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Three-Dimensional Activation Mapping in Ventricular Muscle:
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Abstract—Interpolation plays an important role in analyzing or intramyocardial events such as reentrant pathways re-

visualizing any scalar field because it provides a means to sponsible for cardiac arrhythmié%.Hence, to capture

estimate field values between measured sites. A specific ex- . R oo
ample is the measurement of the electrical activity of the heart, cardiac activation completely, it is necessary to record

either on its surface or within the muscle, a technique known as potent_ials also from within the_ heart tissue. Multielec-
cardiac mapping, which is widely used in research. While trode intramural needles permit such measurements and
three-dimensional measurement of cardiac fields by means ofform the basis of many studies into the fundamental

multielectrode needles is relatively common, the interpolation o+.ve of normal and abnormal activation. In recent
methods used to analyze these measurements have rarely been th di . | tivati . h
studied systematically. The present study addressed this need/€ars, three-dimensional activation mapping has pro-

by applying three trivariate techniques to cardiac mapping and vided detailed information on the roles of anatomical
evaluating their accuracy in estimating activation times at un- structure in normal activatio??, on the spatial nature of
measured locations. The techniques were tetrahedron-based lingxtracellular stimulation of cardiac tisstieand on some

ear interpolation, Hardy's interpolation, and least-square qua- : : . 12,24
dratic approximation. The test conditions included activation electrophysiolagical mechanisms of arrhythm]lﬁé.

times from both high-resolution simulations and measurements ~ Recording electric potentials from multiple sites in the
from canine experiments. All three techniques performed satis- heart is known as cardiac mapping, a discrete measuring
factorily at measurement spacirg2 mm. At the larger inter-  scheme that reveals both temporal and spatial informa-
?'te‘:”o‘ljet_ SPaCingsdtypica' in %artﬂa_c rtnapp(rlgfcrrl),t_l-lf_\rd)l/’s tion. As with any discrete sampling technique, an impor-
interpolation proved superior both in terms of statistical mea- : . L2 .
sureg and quzlitative ree:onstruction of field details. This paper tant question fpr cardiac mgpplng is how to determine
provides extensive comparisons among the methods and de-values at locations from which direct measurements are
scriptions of expected errors for each method at a variety of not availablé?! Interpolation and approximation are the
sampling intervals and conditions. @999 Biomedical Engi- most common approaches for providing values at unmea-

neering Society| S0090-696(9)01105-4 sured sites but studies of these methods in cardiac map-

o _ . . ping are relatively sparse in the literattté'?2and have
Keywords—Activation, Cardiac mapping, Interpolation. all been limited to epicardial measurements. Our own
studies have recently shown that although linear methods
INTRODUCTION of interpolation are very common and simple to imple-

ment, they do not perform as well as other slightly more
elaborate techniquéé. The study of three-dimensional
cardiac mapping is similarly incomplete in that linear

A major goal in cardiac electrophysiology is the com-
plete characterization of the spread of activation through-

out the heart. One can picture activation as a thin wave thod the standard thouah thev h th
front, or set of multiple wave fronts, that moves through methods are the standard even though they have the
same (or worsg shortcomings in three dimensions as

the heart along pathways that are dictated by membrane ) )
kinetics, cell-to-cell coupling, fiber architecture, and the they do in surface repordlngs.

three-dimensional shape of the heart itself. Detecting the 1€ Purpose of this study was to evaluate the accu-
spread of activation on the epicardial and endocardial "aCY Of @ selection of interpolation and approximation
surfaces of the heart is possible from measurements ofMethods g N three-dimensional ~ cardiac ~ activation
electric potential, however, it provides only an incom- r_napp_mgz. We examined these techniques with activa-
plete reflection of the underlying behavior. For example, tion times, which are not directly measurable, but can be

surface-based measurements are often unable to revedferived from measured potential signals. Activation
times indicate the time of passage of the activation wave

Address correspondence to Robert S. MacLeod, Nora Eccles Har- front and Chara_mte_”ze_the sequence of evepts durlng the
fison CVRTI, Building 500, University of Utah, Salt Lake city, sSpread of excitation in the heart. There is a general
UT. Electronic mail: macleod@cvrti.utah.edu consensus that no single method can effectively interpo-
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late all physical quantitiesWhile many of the methods  known to us with which to select or even optimize the
described here have their origins in other areas of sci- choice of interpolation scheme. Instead, selection and
ence and engineering, wherever possible we haveevaluation must rely on empirical criteria, based on
adapted and adjusted them for the specific task of inter- samples of the data to be interpolated.

polating cardiac activation times. Presented here are re- With basis functions and weights determined,
sults from three different families of techniques: T(x,y,z) gives a complete description of the underlying
tetrahedron-based linear interpolation, Hardy's interpola- spatial distribution, which can be used to estimate the
tion, and least-square quadratic approximation. To pro- value at any unsampled observation sig ,{/,,z,) us-
vide quantitative validation, we have applied these meth- ing equation

ods to both high-resolution, simulated activation times
from a slab of heart tissue and to measured values from
acute canine experiments.

