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Three-Dimensional Activation Mapping in Ventricular Muscle:
Interpolation and Approximation of Activation Times
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Abstract—Interpolation plays an important role in analyzing
visualizing any scalar field because it provides a means
estimate field values between measured sites. A specific
ample is the measurement of the electrical activity of the he
either on its surface or within the muscle, a technique known
cardiac mapping, which is widely used in research. Wh
three-dimensional measurement of cardiac fields by mean
multielectrode needles is relatively common, the interpolat
methods used to analyze these measurements have rarely
studied systematically. The present study addressed this
by applying three trivariate techniques to cardiac mapping
evaluating their accuracy in estimating activation times at
measured locations. The techniques were tetrahedron-base
ear interpolation, Hardy’s interpolation, and least-square q
dratic approximation. The test conditions included activat
times from both high-resolution simulations and measureme
from canine experiments. All three techniques performed sa
factorily at measurement spacing<2 mm. At the larger inter-
electrode spacings typical in cardiac mapping~1 cm!, Hardy’s
interpolation proved superior both in terms of statistical m
sures and qualitative reconstruction of field details. This pa
provides extensive comparisons among the methods and
scriptions of expected errors for each method at a variety
sampling intervals and conditions. ©1999 Biomedical Engi-
neering Society.@S0090-6964~99!01105-4#

Keywords—Activation, Cardiac mapping, Interpolation.

INTRODUCTION

A major goal in cardiac electrophysiology is the com
plete characterization of the spread of activation throu
out the heart. One can picture activation as a thin w
front, or set of multiple wave fronts, that moves throu
the heart along pathways that are dictated by membr
kinetics, cell-to-cell coupling, fiber architecture, and t
three-dimensional shape of the heart itself. Detecting
spread of activation on the epicardial and endocar
surfaces of the heart is possible from measurement
electric potential, however, it provides only an incom
plete reflection of the underlying behavior. For examp
surface-based measurements are often unable to re
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intramyocardial events such as reentrant pathways
sponsible for cardiac arrhythmias.25 Hence, to capture
cardiac activation completely, it is necessary to reco
potentials also from within the heart tissue. Multiele
trode intramural needles permit such measurements
form the basis of many studies into the fundamen
nature of normal and abnormal activation. In rece
years, three-dimensional activation mapping has p
vided detailed information on the roles of anatomic
structure in normal activation,30 on the spatial nature o
extracellular stimulation of cardiac tissue,17 and on some
electrophysiological mechanisms of arrhythmias.13,24

Recording electric potentials from multiple sites in th
heart is known as cardiac mapping, a discrete measu
scheme that reveals both temporal and spatial inform
tion. As with any discrete sampling technique, an imp
tant question for cardiac mapping is how to determ
values at locations from which direct measurements
not available.21 Interpolation and approximation are th
most common approaches for providing values at unm
sured sites but studies of these methods in cardiac m
ping are relatively sparse in the literature5,9,21,22and have
all been limited to epicardial measurements. Our o
studies have recently shown that although linear meth
of interpolation are very common and simple to impl
ment, they do not perform as well as other slightly mo
elaborate techniques.22 The study of three-dimensiona
cardiac mapping is similarly incomplete in that line
methods are the standard even though they have
same ~or worse! shortcomings in three dimensions a
they do in surface recordings.

The purpose of this study was to evaluate the ac
racy of a selection of interpolation and approximati
methods in three-dimensional cardiac activati
mapping.28 We examined these techniques with activ
tion times, which are not directly measurable, but can
derived from measured potential signals. Activati
times indicate the time of passage of the activation wa
front and characterize the sequence of events during
spread of excitation in the heart. There is a gene
consensus that no single method can effectively inter
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618 NI, MACLEOD, and LUX
late all physical quantities.1 While many of the methods
described here have their origins in other areas of
ence and engineering, wherever possible we h
adapted and adjusted them for the specific task of in
polating cardiac activation times. Presented here are
sults from three different families of technique
tetrahedron-based linear interpolation, Hardy’s interpo
tion, and least-square quadratic approximation. To p
vide quantitative validation, we have applied these me
ods to both high-resolution, simulated activation tim
from a slab of heart tissue and to measured values f
acute canine experiments.

METHODS

Interpolation and Approximation

We begin with a general definition of interpolatio
and approximation problems and then describe the th
different methods evaluated in detail here.

Given activation timest i each associated with a dis
crete measurement point in three-dimensional sp
(xi ,yi ,zi), i 51,...,N, the interpolation problem is to
find a functionT(x,y,z) such that

T~xi ,yi ,zi !5t i , i 51,...,N. ~1!

