Spatial region

Color hue

Motion

Shape

Θ Magnitude Channels: Ordered Attributes
Position on common scale
Position on unaligned scale
Tilt/angle
Area (2D size)
Color luminance (3D position)
Color saturation
Curvature
Θ Identity Channels: Categorical Attributes
Spatial region
Color hue
Motion
Shape

expressiveness

(how much)
Θ Magnitude Channels: Ordered Attributes
Position on common scale
Position on unaligned scale
Tilt/angle
Area (2D size)
Depth (3D position)
Color luminance
Curvature
Volume (3D size)
(what or where)
Θ Identity Channels: Categorical Attributes
Spatial region

Color hue

Motion

Shape

expressiveness

Θ Magnitude Channels: Ordered Attributes
Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)
Color luminance

Color saturation

Curvature

Volume (3D size)

\square
())) -
Identity Channels: Categorical Attributes

effectiveness

WHAT'S SO SPECIAL ABOUT THE PLANE?

TIME AS ENCODING CHANNEL

- external versus internal memory
easy to compare views by moving eyes
hard to compare view to memory of what you saw

Get it right in black and white.
 Maureen Stone

today . . .

purpose of color

- to label (color as a noun)
- to measure (color as a quantity)
- to represent and imitate (color as a symbol)
- to enliven and decorate (color as beauty)

functions of color identify, group, layer, highlight

Colin Ware, Information Visualization: Perception for Design

-what is color?

-how do we see color?
-color deficiencies

- color spaces
-guidelines
-tools
what is color?

COLOR

the property possessed by an object of producing different sensations on the eye as a result of the way it reflects or emits light

Oxford Dictionary

light

(human) visible light

Color != Wavelength

 but rather, a combination of wavelengths and energy

the role of objects

how do we see color?

trichromacy

-possessing three independent channels for conveying color information
derived from three cone types

Wavelength (nanometers)
-each type of cone contains a specific photosensitive pigment -each pigment is especially sensitive to a certain wavelength of light
-likelihood of response is both wavelength and intensity based -thus brain could not distinguish color with input from only one type of cone
-interaction between at least two types of cones is necessary to perceive color

opponent-process model

trichromatic theory explains how eye receives signals; opponent process theory explains how signals are processed
-visual system detects differences between the response of cones
-three opponent channels
-red vs green
-blue vs yellow
-black vs white (luminance)
opposite colors are never perceived together
-no reddish green or bluish yellow

chromatic

metamers

trichromacy

all spectra can be reduced to precisely three values without loss of information with respect to the visual system

metamerism

any spectra that create the same trichromatic response are indistinguishable

RADIOLAB

Listen Read Watch

Return Home

Rippin' the Rainbow a New One

«Back to Episode

(jared/fickr/CC-BY-2.0)
We tear into this show with a dark scene from 1665. A young Isaac Newton, hoping to ride out the plague by heading to the country to puzzle over the deep mysteries of the universe, finds himself wondering about light. And vision. He wants to get to the bottom of where color comes from-is it a physical property in the outside world, or something created back inside your eyeball somewhere? James Gleick explains how Newton unlocked the mystery of the rainbow. And, as Victoria Finlay tells us, sucked the poetry out of the heavens.

Jonah Lehrer restores some of the lost magic by way of Goethe--who turned a simple observation into a deep thought: even though color starts in the physical world, it is finished in our minds.