M
Tp=T(xp,yp,zp)~;1 Cidi(XpYpiZp) (4
METHODS

Interpolation and Approximation where M depends on the interpolation/approximation

We begin with a general definition of interpolation method.
and approximation problems and then describe the three Interpolation and approximation methods can be fur-
different methods evaluated in detail here. ther differentiated by their scope. In a global method,
Given activation timeg; each associated with a dis- T(X,y,z) depends on all measurement points regardless
crete measurement point in three-dimensional spaceof their distance from the observation pomt(bold no-

(Xi,Yi,z), i=1,...N, the interpolation problem is to tation indicates a vector when lower case and a matrix in
find a functionT(x,y,z) such that upper case throughout the manusdripthereas a local
method uses only measurement points negrbyvhere
T(x,yi,z)=t;, i=1,...N. (1) the definition of “nearby” is part of the specific inter-
polation or approximation technigueln the case of
A closely related problem iapproximationin which we large sets of data or distributions that change rapidly in
relax the requirements such that space, local schemes often lead to better results at lower

computational costs and are more stable numeri¢af§.

T(X,yi,z)=t;, i=1,..N. 2 _ |
Tetrahedron-Based Linear Interpolation.Tetrahedron-

T is usually sought within the finite-dimensional linear Pased interpolation is a local technique. It typically in-

interpolation space, which has the general form of volves the following two stepg1) building a topological
structure given regularly or irregularly scattered sample
M locations, e.g., create a mesh of tetrahedra that connects
T(X,Y,2) = Cidi(XY,2), 3 all measurement points by means of some three-
i=1 dimensional triangulation scheme; ari@) defining a
piecewise polynomial from data values over each ele-
whereg;, i=1,... M, is a set of basis functions and the ment of the mesh, in our case, each tetrahedron. We used
coefficients,c;, are determined by the interpolatip&g. Delaunay triangulation, which maximizes the minimum

(1)] or approximation Eq. (2)] conditions. The assump- angle of each element.
tion associated with interpolation is that the activation It is both natural and computationally advantageous to
values,t;, areexactand thus we force tight agreement represent a local interpolation scheme in a local coordi-
betweent; and T(X;,Y;,z;). Approximation, on the other  nate system, such as the Barycentric system, which rep-
hand, assumes some error in the individual measure-resents any poinp with respect to a tetrahedron with
ments and requires only agreement to a degree deterverticesv;, i=1,...,4, in terms of the coordinatés, i
mined by the application, the measurements, and the=1,...,4, as
specific method.

One consequence of the infinite variety of spatial dis-
tributions that can arise in physical problems is that no
set of basis functions can be in any way optimal for all
purposes. There is no completely satisfactory “general \yiih the requirement of normalization
purpose” interpolation method, especially for three-
dimensional(trivariate distributions' Furthermore, there
are no completely satisfactory closed-form methods b;+by,+bs+b,=1. (6)

p: b1V1+ b2V2+ b3V3+ b4V4, (5)
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To determine the coordinatés, i=1,...,4, for the point sented in this paper for Hardy’s interpolation.
(Xp,Yp:Zp), given the tetrahedronx(,y;,z), i=1,...,4, The accuracy of the Hardy’'s interpolation depends
it is necessary to solve the system also on the paramet&, whose optimal value is problem
dependent and an open research probféive used an
empirical estimate oR provided by Fole} that has the

Xy Xo Xz X4
by Xp following formula:

Yi Y2 Y3 Ya ba| | Yp @

Z, Z, Z3 Z bs| | z

11 12 j i b4 f Rgst: 4[(Xmax_ Xmin)(Ymax_ ymin) (Zmax_ Zmin) ] 2/3-

(10

_ The advantage of such a system is that to perform a, ga5t-Square ApproximationThe least-square approxi-
linear interpolation of the value at a poiptonly requires mation is a commonly used technique in multivariate

an inner product of the Barycentric coordinates vector yaia analysid? It is especially useful with measured data
and the values at the vertices of the tetrahedron which containing noise because it does not require the exact

containsp, matching conditions of Eq1) and yet offers a relatively
simple means of calculating coefficients for a given basis
function set. The least-square approach minimizes the
T(b):b't:; bit; . 8 sum of the square of errors between given data and the
representation from a set of basis functions. In this study,
the basis functions were a set of three-dimensional mo-