A closely related problem isapproximationin which we
relax the requirements such that

T~xi ,yi ,zi !'t i , i 51,...,N. ~2!

T is usually sought within the finite-dimensional line
interpolation space, which has the general form of

T~x,y,z!5(
i 51

M

cif i~x,y,z!, ~3!

wheref i , i 51,...,M , is a set of basis functions and th
coefficients,ci , are determined by the interpolation@Eq.
~1!# or approximation@Eq. ~2!# conditions. The assump
tion associated with interpolation is that the activati
values,t i , are exact and thus we force tight agreeme
betweent i andT(xi ,yi ,zi). Approximation, on the othe
hand, assumes some error in the individual meas
ments and requires only agreement to a degree de
mined by the application, the measurements, and
specific method.

One consequence of the infinite variety of spatial d
tributions that can arise in physical problems is that
set of basis functions can be in any way optimal for
purposes. There is no completely satisfactory ‘‘gene
purpose’’ interpolation method, especially for thre
dimensional~trivariate! distributions.1 Furthermore, there
are no completely satisfactory closed-form metho
-

-
-

known to us with which to select or even optimize th
choice of interpolation scheme. Instead, selection a
evaluation must rely on empirical criteria, based
samples of the data to be interpolated.

With basis functions and weights determine
T(x,y,z) gives a complete description of the underlyin
spatial distribution, which can be used to estimate
value at any unsampled observation site (xp ,yp ,zp) us-
ing equation

t̃ p5T~xp ,yp ,zp!'(
i 51

M

cif i~xp ,yp ,zp!, ~4!

where M depends on the interpolation/approximatio
method.

Interpolation and approximation methods can be f
ther differentiated by their scope. In a global metho
T(x,y,z) depends on all measurement points regardl
of their distance from the observation pointp ~bold no-
tation indicates a vector when lower case and a matrix
upper case throughout the manuscript!, whereas a local
method uses only measurement points nearbyp ~where
the definition of ‘‘nearby’’ is part of the specific inter
polation or approximation technique!. In the case of
large sets of data or distributions that change rapidly
space, local schemes often lead to better results at lo
computational costs and are more stable numerically.12,16

Tetrahedron-Based Linear Interpolation.Tetrahedron-
based interpolation is a local technique. It typically i
volves the following two steps:~1! building a topological
structure given regularly or irregularly scattered sam
locations, e.g., create a mesh of tetrahedra that conn
all measurement points by means of some thr
dimensional triangulation scheme; and~2! defining a
piecewise polynomial from data values over each e
ment of the mesh, in our case, each tetrahedron. We u
Delaunay triangulation, which maximizes the minimu
angle of each element.

It is both natural and computationally advantageous
represent a local interpolation scheme in a local coo
nate system, such as the Barycentric system, which
resents any pointp with respect to a tetrahedron wit
verticesvi , i 51,...,4, in terms of the coordinatesbi , i
51,...,4, as

p5b1v11b2v21b3v31b4v4 , ~5!

with the requirement of normalization

b11b21b31b451. ~6!
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619Interpolation of Activation Times
To determine the coordinatesbi , i 51,...,4, for the point
(xp ,yp ,zp), given the tetrahedron (xi ,yi ,zi), i 51,...,4,
it is necessary to solve the system

S x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

1 1 1 1

D S b1

b2

b3

b4

D 5S xp

yp

zp

1
D . ~7!

The advantage of such a system is that to perform
linear interpolation of the value at a pointp only requires
an inner product of the Barycentric coordinates vec
and the values at the vertices of the tetrahedron wh
containsp,

T~b!5b•t5(
i 51

4

bit i . ~8!

Hardy’s Interpolation. A family of basis functions, re-
ferred to as radial functions, have achieved great suc
for providing effective interpolations in various numer
cal experiments on scattered two-dimensional data.16,20

These functions depend only on Euclidean distance fr
the observation point and extend naturally to three
mensions. One of the simplest and most effective ra
basis functions used in interpolation is the multiquadr
first developed by Hardy,19 which has the form

T~p!5(
i 51

N

ciAip2pi i21R2, ~9!

where p5(x,y,z), ip2pi i25(x2xi)
21(y2yi)

21(z
2zi)

2, andR2 is a parameter that must be set based
the particular application.