SUPPORTED BY

>> Download the hit podcast.
The Most Vewod | Listened | Commenteod

If You're Bom In The Sky, What's Your Nationality? An Airplane Puzzler

Cities
Hello

- Roadways You Can Install Like Throw Rugs

9-Volt Nirvana
Galapagos

- Glenn Gould In Rapture
color deficiencies

color deficiency

-sometimes caused by faulty cones, sometimes by faulty pathways
-red-green most common
-8\% of (North American) males, 0.5\% of females
-can be explained by opponent color theory

Normal

Protanopia

Deuteranopia

Tritanopia

color spaces

space of human color

CIE color space

-experiments done in the
 1920's and 1930's
-humans can mimic any pure (visible) light by addition and subtraction of three primary lights

- CIE (International Commission on Illumination)
-standardized a set of color-matching functions that form the basis for most color measurement instruments

CIE color space

-with RGB, addition and subtraction were required
 to get all visible wavelengths

Wavelength (nm) -in nature, light adds (but does not subtract) -any three primaries (additive) can produce only a subset of all visible colors

All colors visible to the average human eye are contained inside
the diagram

The colors along any line between two points can be made by mixing the colors at the end points. In this case Green + Red $=$ Yellow 540

The edge of the diagram, called the spectral locus, represents pure, monochromatic light measured by wavelength in nanometers. These are the most saturated colors.

The least saturated colors are at the center, emanating from white.

Color gamut: subset of : colors that can be represented by mixing : the colors at it's corners
"line of purples": these colors are fully saturated but can only be made by mixing two colors (red and blue)

Anatomy of a CIE Chromaticity Diagram

- Color space comparison

Representing Colors as Three Numbers

RGB in graphics is both a way of specifying color and a way of viewing color. Graphics algorithms manipulate RGB colors, and the images produced by graphics algorithms are encoded as RGB nixels and disnlaved on devices that render these nixels

Editor: Frank Bliss
Maureen C. Stone
StoneSoup Consulting

RECOMMENDED

How do three numbers, such
as RGB or XYZ, represent color perception, and how are these representations related to each other and to physical color? When do they fail?

Intimically generated. but, wirat co all of these RGB values mean with respect to color perception? How does the RGB triple captured by a digital camera relate to the RGB pixels displayed on a monitor? How does the RGB triple selected with an interactive color tool relate to the RGB triple used to color an object in a 3 D rendering?
Most computer graphics texts and tutorials provide a description of human color vision and measurement as defined by the CIE tristim-
ulus values, XYZ. Often missing, however, is an in-depth discussion of the relationship between the different applications of RGB and XYZ, and any discussion of color models beyond trichromacy. The goal of this tutorial is to nrovide a complete. concise analvsis of RGB color
nepresentity coior as tiree nimmoers
That color can be represented by three numberswhether RGB or XYZ-is a direct result of the physiology of human vision. Electromagnetic radiation whose wavelength is in the visible range (370 to 730 nanometers) is converted by photopigments in the retinal cones into three signals, which correspond to the response of the three types of cones. This response is a function of wavelength and is described by the spectral sensitivity curves for the cones, as Figure 1 shows.

Colored light can be represented as a spectral distribution, which plots power as a function of wavelength. (Other fields, such as signal processing, plot spectra as a function of frequency, which is the inverse of wavelength.) The cones convert this to three cone response

what are the primary colors?

1. red, green, blue
2. red, yellow, blue
3. orange, green, violet
4. cyan, magenta, yellow

what are the primary colors?

1. red, green, blue
2. red, yellow, blue
3. orange, green, violet
4. cyan, magenta, yellow
5. all of the above

paint mixing

-physical mixing of opaque paints
-primary: RYB
-secondary: OGV
-subtractive

ink mixing

-subtractive mix of transparent inks
-primary: CMY
-secondary: RGB
-approx black $=\mathrm{C}+\mathrm{M}+\mathrm{Y}$ true black $=C+M+Y+K$
-subtractive

light mixing

-additive mix of colored lights
-primary: RGB
-secondary: CMY
-additive

RGB color space

 -very common color space -additive, useful for monitors -not perceptually uniform

perceptual color spaces

change in amount of a color value should produce an equivalent visual change

HS L|V|B color spaces

common cylindrical-coordinate representations of points in RGB space
-rearrange geometry of $R G B$ in attempt to be more intuitive and perceptually relevant
hue: what people think of as color
saturation: amount of white mixed in
luminance: amount of black mixed in
lightness vs value (or brightness)
intensity, in computer vision applications
chroma vs saturation

chroma is colorfulness relative to the brightness of another color that appears white under similar viewing conditions
saturation is colorfulness of a color relative to its own
brightness

