
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
HUFFMAN CODING

1

administrivia…

2

3

-assignment 11 is due tomorrow night
-extra day to complete

-assignment 12 up later today, due Tuesday, April 21st

-we will finish-up necessary lecture material next
Tuesday

feedback on Assignment 1

4

assignment 8 scores
nu

m
be

r o
f s

tu
de

nt
s

score

feedback on Assignment 1

5

midterm 2 grades
nu

m
be

r o
f s

tu
de

nt
s

score

feedback on Assignment 1

6

final scores (so far)
nu

m
be

r o
f s

tu
de

nt
s

score

jason…
-St Thomas Moore Church, 3015 Creek Rd,
Cottonwood Heights, UT 84093

-vigil tomorrow night 6-8pm
-funeral Saturday at 2pm

-Multifaith Memory Service at the U
-Friday, April 17th at 2pm, Saltair Room of the Union

7

last time…

8

9

-a min-max heap further extends the heap order
property

-for any node E at even depth, E is the minimum
element in its subtree
-for any node O at odd depth, O is the maximum
element in its subtree

-the root is considered to be at even depth (zero)

min

min

max

max

10

11

2 4 3 6

5 8 9

1

14

add

11

12

-AGAIN, we must ensure the heap property structure
-must be a complete tree
-add an item to the next open leaf node

-THEN, restore order with its parent
-does it belong on a min level or a max level?
-swap if necessary
-the new location determines if it is a min or max node

-percolate up the appropriate levels
-if new item is a max node, percolate up max levels
-else, percolate up min levels

delete

13

delete max (min is analogous)

1. locate node X (node containing max item)

2. replace X with last node in tree (last index in array!)

3.determine if new X is violating order property with
direct children
- if so, swap contents of X with the largest child

4.percolate new item X down max levels

5. if lowest max level reached, restore order with
lowest min level (if applicable)

14

today…

15

16

-number encodings

-file compression

-data compression

-data decompression

-Huffman’s algorithm

-building the compression tree

number encodings

17

binary
-each bit represents power of 2

-sum up all the bits that are on
-128 + 16 + 2 + 1 = 147

-how can we convert the other way?

18

1 0 0 1 0 0 1 1

 27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1
on off off on off off on on

19

what is the binary representation of
the number 39?

A) 1 0 1 0 0 1
B) 1 0 0 1 1 1
C) 0 1 0 1 1 1
D) 1 1 0 0 0 1

20

There are 10 types of people in the world:
those who understand binary, and those who don’t.

21

-all data in a computer is stored in binary

-a bit is a binary digit

-a byte is an 8-bit value
-common until of data in a computer

-bytes
10100110
00000000

22

how many different values
can 4 bits hold?

A) 7
B) 8
C) 15
D) 16
E) 31
F) 32

ASCII
-each character corresponds to one byte

-remember, a byte is just an 8-bit number! (0-255)

-for example:
00100000 = 32 = ‘ ‘ (blank space)
00111011 = 59 = ;
01000001 = 65 = A
01000010 = 66 = B

23

24

-a simple file containing the text “Hello” is stored on
the disk as:

0100100001100101011011000110110001101111

-the text editor know to treat each byte as an ASCII
value

-in reality, they are just bytes

-how much disk space do you need for a 1000
character text file?

hexadecimal
-hexadecimal is the base-16 number system

-we only have 10 digits (0-9), so to use a number base
greater than 10 we need more symbols

-in hex, we use the letters A through F
-A represents the value ten
-F represents the value fifteen

25

counting
-in binary, we reset and add a digit at 1
-in decimal, we reset and add a digit at 9
-in hex, we reset and add a digit at F (ie. 15)

26

…
8
9
A
B 
C
D 
E 
F
10 (= sixteen)
11 (= seventeen)

27

-each decimal place represents a power of 16

1AF
 = (1 * 162) + (A * 161) + (F * 160)
 = 256 + 160 + 15
 = 431

28

-hex is useful because each hex digit corresponds to
one half-byte (ie. 4 bits)

-reading raw byte data is almost always done in hex
-two hex digits makes up a single byte

-bytes in hex:
1A
00
13
FF
D5

hex to binary
-each hex digit is a specific 4-bit sequence

0 = 0000
1 = 0001
…
E = 1110
F = 1111

-converting from hex to binary is as simple as representing
each digit with its bit-sequence

12 EF = 0001 0010 1110 1111

-a single byte is two hex digits
-the bytes in the above are 12 and EF

29

30

what is the hex value of these 8 bits?
1010 0010

A) B2
B) A2
C) 12
D) 10

file compression

31

32

-why do we care about file compression?

-reducing traffic on networks and the internet

-reducing disk space requirements

-various media formats
-MP3
-MPEG4
-JPEG
-…

-YouTube, Netflix, GoogleMaps, etc. would not be possible
without compression

exercise
-suppose we the following string stored in a text file:

ddddddddddddabc

-how many bytes of disk space does it take to store
these 15 characters using ASCII?