The coefficientsci in Eq. ~9! are determined by the
interpolation conditions@Eq. ~1!#. The resultingN3N
linear system is nonsingular,12 but it becomes ‘‘numeri-
cally singular’’ as the number of points increases abo
100. Even if the system remained nonsingular, the co
putational overhead of solving large systems makes
global implementation of Hardy’s interpolation costly
use in practice. An alternative is to partition the me
surement point domain into subdomains such that in
polants are constructed locally on each subdomain.
evaluated different local Hardy’s schemes using
simulation datasets which contained over 90,000 poi
Our preliminary tests showed that in the range of 1
100 neighbors, mean interpolation errors were sta
whereas maximum errors were typically lowest when
number of neighbors included was about 60. We u
this same number of neighbors to construct a local
terpolant T for each observation point in all tests pr
s

.

sented in this paper for Hardy’s interpolation.
The accuracy of the Hardy’s interpolation depen

also on the parameterR, whose optimal value is problem
dependent and an open research problem.10 We used an
empirical estimate ofR provided by Foley14 that has the
following formula:

Rest
2 54@~xmax2xmin!~ymax2ymin!~zmax2zmin!#

2/3.
~10!

Least-Square Approximation.The least-square approx
mation is a commonly used technique in multivaria
data analysis.14 It is especially useful with measured da
containing noise because it does not require the ex
matching conditions of Eq.~1! and yet offers a relatively
simple means of calculating coefficients for a given ba
function set. The least-square approach minimizes
sum of the square of errors between given data and
representation from a set of basis functions. In this stu
the basis functions were a set of three-dimensional m
nomials of degree less than 3, which can be expresse
a ten-element vector

F5~x2,y2,z2,xy,xz,yz,x,y,z,1!. ~11!

We then found the coefficientscj , j 51,...,10, bymini-
mizing the error

(
i 51

N S (
j 51

10

cjf j2t i D 2

. ~12!

Just as with Hardy’s interpolation, least-square a
proximation can operate both globally and also as a lo
scheme, a process usually referred to as moving le
square. The quantity to minimize then depends on
values only at neighboring nodes, each weighted by
distance from the observation point. Equation~12! be-
comes

(
i 51

Ne S (
j 51

10

cjf j2t i D 2

wi , ~13!

where Ne is the number of neighboring points andwi ,
i 51,...,Ne , are weighting coefficients. Typically,Ne

!N. We tested the effect of varyingNe in the range of
15–80, and settled on a value ofNe525, which nor-
mally gave the best overall accuracy for the data
scribed in this report.

The resulting system forms a matrix equation

Ac5b, ~14!



620 NI, MACLEOD, and LUX
TABLE 1. Mean/maximum differences „ms … between measured and interpolated simulated data using the three interpolation and
approximation techniques. Electrode intervals are the distances between adjacent electrodes in the x , y , and z direction. Exp ID

represents different activation sequences, e.g., epi-pn/epi: pacing at the epicardium with/without Purkinje network.

Electrode
interval (mm) Method

Exp ID

epi epi-pn mid mid-pn endo endo-pn

2-2-1 Linear 0.06/3.04 0.09/3.04 0.07/3.08 0.11/3.08 0.06/2.99 0.11/3.06
Hardy 0.11/1.35 0.12/1.74* 0.11/1.21 0.11/1.49* 0.11/1.25 0.10/2.29*

Least square 0.05/2.31 0.11/2.92 0.07/2.30 0.17/2.78 0.06/2.36 0.13/2.78

2-2-2 Linear 0.15/3.22 0.20/4.00 0.18/3.70 0.23/3.84 0.15/3.11 0.17/3.06
Hardy 0.08/1.52 0.11/2.00 0.08/1.27 0.14/1.94 0.08/1.47 0.09/2.72

Least square 0.11/3.10 0.19/3.35 0.14/3.01 0.29/3.39 0.11/3.11 0.22/3.15

4-4-2 Linear 0.24/4.70 0.34/5.20 0.28/5.47 0.44/5.47 0.24/4.09 0.40/5.32
Hardy 0.14/2.33 0.21/5.45 0.14/2.43 0.28/5.47 0.14/1.85 0.29/5.44

Least square 0.31/5.13 0.50/6.76 0.43/5.24 0.73/6.68 0.30/5.31 0.56/6.10

8-8-2 Linear 0.60/8.07 0.81/9.91 0.65/7.73 1.05/10.94 0.61/7.2 1.02/10.96
Hardy 0.29/4.58 0.53/9.15 0.33/4.34 0.85/12.05 0.29/4.24 0.94/13.18

