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Abstract—The goal of the inverse problem of electrocardi
graphy is noninvasive discrimination and characterization
normal/abnormal cardiac electrical activity from measureme
of body surface potentials. Smoothing and attenuation in
torso volume conductor cause the problem to be ill pos
Standard regularized solutions employ ana priori constraint to
achieve reliability and may be biased by the constraint cho
as well as the regularization parameter used to weight it. In
paper, we describe an approach that reformulates this inv
problem as the search for a solution that is a member of
admissible solution set; admissibility is defined in terms of the
available constraints. In principle, this approach can utilize
many constraints as may be available, unlike standard te
niques which do not easily permit the use of multiple co
straints. No regularization parameter is required; instead,
need to choose the nature and size of the constraint sets.
straints described include several spatial constraints, weig
constraints, and temporal constraints. We describe a solu
approach based on iterative convex optimization, and
algorithm—the ellipsoid algorithm—which we have used. A
curacy and feasibility of the method are illustrated with sim
lation results using dipole sources and measured epicardia
tentials. © 1998 Biomedical Engineering Society.
@S0090-6964~98!01002-9#

Keywords—Inverse problem of electrocardiography, Conv
optimization, Multiple constraints, Set theoretic estimatio
Regularization.

INTRODUCTION

The ability to understand and characterize the hea
electrical activity, and to discriminate normal from a
normal activity, is a goal of great interest to physicia
and researchers. The electrocardiogram~ECG! offers a
safe, cheap, noninvasive means of measuring this act
and is the basis of many diagnostic techniques. The s
dard ECG permits only a relatively coarse description
the spatial complexity of cardiac electrical activity—on
result is that interpretation of the standard ECG can
be based on a rigorous biophysical model, but rat
must depend on a heuristic match between wavefo
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and disease state. Enhanced forms of the ECG perm
more complete representation of the heart and can
coupled with visualization, signal processing, and ma
ematical modeling techniques to create powerful too
This manuscript deals with one such enhancement—
inverse problem of electrocardiography—and describe
novel solution method.

Since the standard 3–10 ECG electrodes significa
undersample the distribution of electrical potentials
the torso surface, the ECG provides only a limited vie
of underlying cardiac activity. Additionally, information
about cardiac electrical activity is blurred and attenua
in the torso volume conductor, the medium between
heart and the body surface. Researchers~and some cli-
nicians! have used electrode arrays to achieve den
spatial sampling, along with geometrical models of t
thorax, to establish mathematical relationships w
which one can estimate cardiac electrical activity fro
torso surface potentials. This approach—explicitly so
ing for the underlying cardiac electrical activity of th
heart from body surface electric potentials—is known
the inverse problem of electrocardiography. A successful
inverse solution would allow us to detect, quantify, a
localize cardiac electrical activity from noninvasive tor
measurements. Contributions by many researchers~see,
for a sample, Refs. 17, 27, 31, and 33!, have established
that inverse solutions posed in terms of reconstruct
epicardial potentials~the electrical potential distribution
on the outer surface of the heart! offer the advantages o
a concise mathematical formulation, uniqueness, and
rect links to measurements. To obtain such an inve
solution, we must first solve the associatedforward
problem, in which torso surface potentials are estimat
based on epicardial potentials and a geometric mo
~including electric conductivity! of the thorax.16

The inverse problem is ill posed,17,18,33 meaning that
small perturbations in the measured data~due to noise,
errors in the forward model, discretization effects, et!
can result in unbounded errors in the inverse soluti
The ill posedness is a mathematical reflection of phys
phenomena that include the attenuation and smooth
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279Admissible Solution
effects of the volume conductor. Sharp spatial variatio
in the epicardial potentials are blurred or smoothed in
body surface potentials. Thus, a small amount of noise
the body surface potential will tend to be magnified
epicardial potentials estimated through an inverse pro
dure. Inverse solutions need to be stabilized by the
corporation of additional physiological information; th
best-known approach to this type of ill-posed inver
problem is known asregularization. In regularized solu-
tions, a compromise is sought between a solution t
matches the data but may be unrealistic and unstable
the one hand, and fidelity to a constraint based ona
priori knowledge ~or assumptions! about a realistic,
stable solution, on the other. We wish to estimate e
cardial potential distributions that, when put through t
forward model, generate body surface potentials sim
to those we measure, and yet which also respect ce
reasonable constraints. Typical constraints include
size ~two-norm! of the solution or of its gradient o
Laplacian ~for details and references, see Ref. 33!. An
important issue in regularized inverse solutions is
choice of a weight, called the regularization parame
which controls the tradeoff between the data fit and
constraint. The accuracy of the inverse solution is qu
sensitive to this parameter, and much research has
devoted to developing good methods for determining
propriate values.18,33