HS L|V|B color spaces

common cylindrical-coordinate representations of points in RGB space
rearrange geometry of $R G B$ in attempt to be more intuitive and perceptually relevant
hue: what people think of as color
saturation: amount of white mixed in
luminance: amount of black mixed in
lightness vs value (or brightness)
intensity, in computer vision applications
chroma vs saturation
chroma is colorfulness relative to the brightness of another color that appears white under similar viewing conditions saturation is colorfulness of a color relative to its own brightness

CIE L*a*b* color space

-designed to approximate human vision
describes all colors visible to human eye
uses positive and negative values

- L*: lightness
a*: red/magenta to green
b*: yellow to blue
-relative to a point of white (D50)
-supersedes RGB and CMYK

luminance is tricky

in this class...

hue

saturation

tuninen
guidelines

what is a colormap?

-specifies a mapping between color and values - sometimes called a transfer function
-categorical vs ordered
-sequential vs diverging
-segmented vs continuous
-univariate vs bivariate
-expressiveness: match colormap to attribute type characteristics!

what is a colormap?

$$
[0,8] \longrightarrow
$$

-specifies a mapping between color and values - sometimes called a transfer function
-categorical vs ordered
-sequential vs diverging
-segmented vs continuous
-univariate vs bivariate
-expressiveness: match colormap to attribute type characteristics!

what is a colormap?

$$
[0,8] \longrightarrow
$$

-specifies a mapping between color and values - sometimes called a transfer function
-categorical vs ordered
-sequential vs diverging
-segmented vs continuous

- univariate vs bivariate
-expressiveness: match colormap to attribute type characteristics!

what is a colormap?

$$
[0,8] \longrightarrow
$$

-specifies a mapping between color and values - sometimes called a transfer function
-categorical vs ordered
-sequential vs diverging
-segmented vs continuous

- univariate vs bivariate
-expressiveness: match colormap to attribute type characteristics!

what is a colormap?

 $[0,8] \rightarrow$-specifies a mapping between color and values - sometimes called a transfer function
-categorical vs ordered
-sequential vs diverging
-segmented vs continuous

- univariate vs bivariate
-expressiveness: match colormap to attribute type characteristics!

what is a colormap?

 $[0,8] \rightarrow$-specifies a mapping between color and values - sometimes called a transfer function
-categorical vs ordered
-sequential vs diverging
-segmented vs continuous

- univariate vs bivariate
-expressiveness: match colormap to attribute type characteristics!

what is a colormap?

$[0,8] \rightarrow$
-specifies a mapping between color and values - sometimes called a transfer function
-categorical vs ordered
-sequential vs diverging
-segmented vs continuous
-univariate vs bivariate
-expressiveness: match colormap to attribute type characteristics!

guidelines

-ordered colormaps should vary along saturation or luminance
-bivariate colormaps are difficult to interpret if at least one variable is not binary
-categorical colors are easier to remember if they are nameable
-number of hues, and distribution on the colormap, should be related to which, and how many structures in the data to emphasize
min or max, ends or middle, etc...

size \& color

\qquad

size \& color

"the smaller the mark, the less distinguishable are the colors"

size \& color

small areas

which area is bigger, red or green?

guidelines

-saturation and hue are not separable in small regions
-in small regions use bright, highly saturated colors
-saturation interacts strongly with size
-more difficult to perceive in small regions
-for points and lines use just two saturation levels
-higher saturation makes large areas look bigger
use low saturation pastel colors for large regions and backgrounds

simultaneous contrast

simultaneous contrast

luminance contrast

Showing small blue text on a black background is a bad idea. There is insufficient luminance contrast.