Least square 0.70/8.18 1.02/11.03 0.87/8.51 1.33/11.11 0.70/8.54 1.12/10.66

8-8-5 Linear 1.10/6.94 1.30/9.91 1.33/8.90 1.54/10.94 1.15/7.25 1.25/10.96
Hardy 0.53/5.13 0.88/8.98 0.76/4.36 1.22/11.69 0.51/4.54 1.07/13.74

Least square 1.30/12.47 1.62/12.57 1.56/12.14 1.88/13.24 1.29/12.92 1.39/10.74

16-16-5 Linear 2.29/10.13 2.37/13.51* 2.45/15.17 2.43/15.88* 2.32/13.08 1.87/15.88
Hardy 1.23/11.36 1.69/10.99 1.44/8.78 1.94/13.90 1.01/9.95 1.56/14.43

Least square 3.68/21.25 4.09/22.06 4.09/19.67 4.03/19.84 3.85/21.35 2.60/15.32

*p5NS for epi vs epi-pn, mid vs mid-pn, and endo vs endo-pn; all others p,0.0001.
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where the elements ofA are a( i , j )5(k51
Ne w(pk)

•f i(pk)f j (pk) and bi5(k51
Ne w(pk)f i(pk)t i . A fre-

quently used weighting function14 is

w~pi !5~12di /dmax!
210.125, ~15!

wheredi5ip2pi i , and dmax5max(d1,...,dNe
).

Direct methods for solving Eq.~14! are susceptible to
roundoff error.26 One remedy is to use theQR decom-
position ofA to expressA asA5QR, in which Q is an
orthogonal matrix andR is a triangular matrix. The
equation for findingc then becomes the more nume
cally stable

Rc5QTb. ~16!

Experimental Methods

Just as there is noa priori method of selecting the
best interpolation method for a particular situation, the
is no single best means of testing the performance
interpolation methods. Typical approaches include de
ing subjectively appropriate analytical test functions
simulating a test dataset. We have taken the latter
proach by applying all methods to simulated activati
time data provided by Colli Franzoneet al. Although
simulated data offer many advantages with regard
-

spatial resolution and control over simulation paramete
they do not perfectly represent the reality of measu
values. Hence, we also applied all methods to measu
activation times from experiments using needle el
trodes in the canine ventricle, as described below.
both cases, the test paradigm was similar. From f
resolution simulations or measurements, we selected
sets of points, interpolated back to the full-resoluti
data, and compared the results.

Simulation Data. The source of the simulated activatio
time data was an eikonal model of spread of excitat
based on an anisotropically conducting parallelepipe
slab consisting of 66366321 nodes for a 65365
310 mm region.11 Stimulations initiated excitation from
points at the epicardium~epi!, midwall ~mid!, and en-
docardium~endo! along a line perpendicular to the ep
cardial surface. An additional feature of the model w
the optional inclusion of an idealized Purkinje condu
tion network lining the endocardial surface, thus produ
ing multiple initiation sites of activation for three of th
total of six simulation datasets.

In testing the three interpolation methods describ
above with each of the six simulation datasets,
changed the subsampling resolution applied to de
measurement points from 2 to 16 mm in thex and y
directions and from 1 to 5 mm in thez direction ~see
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621Interpolation of Activation Times
Table 1 for details!. Interpolants constructed from th
subsampled measurement points provided estimates a
remaining locations in the 90,000 node slab. Interpo
tion accuracy was evaluated by comparing interpola
values with original values from the simulation.

Experimental Data. The experimental activation time
were measured from an isolated perfused canine hea31

In the experiment, 56 needles, each with 10 electrod
were inserted into the free wall of the left ventricle. Th
average distance between needles was 7.761.9 mm on
the epicardial surface and 5.461.6 mm on the endocar
dial surface. The distance between electrodes along e
needle was 1.6 mm. To construct interpolants, we
lected three electrodes~Nos. 1, 5, and 10, placed in th
endocardium, midwall, and epicardium, respective!
from 27 of the 56 needles as measurement points.
average distance between the subset of measure
points was 10.365.4 mm. Activation times at electrode
not in contact with the myocardium were excluded fro
the dataset. See Fig. 1 for needle configurations
selected measurement needles.

We sampled unipolar electrograms at 1000 Hz fro
all channels. The activation time for each electrode s
was the time of occurrence of the minimum time deriv
tive in the relevant electrogram. The test data consis
of activation sequences from supraventricular pacing
pacing at epicardial, midwall, and endocardial sites in
left ventricle.