Hardy's Interpolation. A family of basis functions, re-  omiais of degree less than 3, which can be expressed as
ferred to as radial functions, have achieved great success, tan-element vector

for providing effective interpolations in various numeri-
cal experiments on scattered two-dimensional dafa.
These functions depend only on Euclidean distance from
the observation point and extend naturally to three di-
mensions. One of the simplest and most effective radial We then found the coefficients, j=1,...,10, bymini-
basis functions used in interpolation is the multiquadric, mizing the error

first developed by Hard}® which has the form

4

D= (x2,y?,2%,Xy,X2,yZ,X,Y,2,1). (12)

N 10 2
: > (E C'¢'_ti) : (12)
T(|c>)=i=2l civlp—pill?+ R, 9) ==

9 9 2 Just as with Hardy’s interpolation, least-square ap-
Wherf p=(x2,y,z), [p=pill"= (x =)+ (y = yi)*+ ( proximation can operate both globally and also as a local
—Zi)%, "’T”dR IS a.par.ameter that must be set based on scheme, a process usually referred to as moving least
the particular application. square. The quantity to minimize then depends on the

The coefficientsc; in Eq. (9) are determined by the , : : .
. . o . values only at neighboring nodes, each weighted by its
interpolation conditiond Eq. (1)]. The resultingNXxX N distance fr)z)m thegobservgtion point. Equatigil ) be-y

linear system is nonsingulaf,but it becomes “numeri- comes
cally singular” as the number of points increases above

100. Even if the system remained nonsingular, the com- N 0 )
putational overhead of solving large systems makes the S

global implementation of Hardy’s interpolation costly to > (Z Cj ¢i_tl) Wi,
use in practice. An alternative is to partition the mea-

surement point domain into subdomains such that inter- ) , ) ,
polants are constructed locally on each subdomain. We WneréNe is the number of neighboring points and,
evaluated different local Hardy's schemes using the |~ 1-:-Ne, aré weighting coefficients. TypicallyNe
simulation datasets which contained over 90,000 points. <N- We tested the effect of varyin, in the range of
Our preliminary tests showed that in the range of 10— 1280, and settled on a value bf.=25, which nor-
100 neighbors, mean interpolation errors were stable Mally gave the best overall accuracy for the data de-
whereas maximum errors were typically lowest when the scribed in th|§ report. ) )

number of neighbors included was about 60. We used 1 N€ resulting system forms a matrix equation

this same number of neighbors to construct a local in-

terpolant T for each observation point in all tests pre- Ac=b, (149

13

=1\i=1
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TABLE 1. Mean/maximum differences  (ms) between measured and interpolated simulated data using the three interpolation and
approximation techniques. Electrode intervals are the distances between adjacent electrodes in the X, y, and z direction. Exp ID
represents different activation sequences, e.g., epi-pn/epi: pacing at the epicardium with/without Purkinje network.

Exp ID
Electrode
interval (mm) Method epi epi-pn mid mid-pn endo endo-pn
2-2-1 Linear 0.06/3.04 0.09/3.04 0.07/3.08 0.11/3.08 0.06/2.99 0.11/3.06
Hardy 0.11/1.35 0.12/1.74* 0.11/1.21 0.11/1.49* 0.11/1.25 0.10/2.29*
Least square 0.05/2.31 0.11/2.92 0.07/2.30 0.17/2.78 0.06/2.36 0.13/2.78
2-2-2 Linear 0.15/3.22 0.20/4.00 0.18/3.70 0.23/3.84 0.15/3.11 0.17/3.06
Hardy 0.08/1.52 0.11/2.00 0.08/1.27 0.14/1.94 0.08/1.47 0.09/2.72
Least square 0.11/3.10 0.19/3.35 0.14/3.01 0.29/3.39 0.11/3.11 0.22/3.15
4-4-2 Linear 0.24/4.70 0.34/5.20 0.28/5.47 0.44/5.47 0.24/4.09 0.40/5.32
Hardy 0.14/2.33 0.21/5.45 0.14/2.43 0.28/5.47 0.14/1.85 0.29/5.44
Least square 0.31/5.13 0.50/6.76 0.43/5.24 0.73/6.68 0.30/5.31 0.56/6.10
8-8-2 Linear 0.60/8.07 0.81/9.91 0.65/7.73 1.05/10.94 0.61/7.2 1.02/10.96
Hardy 0.29/4.58 0.53/9.15 0.33/4.34 0.85/12.05 0.29/4.24 0.94/13.18
Least square 0.70/8.18 1.02/11.03 0.87/8.51 1.33/11.11 0.70/8.54 1.12/10.66
8-8-5 Linear 1.10/6.94 1.30/9.91 1.33/8.90 1.54/10.94 1.15/7.25 1.25/10.96
Hardy 0.53/5.13 0.88/8.98 0.76/4.36 1.22/11.69 0.51/4.54 1.07/13.74
Least square 1.30/12.47 1.62/12.57 1.56/12.14 1.88/13.24 1.29/12.92 1.39/10.74
16-16-5 Linear 2.29/10.13 2.37/13.51* 2.45/15.17 2.43/15.88* 2.32/13.08 1.87/15.88
Hardy 1.23/11.36 1.69/10.99 1.44/8.78 1.94/13.90 1.01/9.95 1.56/14.43
Least square 3.68/21.25 4.09/22.06 4.09/19.67 4.03/19.84 3.85/21.35 2.60/15.32

