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1 Introduction

Detection of cardiac activation and reentry is critical
in the diagnosis and treatment of arrhythmia, a heart
disorder which affects some 4 million people in the US.
Present approaches typically map the sequence of ac-
tivation by using multiple catheters, or in particularly
severe cases, by applying electrode arrays directly to
the heart3. Catheter based approaches usually measure
signals from inside the heart chambers and thus detect
only (sub)endocardial excitation and recovery. As a re-
sult, a substantial portion of ventricular tachycardias,
those that have important epicardial components, can-
not be fully characterized.
Recent progress in the fabrication of multielectrode ve-
nous catheters permits simultaneous measurement from
several catheters, each of which can have up to 16 indi-
vidual electrodes, providing direct access to even distal
segments of epicardial cardiac veins. While coverage
of the epicardium is limited to the regions near these
veins, we have shown that it is possible to estimate com-
plete epicardial activation patterns from catheter based
measurements, provided appropriate training data are
available2. In this paper we report on further testing of
this direct estimation method.
Beyond direct measurement and estimation, another
possible approach to estimate epicardial activity is
to solve the associated inverse problem in terms
of epicardial potentials, which requires knowledge
of the torso geometry and a numerical solution to
Laplace’s equation5. The challenges of this problem
are formidable because of its ill-posed nature and the
very high sensitivity of the solution to even small er-
rors in boundary conditions or geometrical and electri-
cal models. As a consequence, despite some notable
recent results, solutions to this problem have not yet
achieved clinical utility. The information available from
catheter measurements made in the cardiac veins could
be useful to improve the accuracy and robustness of
such solutions.
Thus, the overall goal of this research is to develop
approaches that use the sparsely sampled information
from these catheters both directly and as part of inverse
solutions in order to develop more accurate epicardial
mapping techniques without the need for open chest
surgery and direct access to the heart. Here we de-

scribe recent results in catheter lead selection for the
estimation approach and also a novel means of using
catheter signals to improve the accuracy of epicardial
inverse solutions.

2 Methods

Experimental preparation For the estimation
studies, we created a database of 153 epicardial activa-
tion maps as described previously2. Briefly, each map
captures the activation sequence from a single beat of a
dog heart recorded simultaneously from 490 epicardial
sites in six separate experiments. The beats were paced
from different locations during a variety of interventions
that included localized heating and cooling, injection of
procaineamide, coronary infusion of ethanol, and a five-
day old infarction.
In previous experiments we have shown the equivalence
of signals recorded from venous catheters and nearby
epicardial sites2. By selecting a subset of epicardial
sites located close to the coronary veins, we defined 42
candidate sites for consideration as catheter electrodes.
These surrogate catheter sites form the basis of the
analysis of lead selection in the estimation algorithm
described below.

Estimation algorithm In the estimation algorithm,
we reordered the covariance matrix made from all maps
in the activation map database according to on the
Nk “known” electrode sites that we assumed were the
surrogate catheter sites. The covariance matrix then
consisted of two auto-covariance diagonal blocks, Ckk,
of size Nk × Nk and Cuu of size Nu × Nu, where
Nk + Nu = 490 and two off-diagonal cross-covariance
blocks, Cku and Cuk. The best least-squares estimator
is then the matrix T = CT

ku C−1
kk of size Nu × Nk. To

generate an estimated activation map required only a
matrix multiplication of TAm, where Am are the activa-
tion times measured from the surrogate catheter sites.
We evaluated two strategies for selecting electrode sub-
sets for the estimator. The first was selecting approx-
imately equidistantly spaced subsets of the original 42
sites. In the second, we used a lead selection strategy
proposed by Lux et al. that is based on successively
finding the site that contributes the most signal energy



to the estimated maps4. In both cases, we developed
leadsets of 21, 14, 10, and 5 leads.

Training and testing paradigms To evaluate the
performance of the estimator with the regularly spaced
and selected leadsets, we used a “leave-one-out” proto-
col, in which we removed one map from the database,
computed the estimator, then tested it on the left out
map. By repeating this operation for all members of the
database, we could compute summary statistics for the
error metrics correlation coefficient, root-mean-squared
error, and relative error, defined in the usual manner2.
As the goal of this study was to evaluate regularly
spaced and selected leadsets, we compared estimated
maps generated from the same number of leads.

Inverse solution approaches In addition to eval-
uating estimation approaches based on knowledge of
sparsely sampled subsets of epicardial potentials, we
have also developed several approaches to use this infor-
mation to solve an electrocardiographic inverse problem
defined as:

y(i) = A · x(i) + n(i), i = 1, 2, . . . , T (1)

