Parallel Algorithms For Dense Linear Algebra Computations

K.A. GALLIVAN, R.J. PLEMMONS, and A.H. SAMEH
Outline

1 Context

2 Intro/Abstract

3 Architecture

4 Computational Primitives
 4.1 BLAS Level 1
 4.2 BLAS Level 2
 4.3 BLAS Level 3
5 The Big Idea: Blocksize Analysis
 5.1 Results

6 Conclusion
1 Context

Meta-analysis covering:

1. Parallel algorithms for dense matrix computations
2. Implementation practices
3. Efficiency analysis
2 Intro/Abstract

1. Efficient parallel algorithm design ought to be architecture-specific

2. Efficient algorithms can be decomposed into Computational Primitives
3 Architecture
Hierarchical shared memory and distributed memory architectures both influence algorithm design with a component denoted by Δ_l or the *data loading overhead*. So if we include *arithmetic time* T_a we get the following:

$$T = T_a + \Delta_l = n_a \tau_a + n_l \tau_l,$$

This is the basis of our analysis. Alternatively:

$$\frac{\Delta_l}{T_a} = \lambda \mu$$

where $\mu = n_l / n_a$ is the cache-miss ratio and $\lambda = \tau_l / \tau_a$ is the cost ratio.
4 Computational Primitives

BLAS

1. Basic Linear Algebra Subroutines (Subprograms)

2. Comprise the base computational units in LA
4.1 BLAS Level 1

Vector-Vector Operations

1. $\alpha \leftarrow x^T y$ (dot product)

2. $y \leftarrow y \pm \alpha x$ (vector triads)

3. Note: BLAS 1 requires many synchronizations relative to the number of arithmetic ops (large $\mu = n_l/n_a$).
4.2 BLAS Level 2

Matrix-vector Operations

1. \(y \leftarrow y \pm Ax \) (matrix-vector product)

2. \(A \leftarrow A \pm xy^T \) (rank-1 update)

3. BLAS 2 allows us to compute many BLAS 1 primitives in parallel thereby increasing \(n_a \) relative to \(n_l \) per process.

4. Note: BLAS 2 can degrade to BLAS1 as \(\dim(A) \) or \(\min(\dim(A)) \) goes to 1.
4.3 BLAS Level 3

Matrix-matrix Operations

1. $C \leftarrow C + AB$ (Matrix multiplication)

2. By Gallivan et al, typically the most efficient primitive IF cache size is considered when partitioning/decomposing the problem. Blocksize decision gives us maximum speed-up.
5 The Big Idea : Blocksize Analysis

Consider the BLAS3 primitive $C \leftarrow C + AB$. We would expect to partition the matrices $C, A,$ and B into submatrices C_{ij}, A_{ik} and B_{kj} whose dimensions are $m_1 \times m_3, m_1 \times m_2$ and $m_2 \times m_3$, respectively. Our basic loop might be of the form:

\[
\begin{align*}
\text{do } i = 1, k_1 \\
&\quad \text{do } k = 1, k_2 \\
&\quad \quad \text{do } j = 1, k_3 \\
&\quad \quad \quad C_{ij} = C_{ij} + A_{ik} \ast B_{kj} \\
&\quad \quad \text{end do} \\
&\quad \text{end do} \\
&\text{end do}
\end{align*}
\]
where $n_1 = k_1 m_1$, $n_2 = k_2 m_2$, and $n_3 = k_3 m_3$. Consider number of transfers required for given submatrices:

$$\mu = \frac{1}{2m_1} + \frac{1}{2m_2} + \frac{1}{2n_3}$$ \hspace{1cm} (3)

If infinite cache, we have a minimum of:

$$\mu = \frac{1}{2n_1} + \frac{1}{2n_2} + \frac{1}{2n_3}$$ \hspace{1cm} (4)

We want to minimize m_1 and m_2 subject to number of processors and cache size....
As it turns out this takes a form:

\[\mu = \frac{1}{\sqrt{CS}} + \frac{p}{2CS} + \frac{1}{2n_3}. \]

(5)

where \(CS \) is the cache size and assuming \(n_3 \) is larger than \(\sqrt{CS} \).
5.1 Results

Performance for a square matrix multiplication on Alliant FX/8
6 Conclusion

1. Data Locality - The key factor in exploiting parallelism.

2. Blocksize - Main tool to control factors of Data Locality and ensure effective load management