Statistical Analysis

Interpolation and approximation accuracy were d
scribed by mean and maximum values of the abso
differences between original values from simulated
measured data and the corresponding values by inte
lation. We used the Wilcoxon rank–sum test to perfo
pairwise comparisons and a Kruskal–Wallis test

FIGURE 1. Multielectrode needle configuration. Left panel
shows positions of multielectrode needles in the left ven-
tricular free wall. LAD refers to left anterior descending coro-
nary artery, and LCx refers to left circumflex coronary artery.
Right panel shows the electrode configuration on the epicar-
dium. Crosses mark electrodes selected as measurement
points to construct interpolants.
ll

,

h

nt

-

comparisons among more than two samples. The
hypothesis was rejected at a significance level of 0
(a50.05).

RESULTS

Interpolation of Simulation Data

Table 1 contains a summary of statistical results
the three interpolation and approximation techniques
six simulated activation sequences with progressiv
coarser subsampling. See Figs. 2 and 3 for isochr
maps from examples of the above tests.

Tetrahedron-Based Linear Interpolation.For linear in-
terpolation, mean errors were negligible~less than 1 ms,
which was the sampling resolution of acquisition! for all
pacing sequences as long as node spacings were
than 2 mm; maximum errors ranged from 3 to 4 m
Both mean and maximum errors increased gradually w
coarser subsampling, reaching 2 and 10 ms, respectiv
for node spacing parallel to the epicardium of 16 mm

Figure 2 contains an example of a simulated midmy
cardially paced beat with 2 mm spacing and the Purki

FIGURE 2. Example of interpolation and approximation re-
sults with internodal point interval 2-2-2 mm. Stimulation
was applied intramurally with the Purkinje network „mid-pn ….
From left to right are cross sections „65365 mm2

… at one of
three depths „z50, 4.5, and 10 mm as marked on the top
row … from the epicardial surface. Labels under each row in-
dicate mean/max interpolation error of the slice except for
labels under the first row of the panel, which show the ear-
liest and latest activation times. There is an 8 ms interval
between adjacent contour lines, which are generated using
linear interpolation. Dark shading indicates early activation
and light shading indicates late activation.
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622 NI, MACLEOD, and LUX
system included. The interpolated activation maps p
serve the rotating elliptical shape of the activation fro
as well as the discrete features that arise because o
Purkinje system at the subendocardium. When the sp
ing between nodes in thex andy directions increased to
8 mm and in thez direction to 5 mm, as shown in Fig
3, interpolated maps still showed the general feature
anisotropic propagation. However, local details were l
in the reconstruction such as the extrema at the Purk
ventricular junctions on the endocardial surface, wh
interpolation produced the largest mean/maximum er

The effect of changing pacing locations on interpo
tion results was minimal. Both mean and maximum a
solute errors were similar for epicardial, intramural, a
endocardial pacing. The presence of the Purkinje n
work ~PN!, however, increased interpolation error si
nificantly ~p,0.0001 in comparisons between epi vers
epi-pn, mid versus mid-pn, and endo versus endo
using a Wilcoxon rank–sum test!, except for some case
in which subsampling was coarse, e.g., with electro
intervals of 16-16-5 mm, average interpolation error e
ceeded 2 ms for all but one pacing site. With Purkin
networks included in the simulations, the interpolati
error was noticeably higher at the sites of the Purki
ventricular junctions included in the simulation, a
shown in the rightmost column of Fig. 3.

Hardy’s Interpolation. As with linear interpolation,
coarser subsampling increased the error in Hardy’s in
polation. However, the magnitude of interpolation err

FIGURE 3. Example of interpolation and approximation re-
sults for the nodal point intervals of 8-8-5 mm. Same con-
figuration as Fig. 2.
e
-

f

was always lower than—often half—that of linear inte
polation, as illustrated in Table 1. At 8-8-2 mm subsa
pling, for example, mean absolute errors ranged fr
0.53 to 0.94 ms and from 0.29 to 0.33 ms, with a
without the Purkinje network, respectively. Equivale
values for linear interpolation were 0.81–1.05 ms a
0.60–0.65 ms, respectively. The responses of Hard
interpolation results to pacing site and the presence
the Purkinje system were also very similar to those
linear interpolation, but were consistently more accur
except at 2-2-1 mm subsampling when mean abso
errors were very small~around 0.1 ms! in both interpo-
lation methods.