where y(i) is an M × 1 vector of torso potentials at
time instant i, x(i) is the associated N × 1 vector of
epicardial potentials, A is the M × N matrix repre-
senting the forward solution, and n(i) is measurement
noise. In all these approaches, we assume that we have
noisy measurements of the potentials at some subset of
Nk epicardial sites, which we group together so that
x is the concatenation of Nk measured values xm and
Nu = 490− Nk unmeasured values xu.
The simplest approach is to subtract the contribution
of the known epicardial potentials from the torso poten-
tials, and solve the new equation ỹ = y − Am · xm =
Au · xu + n for the unmeasured potentials only. This
reduced problem is still ill-posed and thus we solved it
for xu using zero-order Tikhonov regularization5.
A second approach is based on a Bayesian Maxi-
mum a posteriori (MAP) estimation that maximizes
the posterior distribution of x. To obtain tractable
models we follow precedent 1, 5 and assume that n is
Gaussian, i.i.d., and independent of x, thus y\x ∼
N(Ax, σ2

n IM×M ). Epicardial potentials, x, are mod-
eled as x ∼ N(xo,Σxx). Note that we use Σ for the
covariance matrices to emphasize that these are matri-
ces for potentials while the C’s of the previous part were
for activation times. The goal is to use the measured
(surrogate) catheter measurements to help define the
prior density for x. We describe here two approaches:
a deterministic model, in which xo is a time-varying
mean equal to the time-varying noise-free potentials
and Σxx is the covariance of epicardial measurement
noise; and a stochastic model, which assumes constant
(zero) mean and a known signal covariance1, 6 Thus the
best case for the deterministic approach is to measure
all the epicardial potentials (with noise) while for the

stochastic approach it is to have the covariance of the
signal at all epicardial sites. More realistic approaches
would be to use the measured epicardial potentials to
estimate either the rest of the epicardial signals or their
covariance. One can also use amixed model, which com-
bines a deterministic model for the measured leads and
a stochastic model for the unmeasured leads. In this
method, the cross covariance terms between the mea-
sured potentials and the unmeasured ones are zero and
we only need to define Σuu using the partial epicardial
measurements.

3 Results
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Figure 1: Regularly spaced and selected leadsets. Each
panel contains a polar projection of the 490-lead sock
with the coronary arteries superimposed for reference.
Open circles indicate the optimally selected leads, closed
circles the regularly spaced leads, and the concentric cir-
cles the leads that belong to both sets.

In Table 1 we show the summary statistics for estima-
tions based on both the regularly spaced and selected
leadsets described in Figure 1.
Figure 2 contains a sample of original (upper left hand
map) and estimated activation maps for both regularly
spaced and selected leadsets.
Figure 3 shows the results from inverse solutions com-
puted using a range of methods based on simulated
catheter measurements at 42 out of 490 epicardial leads
after adding white Gaussian noise at 30 dB SNR. We
first computed torso potentials using our forward model
and then solved the inverse problem using the follow-
ing methods: Tikhonov zero-order applied to the origi-
nal problem (Panel B) and the reduced problem (Panel
C); the stochastic approach assuming known covariance
(Panel D); a very simple mixed model in which we as-
sumed unmeasured leads were i.i.d., with power equal
to that of measured ones (Panel E); and a hybrid ap-
proach that first used estimation to generate the un-
known potentials and then the deterministic model to
compute the inverse solution (Panel F).



Table 1: Comparison of estimation accuracy for se-
lected and regularly spaced leadsets of 21, 14, 10, and
5 leads. Upper panel: correlation coefficients; middle
panel: root mean squared error; lower panel: the dif-
ference between the estimated and actual earliest site of
activation.

CC (mean ± std)
Leads 21 14 10 5
Sel. .953±.05 .949±.05 .944±.04 .912±.07
Reg. .947±.06 .943±.05 .938±.05 .885±.10

RMSE msec (mean ± std)
Leads 21 14 10 5
Sel. 6.46±2.2 6.7±2.1 7.2±2.2 9.26±3.0
Reg. 7.01±2.6 7.37±2.6 7.74±2.5 10.96±3.6

LDist mm (mean± std)
Leads 21 14 10 5
Sel. 7.63±5.9 8.24±5.5 8.92±5.8 12.72±7.6
Reg. 7.81±6.4 8.71±6.3 9.81±6.5 13.24±7.8

4 Discussion

The results of the estimation using regularly spaced and
selected leads showed consistently higher accuracy for
the selected leadsets. Figure 2 illustrates one example
in which the selected leads capture the details of the re-
gion of early activation. There were a small number of
cases in which regularly spaced leads performed better
than the selected sets. This occurred in beats stimu-
lated from the right ventricle, a region which received
only sparse coverage in the selected leadsets. Future
research will include evaluation with our new, larger
database that includes more right ventricular beats.
The results of the inverse solutions indicate the value
of adequate a posteriori knowledge from measurements
with the deterministic model based on estimated po-
tentials showing the best results. Such an approach is
quite feasible to carry out in practice and so suggests
good potential for further development. At this point,
we provide these results as a proof of concept of ap-
proaches we will continue to develop and refine.
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Figure 2: Example of estimated activation maps. Each
full column contains estimated activation maps in
frontal view for the indicated number of leads and lead-
set. Lighter shades indicate early activation times and
the gray shading and spacing between contours are iden-
tical across all maps in the figure.
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Figure 3: Original epicardial maps in Panel A and
those computed using a range of inverse solution ap-
proaches. See text for details.