*p=NS for epi vs epi-pn, mid vs mid-pn, and endo vs endo-pn; all others p<0.0001.

where the elements ofA are a(i ,j)=2E§1W(pk) spatial resolution and control over simulation parameters,
(P (p) and bi=="e w(p)di(p)ti. A fre- they do not perfectly represent the reality of measured
quently ujsed weighting furk{:tliéﬁ is values. Hence, we also applied all methods to measured
activation times from experiments using needle elec-

w(p,)=(1—d./d,.)%+0.125, (15) trodes in the canine ventricle, as described below. In

both cases, the test paradigm was similar. From full-
resolution simulations or measurements, we selected sub-
sets of points, interpolated back to the full-resolution
data, and compared the results.

whered;=||p—pill, andd, = max@y,... dy).
Direct methods for solving Eq14) are susceptible to
roundoff error’® One remedy is to use th@R decom-

position of A to expressA asA=QR, in which Q is an
orthogonal matrix andR is a triangular matrix. The Simulation Data. The source of the simulated activation

equation for findingc then becomes the more numeri- time data was an eikonal model of spread of excitation
cally stable based on an anisotropically conducting parallelepipedal
slab consisting of 6866xX21 nodes for a 6865
Rc=Q'b. (16) X 10 mm region! Stimulations initiated excitation from
points at the epicardiunfepi), midwall (mid), and en-
docardium(endg along a line perpendicular to the epi-
cardial surface. An additional feature of the model was
Just as there is na priori method of selecting the the optional inclusion of an idealized Purkinje conduc-
best interpolation method for a particular situation, there tion network lining the endocardial surface, thus produc-
is no single best means of testing the performance of ing multiple initiation sites of activation for three of the
interpolation methods. Typical approaches include defin- total of six simulation datasets.
ing subjectively appropriate analytical test functions or In testing the three interpolation methods described
simulating a test dataset. We have taken the latter ap-above with each of the six simulation datasets, we
proach by applying all methods to simulated activation changed the subsampling resolution applied to define
time data provided by Colli Franzonet al. Although measurement points from 2 to 16 mm in thkeand y
simulated data offer many advantages with regard to directions and from 1 to 5 mm in the direction (see

Experimental Methods
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z=0.0 mm z=4.5mm

PN

Original

(0.50, 86.88)

(14.24, 89.16)

lem

Linear

FIGURE 1. Multielectrode needle configuration. Left panel
shows positions of multielectrode needles in the left ven-

tricular free wall. LAD refers to left anterior descending coro-

nary artery, and LCx refers to left circumflex coronary artery.

Right panel shows the electrode configuration on the epicar-

dium. Crosses mark electrodes selected as measurement
points to construct interpolants.

0.26/3.70

Hardy

5

0.03/0.23 0.11/1.13

Table 1 for details Interpolants constructed from the / \
subsampled measurement points provided estimates at all

remaining locations in the 90,000 node slab. Interpola- \\ \
tion accuracy was evaluated by comparing interpolated 0.07/0.89 0.23/3.01 0.38/3.39
values with original values from the simulation.