The main features of epicardial potential distributio
can often be roughly reconstructed by regularization
proaches. However, due to the complex nature of epi
dial potentials, the imposition of any single constra
often fails to produce globally satisfactory solutions. F
instance, regularization with a two-norm amplitude co
straint may capture areas of large gradients and a
rately constrain regions of large amplitude~such as near
activation wave fronts! but will tend to be noisy where
the signal level is low. On the other hand, derivativ
based constraints will be less noisy but may smear w
fronts.5,6,24

In response to the limited success of these stand
methods, techniques which attempt to incorporate moa
priori information into the solution have recently bee
investigated.25 Spatially local regularization,22 orthogo-
nality constraints,36 combined truncated and weighte
singular value constraints,35 a constraint on the norma
component of current on the epicardial surface,23 simul-
taneous imposition of two distinct spatial constraints5,6

and constraints on individual solution elements based
over-regularized and under-regularized two-no
solutions21 have all been reported. In addition to the
spatial constraints, some researchers have recently
ported results achieved by usingtemporal constraints.
These constraints include on–off constraints in the fo
of activation source models,10 more recently restricted to
the reconstruction of first the breakthrough events a
-

n

n

n

-

-

-

then the full activation sequences,13,14,20 solutions using
power spectrum techniques,7 two-step postfiltering
techniques29 ~equivalent to temporally low-pass filterin
the spatially regularized solution!, joint temporal/spatial
multiple constraint solutions,5,6 and solutions based o
Kalman filtering.12

In our own recent work,5,6 we found encouraging re
sults using two constraints simultaneously. In particul
using two constraints rather than one increased rob
ness to error in the particular values of each regulari
tion parameter and preserved quantitative and qualita
accuracy in ways difficult to achieve with a single co
straint ~e.g., preserving sharp gradients around wa
fronts while suppressing noise in low-amplitude region
or combining temporal and spatial smoothness!. In gen-
eral, this approach increased both the reliability of t
result and our ability to impose physiologically reaso
able prior information on the solution. However, th
problem of selecting a regularization parameter beca
more complicated as this approach requiredtwo regular-
ization parameters. Although we solved this problem
the two-constraint case6 by extending a well-known
single constraint technique,18 it is difficult to see how
one could choose regularization parameters for m
than two regularization constraints, even though ad
tional constraints might result in further improvements
the inverse solution. It is in response to the poten
advantage of employing a flexible combination of d
verse constraints that we have adopted and tested
admissible solutionmethod described in this paper.

This admissible solution method reflects a differe
philosophy from the methods referred to so far, which
feature the selection of one or two constraints and
calculation of a unique minimum of an error measu
~such as the 2-norm!, which is chosen as much for math
ematical convenience as physical reasonableness.
stead, we start with the assumption that we have av
able a number of appropriate constraints on the solut
These constraints can be based on physical/physiolog
principles or empirical results obtained from experime
tal measurements. For instance, we may have reason
bounds on spatial norms or maxima/minima of the so
tion at each point in time, or temporal norms at ea
point in space, or spatial or temporal gradients, or te
poral frequency content, or breakthrough locations a
timing, etc., or combinations of these bounds. Moreov
the forward model along with the measured data is its
a constraint on the solution, since any epicardial solut
projected to the torso by the forward model should
‘‘similar enough’’ to the measured body surface pote
tials ~where ‘‘similar’’ can be defined in a number o
ways!; this is equivalent to the data fit term in the err
that is minimized in regularized solutions.