The activation maps using Hardy’s interpolatio
shown in Figs. 2 and 3 illustrate a similar dependence
subsampling density to that found in the linear interp
lation case. A characteristic difference between te
niques was that the distributions from Hardy’s interpo
tion were consistently smoother than those from line
interpolation as reflected in the contour lines of the ma
in Figs. 2 and 3, a feature which was virtually guara
teed because of the higher-order continuity of the int
polants.

One notable feature of Hardy’s interpolation is th
ability to adjust the parameterR in Eq. ~9!. To evaluate
the effect of varyingR, we computed interpolation error
for values ofR ranging fromRest/10 to 103Rest, where
we used Eq.~10! to computeRest. Within this range, rms
error varied less than 5% andRest was generally a good
estimate of the value ofR for which the local minimum
of the rms error occurred.

Least-Square Approximation.Least-square approxima
tion showed the same effect of subsampling resolut
on estimation error as seen in the linear and Hard
methods. At 2 mm subsampling, the least-square te
nique had similar error magnitudes as linear interpo
tion. When node spacing exceeded 4 mm parallel to
epicardium, however, the least-square approach had
largest mean/maximum errors among the three te
niques evaluated.

The activation maps constructed from the least-squ
approximation shown in Figs. 2 and 3 support the sta
tical results. Already at 2 mm resolution, the least-squ
approach started to lose details of some of the earl
activated Purkinje ventricular junctions as shown in t
rightmost column of Fig. 2. When subsampling reso
tion decreased to 8-8-5 mm~Fig. 3!, the least-square
reconstruction gave smooth contour maps with the la
est mean/maximum errors throughout the simulation
main.

Interpolation of Experimental Data

Table 2 contains statistical results of interpolation a
approximation from four different activation sequence
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623Interpolation of Activation Times
pacing from the atria~atdr!, the epicardium~epi!, the
middle of the heart wall~mid!, and the endocardium
~endo!. The three techniques showed comparable ac
racy with mean interpolation error ranging from 2 to
ms. Overall, Hardy’s interpolation had the smallest me
interpolation errors~p50.0002, Kruskal–Wallis test!.
All three techniques yielded considerable maximu
errors—on the order of 10 ms—but the locations
maximum error were not consistent.

Figure 4 shows an example of interpolation resu
when the pacing depth was midway between the epi
dium and endocardium. The three surfaces at depth
1.6, 6.4, and 9.6 mm did not contain any of the me

TABLE 2. Mean/maximum differences „ms … between
measured and interpolated experimental data.

Exp.
ID

Linear Hardy Least square

mean/max mean/max mean/max

atdr 2.31/7.58 2.34/11.69 2.13/7.56
epi 2.70/17.84 2.41/16.39 3.06/18.88
mid 2.47/10.68 2.10/11.10 2.54/13.03
endo 2.89/12.48 2.27/12.98 2.60/13.37

FIGURE 4. Example of interpolation and approximation re-
sults from experimental data. Stimulation was applied to the
middle of the heart wall „midwall …. From left to right are
cross sections at one of the three depths „z51.6, 6.4, and 9.6
mm, from the epicardium …. Interval between adjacent contour
lines is 4 ms.
-

-
f

surement points from which we constructed the interp
lants. In general, the reconstructed activation ma
closely resembled the original measurements. All th
interpolation methods precisely reproduced the earl
activated region as well as the anisotropic features
propagation. Linear interpolation had results very simi
to those from Hardy’s interpolation. The least-square
proach produced smooth contour lines but obscured
irregularity of activation visible in the latest activate
region in the original measurements.

Influence of Geometric Errors

All the results presented here were based on the
sumption that electrode locations were measured p
fectly and did not vary with time. In an experiment
setting with a beating heart, the registration error in el
trode geometry lies in the range of 2–3 mm for dire
digitization and as high as 5 mm if we include hea
shape changes between the time of electrical and g
metric measurements, which typically occur at the end
the experiment. Because of the delay between electr
activation and contractile response, motion due to c
traction during the heart beat does not add to this to
error. To assess the influence of geometric measurem
error on interpolation, we created a test protocol us
the simulated data in which we started with the full sl
of tissue with 10-10-5 mm spacing in thex, y, and z
directions, respectively, and then added 2.5 mm of r
dom noise to thex direction. For the Hardy and leas
square approaches, the interpolation errors increase
about 1 ms in response to this error. The linear meth
however, showed mean/maximum error increases fr
1.28/4.43 to 7.23/99.93 ms, depending on the pac
protocol.

