Quantitative Electrocardiography: Two Steps Forward and One Step Back

Rob S. MacLeod* and Dana H. Brooks**

*Department of Bioengineering, CVRTI and the SCI Institute
University of Utah
**Department of Electrical and Computer Engineering
Northeastern University

The Credits
Goals of Quantitative Electrocardiography

Understand mechanisms \Rightarrow Forward Models

Validate models \Rightarrow Inverse Problems

Improve diagnostics \Rightarrow
The Motivation

Driving Themes

Technical
- Forward models: myocardial tissue to whole heart
- Signal processing: catheter based cardiac mapping
- Inverse solutions: multiconstrained approaches
- Software: making it all work

Biomedical
- Tissue function: coupling and anisotropy
- Organ Pathology: ischemia, arrhythmias
- Molecular biology: mutations/transgenics
Forward Models: the Bidomain Method

- 2 domains share the same space
- Membrane separates the domains
- All properties (e.g. V_{ec}, r_{ec}) are macroscopic averages

Bidomain Parameters

- σ_{et}, σ_{el}, σ_{it}, σ_{il}
- Tissue conductivity
- Diffusion-weighted MRI (direction)

Modeling Conductivity

Building block: hexagon

Cluster of 27 myocytes

Mouse Heart Models

- MRI input data
- Segmented ventricles
- 225,236 hex elements

Craig Henriquez, Duke University
Mouse Activation Sequence

Activation

Recovery (-60 mV)

APD

SCI __________________________ CVRTI

0.5 ms
6.5 ms
8.5 ms
10.5 ms

Forward Computation of ECG

SCI __________________________ CVRTI
Modeling Ischemia

St-segment elevation

Biophysics of Acute Ischemia

Intracellular current
Geometric Model

Ischemic Zone

RV
LV

Validation: Experimental Preparation

Pump
Electrodes

Hopenfeld et al. JCE, 15:1200, 2004

Shome et al. IEEE EMBS, 2004
Extent of Ischemia

Experiments
- 50% flow
- 25% flow
- 1% flow

Simulations
- 40% transmural
- 70% transmural
- 90% transmural

Ischemic Zone

Signal Processing:
Detection of Arrhythmias

Cardiac Mapping
- Body surface
 - 12-lead ECG
- Direct
 - BSPM
- Catheter-based
 - Epicardial
 - Endocardial
Overcoming Limited Resolution

Sparse catheter measurements — Signal processing — High-resolution Activation maps

Signal Processing

- How do we determine the relationships between known and unknown sites?
 - Interpolation
 - global pre-assumptions
 - Estimation
 - create these assumptions from a previously acquired set of data (training data)
Estimation Results

Original | AME | AME-Spat Act | AME-Temp Act

Inverse Solutions by Multiple Constraints

Forward

Inverse

SCI --- CVRTI
Combing Information Sources

Sparse Epicardial Measurements (SEP)

Torso measurements and forward model (TOR)

Training dataset of epicardial maps (TS)

\[x = \begin{bmatrix} x_m \\ x_u \end{bmatrix} \]

Solution Approaches

<table>
<thead>
<tr>
<th>Information Source</th>
<th>Tikhonov</th>
<th>Tikhonov - ED</th>
<th>MAP</th>
<th>MAP - ED</th>
<th>Epi. Est.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>SEP</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>TOR</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>
Potential maps

original

tikh

tikh-ED

epi est

map

map-ED

Error std

epi est

map

map-ED

Potential maps

Serinagaoglu et al. IEEE T-BME, 2005

Solution Approaches

TS

SEP

TOR

Tikhonov

Tikhonov - ED

MAP

MAP - ED

Epi. Est.

<table>
<thead>
<tr>
<th>Method</th>
<th>Smoothed</th>
<th>Stable but missing focus</th>
<th>Good compromise, less noise</th>
<th>Good focus</th>
<th>Noisy, false extrema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tikhonov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tikhonov - ED</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP - ED</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epi. Est.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
The Software: Requirements (Wish List)

- Flexible
- Portable
- Integrated
- Extensible
- Powerful
- Efficient
- Easy to learn
- Cheap (aka free)

- MATLAB
 - Brainstorm
 - MatMap
 - Utility code
- SCIRun/BioPSE
- map3d
- Cardiowave
- ECGSim
- NeuroFEM/Vgrid

Pillars of SCIRun

- Accessibility
- Integration
- Reusability
One Step Back

- What is the role of tissue structure?
 - gap junctions
 - discrete vs. continuous models
- How can we use ischemia models?
 - body surface information
 - effects on propagation
- What do cardiac maps tell us?
 - covariance matrix
 - detection of arrhythmias
- What are relevant inverse constraints?
 - identification
 - parameterization
- How do we span scales?
 - multiscale modeling
 - inclusion of molecular biology information