Applying Constraints to the Electrocardiographic Inverse Problem

Rob MacLeod, Dana Brooks*, Yesim Serinagaoglu*, Bulent Yilmaz

• Cardiovascular Research and Training Institute (CVRTI)
• Northeastern University, CDSP, ECE Department

Electrocardiography
Electrocardiographic Mapping

- Bioelectric Potentials
- Goals
 - Higher spatial density
 - Imaging modality
- Measurements
 - Body surface
 - Heart surfaces
 - Heart volume

Body Surface Potential Mapping

Taccardi et al, Circ., 1963
Cardiac Mapping

- Coverage
- Sampling Density
- Surface or volume

Inverse Problems in Electrocardiography

Forward

Inverse
Epicardial Inverse Problem

- Definition
 - Estimate sources from remote measurements

- Motivation
 - Noninvasive detection of abnormalities
 - Spatial smoothing and attenuation

Forward/Inverse Problem

Forward problem

- Epicardial/Endocardial Activation Time
- Geometric Model
- Body Surface Potentials

Inverse problem

Thom Oostendorp, Univ. of Nijmegen
Sample Problem: PTCA
Elements of the Inverse Problem

- Components
 - Source description
 - Geometry/conductivity
 - Forward solution
 - “Inversion” method (regularization)
- Challenges
 - Inverse is ill-posed
 - Solution ill-conditioned

Inverse Problem Research

- Role of geometry/conductivity
- Numerical methods
- Improving accuracy to clinical levels
- Regularization
 - A priori constraints versus fidelity to measurements
Regularization

- Current questions
 - Choice of constraints/weights
 - Effects of errors
 - Reliability
- Contemporary approaches
 - Multiple Constraints
 - Time Varying Constraints
 - Tuned constraints
 - Multisource constraints

Tikhonov Approach

Problem formulation

\[y(k) = A \cdot h(k) + e(k) \quad k = 1, 2, \ldots, L \]

Constraint

\[\hat{h}_\lambda = \arg \min_x \left(\|y - Ax\|^2 + \lambda^2 \|Rx\|^2 \right) , \]

Solution

\[\hat{h}_\lambda = (A^T A + \lambda^2 R^T R)^{-1} A^T y \]
Multiple Constraints

For k constraints

$$\hat{h}_\lambda = \arg\min_x \left(\|y - Ax\|^2 + \sum_{i=1}^k \lambda_i^2 \|R_i x\|^2 \right)$$

with solution

$$\hat{h}_\lambda = \left(A^T A + \sum_{i=1}^k \lambda_i^2 R_i^T R_i \right)^{-1} A^T y.$$

Note: two regularization factors required

Dual Spatial Constraints

For two spatial constraints:

$$\hat{h}_\lambda = \left(A^T A + \lambda_1^2 R_1^T R_1 + \lambda_2^2 R_2^T R_2 \right)^{-1} A^T y.$$

Note: two regularization factors required
Joint Time-Space Constraints

Redefine \(y, h, A \):

\[
\bar{y} = \bar{A} h + \bar{e}
\]

\[
\bar{A} = \begin{pmatrix}
A & 0 & 0 & \cdots & 0 \\
0 & A & 0 & \cdots & 0 \\
0 & 0 & A & \cdots & 0 \\
\vdots & & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & A
\end{pmatrix}
\]

And write a new minimization equation:

\[
\hat{h} = \arg \min_{\bar{x}} \left(\| \bar{A} \bar{x} - \bar{y} \|^2 + \sum_{i=1}^{k_x} \lambda_i^2 \| \bar{R}_i \bar{x} \|^2 + \sum_{i=1}^{k_t} \eta_i^2 \| \bar{T}_i \bar{x} \|^2 \right).
\]

Joint Time-Space Constraints

General solution:

\[
\hat{h} = \left(\bar{A}^T \bar{A} + \sum_{i=1}^{k_x} \lambda_i^2 \bar{R}_i^T \bar{R}_i + \sum_{i=1}^{k_t} \eta_i^2 \bar{T}_i^T \bar{T}_i \right)^{-1} \bar{A}^T \bar{y}
\]

For a single space and time constraint:

\[
\hat{h} = \left(\bar{A}^T \bar{A} + \lambda^2 \bar{R}^T \bar{R} + \eta^2 \bar{T}^T \bar{T} \right)^{-1} \bar{A}^T \bar{y}
\]

\[
= \left[\bar{I}_L \otimes (\bar{A}^T \bar{A}) + \lambda^2 \bar{I}_L \otimes \bar{R}^T \bar{R} + \eta^2 (\bar{T}^T \bar{T}) \otimes \bar{I}_N \right]^{-1} \cdot (\bar{I}_L \otimes \bar{A}^T) \bar{y}.
\]