Showing small blue text on a black background is a bad idea. There is insufficient luminance contrast.

Showing small yellow text on a white background is a bad idea.
There is insufficient luminance contrast.

Showing small yellow text on a white background is a bad idea.
There is insufficient luminance contrast.

guidelines

-color is a relative medium

- if encoding ordinal data with color, place marks on solid, neutral background
-because of contrast effects, it is difficult to perceive absolute luminance of noncontiguous regions
- use only $2-4$ bins when background is nonuniform
-for text, ideally use 10:1 ratio, 3:1 minimum

hues for categories

distinguishability

only good at distinguishing 6-12 simultaneous colors

order these colors...

order these colors...

order these colors...

guidelines

-luminance and saturation are most effective for ordinal data because they have an inherent ordering
hue is great for categorical data because there is no inherent ordering

but limit number of hues to 6-12 for distinguishability

rainbow colormaps: challenges

no implicit order

rainbow colormaps: challenges

no implicit order

easy to order

rainbow colormaps: challenges

no implicit order

easy to order

rainbow colormaps: challenges

zero crossing not explicit

rainbow colormaps: challenges

Visualization Viewpoints

Rainbow Color Map (Still) Considered Harmful

David Borland and Russell M. Taylor II University of North Carolina at Chapel Hill

Research has shown that the rainbow color map is rarely the optimal choice when displaying data with a pseudocolor map. The rainbow color map confuses viewers through its lack of perceptual ordering, obscures data through its uncontrolled luminance variation, and actively misleads interpretation through the introduction of non-data-dependent gradients.

Despite much published research on its deficiencies, the rainbow color map is prevalent in the visualization community. We present survey results showing that the rainbow color map continues to appear in more than half of the relevant papers in IEEE Visualization
mercials, weather forecasts, and even the IEEE Visualization Conference 2006 call for papers, just to name a few. The problem with this wide use of the rainbow color map is that research shows that it is rarely, if ever, the optimal color map for a given visualization. ${ }^{1-6}$ Here we will discuss the rainbow color map's characteristics of confusing the viewer, obscuring data, and actively misleading interpretation.

Confusing

For all tasks that involve comparing relative values, the color map used should exhibit perceptual ordering.
toolkits that we inspected. The visualization community must do better.
In this article, we reiterate the characteristics that make the rainbow color map a poor choice, provide examples that clearly illustrate these deficiencies even on simple data sets, and recommend better color maps for several categories of display.

The goal is to make the rainbow color map as rare in
values mapped to darker shades of gray are lower in value than values mapped to lighter shades of gray. This mapping is natural and intuitive.

The rainbow color map is certainly ordered-from a shorter to longer wavelength of light (or vice versa) but it's not perceptually ordered. If people are given a series of gray paint chips and asked to put them in order, they will consistently place them in either a dark-to-light

How NOT to Lie with Visualization

Bernice E. Rogowitz
rogowtz@watson.ibm. com

Lloyd A. Treinish

lloydt@watson.ibm.com

IBM Thomas J. Watson Research Center Yorktown Heights, NY

Introduction

How data are represented visually has a powerful effect on how the structure in those data is perceived. For example, in Figure 1, four representations of an MRI scan of a human head are shown. The only difference between these images is the mapping of color to data values, yet, the four representations look very different. Furthermore, the inferences an analyst would draw from these representations would vary considerably. That is, variations in the method of representing the data can significantly influence the user's perception and interpretation of the data.

guidelines

poor
good

Face-based Luminance Matching for Perceptual Colormap Generation

Gordon Kindlmann*
School of Computing
University of Utah

Erik Reinhard
School of Electrical Engineering and Computer Science
University of Central Florida

Sarah Creem
Dept. of Psychology
University of Utah

Abstract

Most systems used for creating and displaying colormap-based visualizations are not photometrically calibrated. That is, the relationship between RGB input levels and perceived luminance is usually not known, due to variations in the monitor, hardware configuration, and the viewing environment. However, the luminance component of perceptually based colormaps should be controlled, due to the central role that luminance plays in our visual processing. We address this problem with a simple and effective method for performing luminance matching on an uncalibrated monitor. The method is akin to the minimally distinct border technique (a previous method of luminance matching used for measuring luminous

surface shape could come from luminance variations in the univariate colormap itself.