We can interpret each constraint as defining a se
possible solutions in the solution space. The intersec
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280 AHMAD, BROOKS, and MACLEOD
of these sets of constrained solutions then represen
region of acceptability for a solution—the set of all s
lutions which are feasible oradmissible, that is, consis-
tent with our knowledge about the problem as encod
by the constraints. The philosophy we have adopted i
search for a solution which meets this collection of co
straints. We can find such an admissible solution
applying an iterative algorithm which locates one e
ment within the intersection of the constraint sets.8,9 This
is in clear contrast to the notion of a unique optim
solution in standard regularization approaches, which
cate a point in the solution space by minimizing ana
priori cost function.

The main advantages of this approach are the follo
ing:

~1! There is no need for regularization parameters
required in standard regularization techniques. The re
larization parameters are replaced by direct bounds
the solution, which may be easier to derive, test, a
interpret based on biophysics and/or experimental m
surements. Any bias imposed on the solution is app
directly in terms of the bounds on the constraints rat
than indirectly in terms of regularization parameters.

~2! We can incorporate a large number and wide
riety of mixed constraints in a flexible manner, with n
essential change in the underlying solution method.

~3! As the solution methods are iterative and emp
only one constraint at a time, we can monitor how t
constraints are employed and thus gain understan
both of whether a particular constraint is effective
restricting the solution set, and if so, how it interac
with other constraints.

We note that, in general, a single constraint will n
suffice—one needs two constraints at a minimum to h
to achieve reasonable results. This is the dual to the n
to regularize in standard approaches. Moreover, at l
one of the constraints must involve the data and
forward model. One disadvantage of the admissible
lution approach is that there are no closed-form expr
sions for the solution. Another disadvantage is that th
is no guarantee that the resulting solution is optimal
any sense, although there is no clear rationale that s
dard currently used optimality criteria are, in fact, op
mal in any physiologicalsense. A third disadvantage
that the algorithms that are used to find an admiss
solution are computationally intensive and may ha
slow convergence rates, especially if the size of the f
sible set is small and the dimension of the space defin
the sets is large. However, if we restrict the constra
sets to the class of convex functions, we can employ
of several effective numerical convex optimization me
ods, of which projection onto convex sets~POCS!37 is,
perhaps, the best known. These algorithms have trade
in terms of prior knowledge required, flexibility of prob
lem formulation, convergence speed, and algorithmic
a

-

-

d
t

-

s

computational complexity. For instance, POCS is re
tively simple to understand and implement, but requi
exact projection operators for each constraint, does
converge as quickly as some other algorithms, and
quires a ‘‘stepsize-’’type parameter. We have employ
an algorithm known as the ellipsoid algorithm,4 which
offers a reasonable compromise to the tradeoffs m
tioned above.

There have been a few previous attempts to incor
rate constraints of this type into a regularization scena
for the inverse problem of electrocardiography, most n
tably in Refs. 21 and 27. However, only one or tw
constraints were used and a global objective funct
was minimized in a traditional fashion. Techniques sim
lar to our admissible solution method have been used
image restoration problems, which are formally related
the inverse problem of electrocardiography. For examp
adaptive regularized methods based on POCS have
used to restore images in Refs. 30 and 37.

In the next section, we formulate the admissible s
lution approach as a convex optimization problem, d
scribe one algorithm which we have employed to so
it, and discuss some aspects of implementation. We
scribe our experimental procedures and present supp
ing simulations in the section on results. We discuss
results and conclusions and outline our future work
the last section.

ADMISSIBLE SOLUTION APPROACH

We use a standard discretized formulation of the f
ward equation,

y~k!5A•h~k!1e~k!, k51,2,...,L, ~1!