Note: two regularization factors and implicit temporal factor
Determining Weights

- Based on *a posteriori* information
- *Ad hoc* schemes
 - CRESO: composite residual and smooth operator
 - BNC: bounded norm constraint
 - AIC: Akaike information criterion
 - L-curve: residual norm vs. solution seminorm

L-Surface

- Natural extension of single constraint approach
- “Knee” point becomes a region
Joint Regularization Results

Energy Regularization Parameter

Laplacian Regularization Parameter

RMSE

with Fixed Laplacian Parameter

with Fixed Energy Parameter

Admissible Solution Approach

Constraint 1 (non-differentiable but convex)
Constraint 2 (non-differentiable but convex)
Constraint 3 (differentiable)
Constraint 4 (differentiable)

Admissible Solution Region
Single Constraint

Define $\phi(x)$ s.t.

$$\phi(x) : \mathcal{R}^N \rightarrow \mathcal{R}$$

with the constraint such that

$$\phi(x) - \epsilon < 0.$$

that satisfies the convex condition

$$\phi(\alpha x + (1 - \alpha)y) \leq \alpha \phi(x) + (1 - \alpha)\phi(y) \quad \forall \alpha \in [0, 1].$$

Multiple Constraints

Define multiple constraints $\phi_i(x)$

$$(\phi_i(x) - \epsilon_i) \in \mathcal{H}, \text{ for } i = 1, 2, \ldots, m.$$

so that the set of these

$$\{x : \phi(x) < 0\}$$

represents the intersection of all constraints. When they satisfy the joint condition

$$\phi(x) \leq 0$$

Then the resulting x is the *admissible solution*
Examples of Constraints

- Residual constraint: \(\phi(x) = \|Ax - y\|_2^2 \)
- Regularization constraints: \(\phi(x) = \|Rx\|_2^2 \)
- Tikhonov constraints: \(\phi_\lambda(x) = \| (A \sqrt{\lambda R}) x - \begin{pmatrix} b \\ 0 \end{pmatrix} \|_2^2 \)
- Spatiotemporal constraints
- Weighted constraints
- Novel constraints

Admissible Solution Results

Original Regularized Admissible Solution
Combining Information Sources

Venous Catheter Based Mapping
Statistical Estimation

Training Data

Sparse Test Data

Covariance Matrix

Estimation Matrix

\[E = C_{ku}^{T} C_{kk}^{-1} \]

\[t_u = E t_k \]

Estimated Activation Maps

- Training set composition
- Lead selection
Augmented Inverse Problem

Torso geometry
+ Body-Surface Potentials
+ Sparse Epicardial Potentials
+ Inverse Solution

Epicardial Map

Subtraction Approach

Unknown

1) Subtract known epicardial potentials
2) Solve reduced inverse problem

Known

Inverse (Tikhonov)
Epicardial Estimation

Combined Estimation
Bayesian Approach

Hybrid Approach
Tank/Heart Geometry

Test Lead Sets

Anterior
- 42 leads
- 21 leads
- 10 leads

Posterior
Simulation Study

- 490 lead measured sock data
- Surrogate catheter potentials
 - 42 sites
 - + Gaussian noise
- Torso potentials
 - Calculated noise-free using forward model
 - + Gaussian noise

Leave-One-Experiment Out Protocol

<table>
<thead>
<tr>
<th>Training Data</th>
<th>Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV Paced Beats</td>
<td>Dec 18, 2000</td>
</tr>
<tr>
<td>Mixed Paced Beats</td>
<td>Dec 13, 2000</td>
</tr>
</tbody>
</table>
LV Pacing (LV-23 ms)

LV Pacing (LV-38 ms)
LV Pacing (LV-47 ms)

- Orig
- Subt
- MAP
- Epi Est
- Comb Est
- Hybrid MAP

31: LV-MEPiP-47 ms

LV Pacing (Mixed-23 ms)

- Orig
- Subt
- MAP
- Epi Est
- Comb Est
- Hybrid MAP

31: LV-RV-MEPiP-23 ms
Estimation Findings

- Estimation alone: noisy, unstable results
- Estimation + inverse: smoothing improves stability

Inverse Solution Findings

- All solutions better than simple Tikhonov
- MAP usually improved with addition of catheter measurements (Hybrid MAP)
Role of Statistics (Training)

• Generally helps
• But can add artifacts, e.g., spurious breakthroughs or wavefronts
• Torso potentials can reduce artifacts

Acknowledgements

• CVRTI
 – Bruno Taccardi
 – Rich Kuenzler
 – Bob Lux
 – Phil Ershler
 – Yonild Lian
 – Shibaji Shome
 – Lucas Lorenzo

• CDSP
 – Dana Brooks
 – Ghandi Ahmad

www.cvrti.utah.edu/~macleod
www.censsis.neu.edu