-is there any way to represent this file in fewer bytes?
-hint: take advantage of repeated characters…

33

34

-two phases for data compression:
-compression (encode data in fewer bits)
-decompression (decode back to original data)

data compression

35

36

-allow number of bits for each character to vary,
instead of using the full 8 for every character

-represent common characters with fewer bits,
represent rare characters like ‘q’ and ‘z’ with more bits

-with ASCII we now each char is 8 bits
-how do we reproduce (decompress) original file if
characters are of varying lengths?

37

-for example:
-‘e’ may be the two-bit value 11
-‘q’ may be the four-bit value 1100
-‘z’ may be the four-bit value 0011

-what characters does the following file contain?
-001100
-is there any way to know?

-we must include the secret decoder ring with the
compressed file

binary trie
-no, I did not misspell it!

-a binary trie is a binary tree in
which a left branch represents
a 0 and a right branch
represents a 1

-the path to a node represents
its encoding

38

d

c

ba

a: 000
b: 001
c: 01
d: 1

39

d

c

ba

a: 000
b: 001
c: 01
d: 1

“ddddddddddddabc”
takes 15 bytes (120 bits) in
ASCII

11111111111100000101 is
less than 3 bytes (20 bits)

why is the d near the top of the tree?

data decompression

40

41

-read the bits of the compressed
file one at a time

11111111111100000101

-on 0 go left, on 1 go right

-when a leaf node is reached,
print char contained in node

-start back at the root for the
next bit

d

c

ba

a: 000
b: 001
c: 01
d: 1

42

-what does the following bit-string
encode?

0 1 0 0 0 0 0 1

-how many bytes is this encoded
in? what if it was in ASCII?

d

c

ba

a: 000
b: 001
c: 01
d: 1

43

-read the bits of the compressed
file one at a time

-a binary trie is a binary tree in
which a left branch represents a 0
and a right branch represents a 1

-the path to a node represents its
encoding

d

c

ba

a: 000
b: 001
c: 01
d: 1

44

what string do these bits encode?
0 1 1 0 0 0 0 1 0

A) low
B) wow
C) wool
D) were

o

wr

l

H‘ ‘ ed

Huffman’s algorithm

45

46

-idea is to encode most frequent characters with
fewest bits

-common characters will be near the top of the tree
-uncommon near the bottom

-every file has a different frequency of characters, and
therefore a different compression tree

Huffman’s algo
-count the frequency of each different character

-“hello world”
h = 1
e = 1
l = 3
o = 2
‘ ‘ = 1
w = 1
r = 1
d = 1

-construct a binary trie with highest frequency characters near the top,
lowest near the bottom

-include this tree representation with the compressed file

47

building the compression tree

48

49

‘’:1 h:1 d:1 e:1 r:1 w:1

hello world

start with a separate tree for each character

each tree is a single root node, holding the
character and its frequency

o:2 l:3

50

‘’:1 h:1 d:1 e:1 r:1 w:1

hello world

merge the two lowest weight trees together into
one new tree

make a new parent node with their combined weight;
smaller node on the left, larger on the right

lots of ties here! h, e, w, r, d, and ‘ ‘
need a tie-breaker . . . more on this later . . .

o:2 l:3

51

‘’:1 h:1 d:1 e:1 r:1 w:1

hello world

remove ‘ ‘ and h trees from the list

add new merged tree to the list

note: non-leaf nodes don’t have a character,
only a weight

2

o:2 l:3

52

‘’:1 h:1 d:1 e:1 r:1 w:1

hello world

continue process of merging two smallest trees

which is next?

2 2

o:2 l:3

53

‘’:1 h:1 d:1 e:1 r:1 w:1

hello world

continue process of merging two smallest trees

which is next?

2 2 2

o:2 l:3

54

‘’:1 h:1 d:1 e:1 r:1 w:1 o:2 l:3

hello world

continue process of merging two smallest trees

which is next?

2 2 2

4

55

‘’:1 h:1 d:1 e:1 r:1 w:1

2

l:3

hello world

continue process of merging two smallest trees

which is next?

2 2 o:2

4 4

56

‘’:1 h:1 d:1 e:1 r:1 w:1

2

l:3

hello world

continue process of merging two smallest trees

which is next?

2 2 o:2

4 4

7

57hello world

done!

‘’:1 h:1 d:1 e:1

l:3

2 2

4

7

r:1 w:1

2o:2

4

11

hello world

new character encoding

‘’:1 h:1 d:1 e:1

l:3

2 2

4

7

r:1 w:1

2o:2

4

11

h: 1101
e: 1111
l : 10
o: 00
‘’ :1100
w: 011
r : 010
d: 1110

110111111101000110001100010101110

(re)building the compression tree

59

60

-the compressed file now contains non-ASCII, varying
length bytes

-decompression needs the same tree in order to
decode

-must add header information that describes the tree
-this header should not be compressed!

-next time…

next time…

61

62

-reading
-chapter 12 in book

-homework
-assignment 11 due tomorrow night
-assignment 12 is out, due a week from Tuesday