where y is an M31 vector of torso potentials at tim
instant k, h(k) is the N31 vector of epicardial poten
tials, A is the M3N matrix representing the forward
solution,e is measurement noise of the same dimensi
as the body surface vector, andk and L are a discrete
time index and the number of time samples, respectiv
Thus, we assume that we have a forward model, rep
sented by the matrixA, which expresses the potentials
each body surface node as a linear combination of
potentials at all the nodes of the epicardial surface a
given time instant. This implies, in turn, assumptions
linearity and quasistatic propagation, both of which a
reasonable physical approximations.32 In addition, we as-
sume that we have somea priori bounds, or constraints
on the solution, each of which can be described a
convex set in the solution space. Although the convex
condition is not necessary for the problem to be w
formulated, it makes tractable solutions possible wh
retaining a very large class of potential constraints—
instance, there is no requirement that the constraint fu
tions be differentiable. Figure 1 shows a schematic illu
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281Admissible Solution
tration of the approach. Each shaded shape represe
particular constraint. In the diagram, the ellipse mark
‘‘Weighted Residual Constraint’’ would reflect a boun
on the noise power~more precisely, a weighted two
norm of the residual between the measured torso po
tials and those predicted by a candidate solution toge
with the forward modelA!. The set labeled ‘‘Weighted
two-Norm Constraint’’ shows a bound on a weight
two-norm of the solution, while the ‘‘Weighted One
Norm Constraint’’ limits a weighted one-norm of th
solution. This constraint is nondifferentiable but conve
The intersection of these constraint sets is the region
admissible solutions.

In the rest of this section, we describe how the pro
lem of finding an admissible solution with convex co
straints can be posed as a convex optimization probl
We then describe some examples of convex constra
that might be useful in the electrocardiographic inve
problem. Finally, we describe the ellipsoid algorithm w
have implemented to find admissible solutions.

Admissible Solutions and Convex Optimization

Initially, for simplicity, we will treat the problem at
only one time instant, and in the sequel, will expand o
formulation to include many time instants. The unknow
epicardial potentials at a given time instant are assum
to be an element of an appropriate Hilbert spaceH.
After sampling in space and time, the desired solut
will be a vectorxPRN, whereN is the number of nodes
in the model of the epicardial surface. We use each pi
of a priori information, i.e., each constraint, to restri
the solution to a closed convex set inH ~or equivalently
RN!; for each constraint there is a corresponding fu
tion f(x): RN→R and constraint bounde, so that the
constraint can be written asf(x)2e,0. In addition, we
require that eachf satisfy the convexity condition

FIGURE 1. Three convex sets with their intersection.
a

-
r

f

.
s

f„ax1~12a!y…<af~x!1~12a!f~y!, ;aP@0,1#.
~2!

Thus, with m such constraintsf i , i 51,2,...,m, each
will correspond to a closed convex set„f i(x)2e i…

PH, for i 51,2,...,m. Since the region inRN enclosed
by the intersection of thef i is itself convex, we can
define a new convex functionf as

f5maxi~f i2e i !. ~3!

Thus, the set$x:f(x),0% represents the intersectio
of all the constraints and a pointxPRN such that
f(x)<0 is an admissible solution.

If we assume we have an iterative algorithm availa
which can perform convex optimization, i.e., minimize
convex function, then we might apply it tominimizeone
or more of the constraints. However, this would not
appropriate here as none of the constraints is a traditio
objective to minimize—not even the residual error, sin
forcing it to be too small implies an under-regularize
solution. The appropriate approach here, then, is to
the convex optimization algorithm only until all the con
straints are satisfied, i.e.,f(x)<0, and then stop and
declare the resulting solution to be admissible. T
bounds on the constraints, thee i , play an equivalent role
to regularization parameters. However, unlike regulari
tion parameters, they represent direct constraints on
lutions, and as such can be developed and tested b
on measured data, and generally are subject to di
physiological interpretation.

To considerL time instants simultaneously, in orde
to use temporal constraints or temporal frequen
constraints, one can consider an augmented problem
higher dimensional spaceRNL.6 The vectors in Eq.~1!
become block vectors „for instance,

ȳ 5
def

@yT(1),...,yT(L)#T
…, and the forward matrix be-

comes a block diagonal matrixĀ 5
def

diag(A,A,...,A)
5I L ^ A,where ^ is the Kronecker product. As we wil
see in the next section, constraints can be defined
operate separately on any one time instant or spa
node or globally on allL time instants and/orN nodes.
The obvious costs, to be weighed against the bene
are that

~1! the computational complexity will increase as th
dimensionality of the problem does;

~2! the algorithm will take longer to converge if con
straints on each spatial node or time instant are
cluded, as it will have to find a solution satisfying a
such constraints.