Exerting control of luminance in colormap-based visualizations is an interesting problem, due to at least three confounding issues. Most importantly, the display device tends to be uncalibrated (proper calibration would require an external measurement device [7]). The chromaticities, intensities, and response functions of the primary colors are often not known, and can vary significantly between display devices [13]. Also, the lighting conditions and configuration of the room are often unknown (or uncontrolled), contributing to factors such as light reflecting off the display device surface, and differences in brightness and color perception caused by variations between foveal and peripheral luminous sen-

We demonstrate how results from our luminance matching method can be directly applied to create new univariate colormaps.

CR Categories: I.3.3 [Computing Methodologies]: Computer Graphics-Picture/Image Generation I.3.4 [Computing Methodologies]: Computer Graphics - Graphics Utilities I.4.10 [Computing Methodologies]: Image Processing and Computer VisionImage Representation
that it is not sensible to simply assume a "standard" monitor and then work in a CIE colorimetric space such as XYZ, or the approximately perceptually uniform spaces CIELAB and CIELUV.

We address the general problem of colormap luminance control by proposing a novel technique for luminance matching. Given a fixed reference color, and a test color with lightness varied by a user interface, our technique facilitates matching the luminance of the two colors. The technique is based on the brain's special capac-

Get it right in black and white.
 Maureen Stone

tools for color

o Cynthia Brewer, Mark Harrower and The Pennsylvania State University
support
Back to Flash version
Back to ColorBrewer 1.0

ColorBrewer palates

ColorBrewer palates

 sequential

ColorBrewer palates

sequential

diverging

ColorBrewer palates

 sequential
diverging

categorical

'TUDCUBE

θ O O

ColorMine.org

Color Converter

Select a color space and enter your values for accurately convert your selection to Rgb, Cmy, Cmyk, Hsl, Xyz, Lab, Lch and Yxy.

Note: ColorMine uses the sRgb color space. More information on sRgb vs AdobeRgb.

L7. Intro to Processing REQUIRED READING

Cover
Download

Getting Started

Exhibition

Reference
Libraries
Tools
Environment

Tutorials
Examples
Books

Overview
People
Foundation

Shop
*Forum
» GitHub
n Issues
*Wiki
*FAQ

* Twitter
*Facebook

Welcome to Processing

tar xvfz processing-xxxx.tgz

This tutorial is for Processing 2+. If you see any errors or have comments, please let us know. This tutorial was adapted from the book, Getting Started with Processing, by Casey Reas and Ben Fry, O'Reilly / Make 2010. Copyright © 2010 Casey Reas and Ben Fry. All rights reserved.

Start by visiting http://processing.org/download and selecting the Mac, Windows, or Linux version, depending on what machine you have. Installation on each machine is straightforward:

- On Windows, you'll have a .zip file. Double-click it, and drag the folder inside to a location on your hard disk. It could be Program Files or simply the desktop, but the important thing is for the processing folder to be pulled out of that .zip file. Then double-click processing.exe to start.
- The Mac OS X version is also a .zip file. Double-click it and drag the Processing icon to the Applications folder. If you're using someone else's machine and can't modify the Applications folder, just drag the application to the desktop. Then double-click the Processing icon to start.
- The Linux version is a .tar.gz file, which should be familiar to most Linux users. Download the file to your home directory, then open a terminal window, and type:
(Replace xoox with the rest of the file's name, which is the version number.) This will create a folder named processing-2.0 or something similar. Then change to that directory:
cd processing-xxxx
and run it:
/processing