Least Square

FIGURE 2. Example of interpolation and approximation re-

sults with internodal point interval 2-2-2 mm. Stimulation
Experimental Data. The experimental activation times Was applied intramurally with the Purkinje network ~  (mid-pn ).
were measured from an isolated perfused canine Reart, From left to right are cross sections (6565 mm?) at one of

. . three depths (z=0, 4.5, and 10 mm as marked on the top

In the experiment, 56 needles, each with 10 e|ec:tr0des!row) from the epicardial surface. Labels under each row in-
were inserted into the free wall of the left ventricle. The dicate mean/max interpolation error of the slice except for
average distance between needles was-Z.9 mm on labels under the first row of the panel, which show the ear-

. . liest and latest activation times. There is an 8 ms interval
the eplcardlal surface and 5:4.6 mm on the endocar- between adjacent contour lines, which are generated using
dial surface. The distance between electrodes along eachinear interpolation. Dark shading indicates early activation
needle was 1.6 mm. To construct interpolants, we se- and light shading indicates late activation.

lected three electrodeg®Nos. 1, 5, and 10, placed in the

endocardium, midwall, and epicardium, respectiyely .
. comparisons among more than two samples. The null
from 27 of the 56 needles as measurement points. The . . o
hypothesis was rejected at a significance level of 0.05

average distance between the subset of measuremen{a: 0.05)
points was 10.3 5.4 mm. Activation times at electrodes B
not in contact with the myocardium were excluded from
the dataset. See Fig. 1 for needle configurations and RESULTS
selected measurement needles. Interpolation of Simulation Data

We sampled unipolar electrograms at 1000 Hz from ) o
all channels. The activation time for each electrode site  1ableé 1 contains a summary of statistical results of
was the time of occurrence of the minimum time deriva- the three interpolation and approximation techniques on
tive in the relevant electrogram. The test data consistedSiX Simulated activation sequences with progressively
of activation sequences from supraventricular pacing and coarser subsampling. See Figs. 2 and 3 for isochrone
pacing at epicardial, midwall, and endocardial sites in the Maps from examples of the above tests.

left ventricle. ) ) ) )
Tetrahedron-Based Linear InterpolationFor linear in-

terpolation, mean errors were negligikfless than 1 ms,
Statistical Analysis which was the sampling resolution of acquisitidor all
pacing sequences as long as node spacings were less
Interpolation and approximation accuracy were de- than 2 mm; maximum errors ranged from 3 to 4 ms.

scribed by mean and maximum values of the absolute Both mean and maximum errors increased gradually with
differences between original values from simulated or coarser subsampling, reaching 2 and 10 ms, respectively,
measured data and the corresponding values by interpofor node spacing parallel to the epicardium of 16 mm.
lation. We used the Wilcoxon rank—sum test to perform Figure 2 contains an example of a simulated midmyo-
pairwise comparisons and a Kruskal-Wallis test for cardially paced beat with 2 mm spacing and the Purkinje
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was always lower than—often half—that of linear inter-
polation, as illustrated in Table 1. At 8-8-2 mm subsam-
pling, for example, mean absolute errors ranged from
0.53 to 0.94 ms and from 0.29 to 0.33 ms, with and
without the Purkinje network, respectively. Equivalent
(0.50,86.88)  (19.00, 91.93) values for linear interpolation were 0.81-1.05 ms and
0.60-0.65 ms, respectively. The responses of Hardy’s
interpolation results to pacing site and the presence of
the Purkinje system were also very similar to those of
linear interpolation, but were consistently more accurate

Original

Linear

1.05/6.06 except at 2-2-1 mm subsampling when mean absolute
- ﬁ errors were very smallaround 0.1 mksin both interpo-
=R . lation methods.
= The activation maps using Hardy’'s interpolation
shown in Figs. 2 and 3 illustrate a similar dependence on

oy 0'2?3‘{3 subsampling density to that found in the linear interpo-

lation case. A characteristic difference between tech-
nigues was that the distributions from Hardy’s interpola-
tion were consistently smoother than those from linear
interpolation as reflected in the contour lines of the maps

Least Square

1.23/4.94 1.60/13.11 2.46/11.85

in Figs. 2 and 3, a feature which was virtually guaran-
FIGURE 3. Example of interpolation and approximation re- teed because of the higher-order continuity of the inter-
sults for the nodal point intervals of 8-8-5 mm. Same con- lant
figuration as Fig. 2. polants.