The relatively high sensitivity of interpolation error t
electrode locations in tetrahedral-based methods is e
cially meaningful when one considers that linear inte
polation is the standard approach used by most resea
ers in cardiac mapping. Morever, linear methods
implicitly part of most computer programs for interpola
tion and for visualization of three-dimensional sca
fields.

DISCUSSION

Activation mapping is used extensively in clinical se
tings and experimental investigations to study mec
nisms and to guide therapies of arrhythmias. As d
cussed by Idekeret al.,21 isochronal maps have th
following underlying assumptions:~1! acceptable accu
racy in geometry and activation registrations and~2!
acceptable accuracy in interpolation of any point b
tween measurements. Violations of these assumpt
can lead to false interpretation of propagation. This stu
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624 NI, MACLEOD, and LUX
sought to address the second assumption and exam
interpolation accuracy of a variety of techniques w
activation sequences showing different patterns and
els of spatial complexity.

Interpolation Accuracy

Among the three techniques tested in this study, H
dy’s interpolation had the best overall accuracy for e
mating activation times. This result is consistent w
other survey studies that used a variety of test functi
and different types of physical data.16 In our testing with
the simulation data, the mean interpolation error for
terelectrode spacing of 2 mm was less than 1 ms for
methods. When spacing between subsampled nodes
to 8 mm, mean interpolation error ranged from 0.3
for some cases of Hardy’s interpolation to 1.3 ms
least-square approximation. At the same time, the m
mum errors were substantially higher, often well abo
10 ms for all three methods. At this resolution, none
the methods were capable of capturing the details
activation that were visible on the endocardial surface
simulations that included the Purkinje system. In sim
lations without the Purkinje system, on the other ha
activation times were captured with good accuracy us
Hardy’s and linear interpolation methods. It is notab
that both the worst~13.18 ms! and the best~4.24 ms!
maximum errors for 8 mm spacing arose using Hard
interpolation and that these results both came from
endocardial pacing site but with and without the Purkin
system, respectively. This finding clearly supports
hypothesis that suitability of an interpolation method d
pends strongly on the dataset to which it is applied.

Interpolation results based on the measured data f
experiments revealed qualitatively similar results. Ov
all, accuracy was best for Hardy’s interpolation but t
range of errors was somewhat larger across pacing
than across interpolation techniques. One result that
not parallel the case of simulated activation times w
the dependence of accuracy on activation complexity
general, atrial pacing is thought to create more num
ous, smaller wave fronts and a more complex activat
sequence than ectopic pacing from a ventricular site.
results, however, showed that epicardial pacing resu
in the largest interpolation errors. A more complete t
of this hypothesis would be to use electrograms recor
with an intact conduction system and then apply a se
tive toxin to suppress Purkinje excitability and repeat
measurements.

An important question in cardiac mapping is the min
mum spatial sampling rate required to reconstruct
path of activation from discrete measurements. A rig
ous theoretical definition of such criteria is obstructed
the lack of adequate metric for information content
the activation and of the relationship between such
d

-

e

s

metric and spatial sampling density.22 A more practical
approach is to define the minimum spatial sampling r
to be the one that allows the reconstruction of activat
times at unmeasured locations with errors that are wit
the resolution of the measurement system. This st
showed that at 2 mm resolution, the interpolation er
was less than 1 ms—the theoretical error of 1 ms d
tated by the 1000 Hz sampling rates—for all three me
ods based on the simulated activation times. These
sults support the findings of a previous experimen
study2 involving high-resolution measurements on t
epicardial surface that suggested that a 2 mm samp
rate is adequate to reproduce the path of activation in
heart at least under conditions of normal physiology.

Comparison of Interpolation Methods

We evaluated three types of interpolation and a
proximation techniques that are commonly used in ot
engineering fields such as geological survey,19 computer-
aided geometry design,1 and computer graphics.23 These
techniques are applicable to both two- and thre
dimensional datasets and are thus suitable for car
mapping, an application in which the locations of th
measurements can be irregular and lie on the heart
face as well as within the myocardium.

Tetrahedron-based interpolation is a standard, lo
technique. It is a natural extension of one-dimensio
piecewise polynomial interpolation or two-dimension
triangle-based interpolation into three-dimensional spa
A required component of this scheme is a tetrahed
mesh, which for large numbers of irregularly spac
measurements sites can pose a technical challenge
generally yields nonunique meshes. An additional sou
of ambiguity in generating tetrahedra is the lack of cle
dependence between mesh configuration and interp
tion accuracy. While the assumptions of Delaunay tria
gulation are often considered superior for numerical
timation approaches such as the finite-element meth
we know of no literature that examines this question
the context of interpolation.