One notable feature of Hardy’s interpolation is the
ability to adjust the parametd® in Eq. (9). To evaluate
system included. The interpolated activation maps pre- the effect of varyingR, we computed interpolation errors
serve the rotating elliptical shape of the activation front, for values ofR ranging fromR.{10 to 10X R.g;, Where
as well as the discrete features that arise because of theve used Eq(10) to computeR.g. Within this range, rms
Purkinje system at the subendocardium. When the spac-error varied less than 5% ariR.s was generally a good
ing between nodes in the andy directions increased to  estimate of the value dR for which the local minimum
8 mm and in thez direction to 5 mm, as shown in Fig. of the rms error occurred.
3, interpolated maps still showed the general features of
anisotropic propagation. However, local details were lost Least-Square Approximation.Least-square approxima-
in the reconstruction such as the extrema at the Purkinjetion showed the same effect of subsampling resolution
ventricular junctions on the endocardial surface, where ON estimation error as seen in the linear and Hardy's
interpolation produced the largest mean/maximum error. methods. At 2 mm subsampling, the least-square tech-
The effect of changing pacing locations on interpola- nigue had similar error magnitudes as linear interpola-
tion results was minimal. Both mean and maximum ab- tion. When node spacing exceeded 4 mm parallel to the
solute errors were similar for epicardial, intramural, and epicardium, however, the least-square approach had the
endocardial pacing. The presence of the Purkinje net-largest mean/maximum errors among the three tech-
work (PN), however, increased interpolation error sig- Niques evaluated.
nificantly (p<<0.0001 in comparisons between epi versus  The activation maps constructed from the least-square
epi-pn, mid versus mid-pn, and endo versus endo-pn approximation shown in Figs. 2 and 3 support the statis-
using a Wilcoxon rank—sum tésexcept for some cases tical results. Already at 2 mm resolution, the least-square
in which subsampling was coarse, e.g., with electrode approach started to lose details of some of the earliest
intervals of 16-16-5 mm, average interpolation error ex- activated Purkinje ventricular junctions as shown in the
ceeded 2 ms for all but one pacing site. With Purkinje fightmost column of Fig. 2. When subsampling resolu-
networks included in the simulations, the interpolation tion decreased to 8-8-5 mrtFig. 3, the least-square
error was noticeably higher at the sites of the Purkinje reconstruction gave smooth contour maps with the larg-
ventricular junctions included in the simulation, as est mean/maximum errors throughout the simulation do-

shown in the rightmost column of Fig. 3. main.
Hardy’s Interpolation. As with linear interpolation, Interpolation of Experimental Data

coarser subsampling increased the error in Hardy’s inter-  Table 2 contains statistical results of interpolation and
polation. However, the magnitude of interpolation error approximation from four different activation sequences:
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TABLE 2. Mean/maximum differences  (ms) between surement points from which we constructed the interpo-

measured and interpolated experimental data. lants. In general, the reconstructed activation maps

Linear Hardy Least square closely resembled the original measurements. All three

EXp. interpolation methods precisely reproduced the earliest
ID mean/max mean/max mean/max . . . .

activated region as well as the anisotropic features of

atdr 2.31/7.58 2.34/11.69 2.13/7.56 propagation. Linear interpolation had results very similar

ep! 2.710117.84 2:41/16.39 3.06/18.88 to those from Hardy’s interpolation. The least-square ap-

mid 2.47/10.68 2.10/11.10 2.54/13.03 h produced h i but ob 4 th

endo 2.89/12.48 2 97/12.98 2 60/13 37 proach produced smooth contour lines but obscured the

irregularity of activation visible in the latest activated
region in the original measurements.

pacing from the atrialatdn, the epicardium(epi), the
middle of the heart walllmid), and the endocardium
(endg. The three techniques showed comparable accu- All the results presented here were based on the as-
racy with mean interpolation error ranging from 2 to 3 sumption that electrode locations were measured per-
ms. Overall, Hardy’s interpolation had the smallest mean fectly and did not vary with time. In an experimental
interpolation errors(p=0.0002, Kruskal-Wallis test  setting with a beating heart, the registration error in elec-
All three techniques yielded considerable maximum trode geometry lies in the range of 2—3 mm for direct
errors—on the order of 10 ms—but the locations of digitization and as high as 5 mm if we include heart
maximum error were not consistent. shape changes between the time of electrical and geo-

Figure 4 shows an example of interpolation results metric measurements, which typically occur at the end of
when the pacing depth was midway between the epicar-the experiment. Because of the delay between electrical
dium and endocardium. The three surfaces at depths ofactivation and contractile response, motion due to con-
1.6, 6.4, and 9.6 mm did not contain any of the mea- traction during the heart beat does not add to this total
error. To assess the influence of geometric measurement
error on interpolation, we created a test protocol using
the simulated data in which we started with the full slab
of tissue with 10-10-5 mm spacing in the y, andz
directions, respectively, and then added 2.5 mm of ran-
dom noise to thex direction. For the Hardy and least-
square approaches, the interpolation errors increased by
about 1 ms in response to this error. The linear method,
however, showed mean/maximum error increases from
1.28/4.43 to 7.23/99.93 ms, depending on the pacing
protocol.

The relatively high sensitivity of interpolation error to
electrode locations in tetrahedral-based methods is espe-
cially meaningful when one considers that linear inter-
polation is the standard approach used by most research-
ers in cardiac mapping. Morever, linear methods are
implicitly part of most computer programs for interpola-
tion and for visualization of three-dimensional scalar
fields.

Influence of Geometric Errors

Original

Linear

Hardy

DISCUSSION

Activation mapping is used extensively in clinical set-
tings and experimental investigations to study mecha-
nisms and to guide therapies of arrhythmias. As dis-
cussed by Idekeret al,?! isochronal maps have the
FIGURE 4. Example of interpolation and approximation re- following underlying assumptions1l) acceptable accu-
sults from experimental data. Stimulation was applied to the racy in geometry and activation registrations af}
middle of_the heart wall (midwall ). From left to right are acceptable accuracy in interpolation of any point be-
cross sections at one of the three depths (z=1.6,6.4,and 9.6 . h .

tween measurements. Violations of these assumptions

mm, from the epicardium ). Interval between adjacent contour ; . A .
lines is 4 ms. can lead to false interpretation of propagation. This study

Least Square
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sought to address the second assumption and examinednetric and spatial sampling densfyA more practical
interpolation accuracy of a variety of techniques with approach is to define the minimum spatial sampling rate
activation sequences showing different patterns and lev-to be the one that allows the reconstruction of activation
els of spatial complexity. times at unmeasured locations with errors that are within
the resolution of the measurement system. This study
showed that at 2 mm resolution, the interpolation error
was less than 1 ms—the theoretical error of 1 ms dic-
Among the three techniques tested in this study, Har- tated by the 1000 Hz sampling rates—for all three meth-
dy’s interpolation had the best overall accuracy for esti- ods based on the simulated activation times. These re-
mating activation times. This result is consistent with sults support the findings of a previous experimental
other survey studies that used a variety of test functions study’ involving high-resolution measurements on the
and different types of physical dataln our testing with epicardial surface that suggested that a 2 mm sampling
the simulation data, the mean interpolation error for in- rate is adequate to reproduce the path of activation in the
terelectrode spacing of 2 mm was less than 1 ms for all heart at least under conditions of normal physiology.
methods. When spacing between subsampled nodes rose
to 8 mm, mean interpolation error ranged from 0.3 ms
for some cases of Hardy’s interpolation to 1.3 ms for
least-square approximation. At the same time, the maxi- We evaluated three types of interpolation and ap-
mum errors were substantially higher, often well above proximation techniques that are commonly used in other
10 ms for all three methods. At this resolution, none of engineering fields such as geological surt&gomputer-
the methods were capable of capturing the details of aided geometry desighand computer graphics.These
activation that were visible on the endocardial surface in techniques are applicable to both two- and three-
simulations that included the Purkinje system. In simu- dimensional datasets and are thus suitable for cardiac
lations without the Purkinje system, on the other hand, mapping, an application in which the locations of the
activation times were captured with good accuracy using measurements can be irregular and lie on the heart sur-
Hardy’s and linear interpolation methods. It is notable face as well as within the myocardium.
that both the worst{13.18 m$ and the bes{4.24 ms Tetrahedron-based interpolation is a standard, local
maximum errors for 8 mm spacing arose using Hardy’s technique. It is a natural extension of one-dimensional
interpolation and that these results both came from the piecewise polynomial interpolation or two-dimensional
endocardial pacing site but with and without the Purkinje triangle-based interpolation into three-dimensional space.
system, respectively. This finding clearly supports the A required component of this scheme is a tetrahedral
hypothesis that suitability of an interpolation method de- mesh, which for large numbers of irregularly spaced
pends strongly on the dataset to which it is applied. measurements sites can pose a technical challenge and
Interpolation results based on the measured data fromgenerally yields nonunique meshes. An additional source
experiments revealed qualitatively similar results. Over- of ambiguity in generating tetrahedra is the lack of clear
all, accuracy was best for Hardy's interpolation but the dependence between mesh configuration and interpola-
range of errors was somewhat larger across pacing sitegion accuracy. While the assumptions of Delaunay trian-
than across interpolation techniques. One result that did gulation are often considered superior for numerical es-
not parallel the case of simulated activation times was timation approaches such as the finite-element method,
the dependence of accuracy on activation complexity. In we know of no literature that examines this question in
general, atrial pacing is thought to create more numer- the context of interpolation.
ous, smaller wave fronts and a more complex activation It is possible to extend tetrahedral interpolation meth-
sequence than ectopic pacing from a ventricular site. Our ods to higher-order interpolants; however, basis functions
results, however, showed that epicardial pacing resultedwith degree higher than 1 require not only data values at
in the largest interpolation errors. A more complete test the tetrahedron vertices but also spatial derivative
of this hypothesis would be to use electrograms recordedinformation!® which is usually unknown from the
with an intact conduction system and then apply a selec- dataset. Though there are algorithms for derivative
tive toxin to suppress Purkinje excitability and repeat the generatiorf’ these, too, are interpolation or approxima-
measurements. tion schemes and thus add an unknown source of error to
An important question in cardiac mapping is the mini- the computation. As a result, in most applications, it is
mum spatial sampling rate required to reconstruct the safest to use linear polynomials as the basis function, a
path of activation from discrete measurements. A rigor- practice we followed in this study. Fraziet al. used the
ous theoretical definition of such criteria is obstructed by same approac¢fito determine the potential field based on
the lack of adequate metric for information content of measurements at multiple locations in the right ventricle.
the activation and of the relationship between such a A direct comparison of results obtained from these two