It is possible to extend tetrahedral interpolation me
ods to higher-order interpolants; however, basis functio
with degree higher than 1 require not only data values
the tetrahedron vertices but also spatial derivat
information,15 which is usually unknown from the
dataset. Though there are algorithms for derivat
generation,29 these, too, are interpolation or approxim
tion schemes and thus add an unknown source of erro
the computation. As a result, in most applications, it
safest to use linear polynomials as the basis function
practice we followed in this study. Frazieret al. used the
same approach18 to determine the potential field based o
measurements at multiple locations in the right ventric
A direct comparison of results obtained from these t
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625Interpolation of Activation Times
studies is not available due to the difference in interp
lating variables, electrical potentials in their study vers
activation times in ours.

Hardy’s interpolation differs from tetrahedron-bas
linear methods in terms of basis functions, geome
assumptions, and spatial support. It exists in both glo
and local implementations. The global form is based
all measured data points, which in practice often leads
solving large and numerically unstable linear systems
each different dataset. Any local form of Hardy’s inte
polation requires a choice of the number of neighb
used for construction. We found using 60 nearest m
surement points kept the size of the linear system wit
reasonable computational and numerically stable bou
and also suppressed the influence of points that were
away from the observation points.

The least-square approach is fundamentally differ
from the other two interpolation methods because of
relaxation in the requirement that measured values
considered free of error. It is similar, however, in th
the accuracy of least-square approximation depe
highly on the match between the basis functions and
underlying field distribution. The rationale for our choic
of quadratic polynomial basis functions lay in the elli
soidal shape of activation wave fronts in th
myocardium.27 Our preliminary unpublished results a
well as results from others4 showed that quadratics pe
formed much better than linear basis functions in a
proximation but at a substantial cost in computatio
complexity. A complete set of quadratic basis functio
has ten elements@Eq. ~11!#, which leads to a linear
system of coefficients similar to that of a Hilbert matri
Such systems are known to be sensitive to the cont
of the right-hand side of Eq.~14! so that numerical
stability becomes a concern.3 By using theQR decom-
posion and limiting the number of neighbors to 25, w
were able to achieve a consistently reasonable nume
solution.

An important practical consideration in using the
interpolation techniques is their relative speed and co
putational cost. In the tetrahedron-based linear meth
the two most costly components are the triangulat
process~performed just once for each electrode config
ration! and the search for the tetrahedron that conta
the observation point~performed repeatedly, once fo
each selected observation point!. The global versions of
both the Hardy and least-square approaches require s
ing a linear system of a size equal to the total numbe
measurement points. Their local implementations re
in systems of potentially much smaller size that have
be recomputed repeatedly for every observation poin
relatively slow process. To provide at least an appro
mate measure of the total costs involved in each of
three methods described here, we implemented each
ing MATLAB with no special optimization and observe
l

s
r

s

l

,

-

-

an approximate ratio of computation times of 9:9:1 f
the linear, Hardy’s, and least-square methods, resp
tively. These results did not include the tetrahedralizat
time and might be expected to change significantly w
a more specialized code or computer hardware.

Limitations of the Study

The literature on multivariate interpolation is sparse
cardiac mapping but more prevalent in the broad ar
of engineering and numerical mathematics. We ha
chosen only three representative techniques and te
their utility for estimating activation times in the hear
Our choices were based on recent reviews1,15 and re-
ported results based on other sources of data.16 Thus,
while this comparative study is by no means exhausti
it nonetheless reflects a selection based on the sa
features of the intended application. In addition, all thr
techniques evaluated here have somead hocparameters
whose adjustment will affect the accuracy of the resu
We have tested a range of candidate values and ch
those which provided acceptable, stable solutions.
note, however, that the optimal values of, for exampleR
in Hardy’s interpolation or the number of neighbors us
in the local versions of Hardy’s and least-square te
niques, remain open research questions.

Our test data included activation sequences fr
simulations and experimental recordings of normal c
diac tissue. Under pathological conditions, such as
chemia or infarction, abnormal conduction can lead
delay, block, and reentry, which can exhibit more co
plex activation patterns than under healthy conditions6–8

Interpolation errors may change because of the resul
variation in the distribution of activation times; howeve
our results, based on the experimental data paced
different sites, suggest that additional activation co
plexity does not always reduce interpolation accura
Testing of interpolation during abnormal conduction r
quires simulations or recordings from hearts under pat
physiological conditions, and this is an ongoing proje
in our laboratory.
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