Interpolation Accuracy

Comparison of Interpolation Methods
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studies is not available due to the difference in interpo- an approximate ratio of computation times of 9:9:1 for

lating variables, electrical potentials in their study versus the linear, Hardy's, and least-square methods, respec-

activation times in ours. tively. These results did not include the tetrahedralization
Hardy’s interpolation differs from tetrahedron-based time and might be expected to change significantly with

linear methods in terms of basis functions, geometric a more specialized code or computer hardware.

assumptions, and spatial support. It exists in both global

and local implementations. The global form is based on

all measured data points, which in practice often leads to Limitations of the Study
solving large and numerically unstable linear systems for ] o o _
each different dataset. Any local form of Hardy’s inter- The literature on multivariate interpolation is sparse in

polation requires a choice of the number of neighbors cardiac mapping but more prevalent in the broad arena
used for construction. We found using 60 nearest mea-©f engineering and numerical mathematics. We have

surement points kept the size of the linear system within chosen only three representative techniques and tested
reasonable computational and numerically stable boundstheir utility for estimating activation times in the heart.

and also suppressed the influence of points that were farOUr choices were based on recent revietisand re-
away from the observation points. ported results based on other sources of afahus,

The least-square approach is fundamentally different yvhile this comparative study is by no means exhaustive,

from the other two interpolation methods because of the it nonetheless reflects a selection based on the salient

relaxation in the requirement that measured values arefeatur_es of the intended application. In addition, all three
considered free of error. It is similar, however, in that (€chniques evaluated here have somdehocparameters

the accuracy of least-square approximation dependsWhose adjustment will affect the accuracy of the results.
highly on the match between the basis functions and the W& have tested a range of candidate values and chosen
underlying field distribution. The rationale for our choice those which provided acceptable, stable solutions. We
of quadratic polynomial basis functions lay in the ellip- NOte, however, that the optimal values of, for exampe,
soidal shape of activation wave fronts in the I Hardy'’s interpolation or the number of neighbors used
myocardiun?’” Our preliminary unpublished results as ir! the local yersions of Hardy's anq least-square tech-
well as results from othetshowed that quadratics per- Nidues, remain open research questions.

formed much better than linear basis functions in ap- OUr test data included activation sequences from
proximation but at a substantial cost in computational Simulations and experimental recordings of normal car-
complexity. A complete set of quadratic basis functions diac tissue. Under pathological conditions, such as is-
has ten element§Eq. (11)], which leads to a linear chemia or infarction, abnormal conduction can lead to

system of coefficients similar to that of a Hilbert matrix. delay, block, and reentry, which can exhibit more com-
Such systems are known to be sensitive to the contentsPlex activation patterns than under healthy conditidiis.

of the right-hand side of Eq(14) so that numerical Interpolation errors may change because of the resulting
stability becomes a concefrBy using theQR decom- variation in the distribution of activation times; however,
posion and limiting the number of neighbors to 25, we ©OUr results, based on the experimental data paced at

were able to achieve a consistently reasonable numericaidifferent sites, suggest that additional activation com-
solution. plexity does not always reduce interpolation accuracy.

An important practical consideration in using these Te_sting _of intgrpolation duri.ng abnormal conduction re-
interpolation techniques is their relative speed and com- duires simulations or recordings from hearts under patho-
putational cost. In the tetrahedron-based linear method, Physiological conditions, and this is an ongoing project
the two most costly components are the triangulation N Our laboratory.
process(performed just once for each electrode configu-
ration) and the search for the tetrahedron that contains
the observation poin{performed repeatedly, once for ACKNOWLEDGMENTS
each selected observation pginthe global versions of
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