Examples of Convex Constraints

In this section, we describe some examples of
types of convex constraints one might employ to co



we
tan
-

n-
ata

r
a

d
r-
en

f
tion
d
-

lu-
for-

r
the

loy
tro
the

te
tial
si-

de
is

c-

-

tion
ov

ld
on

of

o-
th
of

la-

rm
-
or
of

lu-

all
ns.
ial
h

s.
in

o
o

nts
ms.
r-
ive

ts
n-
rate
ce

by
In
es,
tor

rm

ard
oral

int
s,
ver
ons.
by

282 AHMAD, BROOKS, and MACLEOD
strain inverse solutions. To clarify the discussion,
have classified these examples into four categories; s
dard, weighted~both of which operate at each time in
stant separately!, spatiotemporal, and novel. The co
straint formulations are based on the measured d
y(k), a candidate solutionx(k), and the forward transfe
matrix A. As above, each constraint is specified by
constraintfunctionof the estimate, denoted asf(x), and
a constraintbounde, so that thei th constraint is written
as f i(x)<e i . Determination of each constraint boun
requiresa priori knowledge or an estimate of some pa
ticular aspect of the desired solution, the measurem
noise, or the model error.

Standard Constraints.Here we illustrate four types o
standard constraints: residual constraints, regulariza
constraints~i.e., 2-norms of solutions or of differentiate
or filtered solutions!, Tikhonov-type error measure con
straints, and nondifferentiable constraints:

~1! Residual constraints: One can constrain the so
tion to fit reasonably to the measurements and the
ward model by using the functionf(x)5iAx2yi2

2 and
the constraintf<e, where e is related to the powe
~variance! of the measurement noise and any error in
forward modelA.

~2! Regularization constraints: One can easily emp
most of the constraints used in standard inverse elec
cardiography, as described in the introduction, using
convex functionf(x)5iRxi2

2 and the constraintf<e,
whereR is, for instance, the identity matrix or a discre
spatial differentiator, or the output of a discrete spa
filter, and e is based on previous measurements, phy
ological assumptions, or an initial solution~for instance,
using theL curve18!.

~3! Tikhonov-type error constraints: One can inclu
as a constraint a function similar to the error that
minimized in Tikhonov regularization by using the fun
tion

fl~x!5 I S A
AlRD x2S b

0D I
2

2

,

and the constraintfl<el . We note that the unique
minimizer of fl(x) is the corresponding Tikhonov solu
tion with regularization parameterl and Tikhonov error
el* . Thus, we must use this constraint withel.el* ~for
instance,el5kel* for some reasonablek!. This con-
straint can be used to ensure that the iterative solu
comes close to the minimum error for some Tikhon
solution.

~4! Nondifferentiable constraints: One example wou
be to constrain the maximum amplitude of the soluti
or its spatial derivatives with the functionf(x)
5iRxi` and the constraint boundf<e.

We note that we can combine multiple instances
-

t

-

these constraints, constraining, for example, the tw
norm and Laplacian of the solution, the error in bo
corresponding Tikhonov solutions for several values
l, and the max norm of both the solution and its Lap
cian.

Weighted Constraints.In addition to constraints of the
type illustrated above, we can also use weighted no
constraints, which will effectively be applied with differ
ent strength in different regions of the epicardium. F
example, if we have prior knowledge of locations
large amplitude and small amplitude regions~e.g., from
preliminary over-regularized and under-regularized so
tions as suggested in Ref. 21!, we may want to constrain
amplitudes and smoothness more stringently in sm
amplitude regions and less so in large amplitude regio
If we have prior knowledge of regions of sharp spat
gradients~for instance, from preliminary solutions whic
locate breakthroughs!,14,19,20 we may want to constrain
gradients differently at different epicardial location
Weighting the constraints may reduce bias to the noise
the data@by effectively adjusting to a local signal t
noise ratio~SNR!# and thus help sharpen the solution. T
accomplish this, one can write the spatial constrai
above using weighted norms rather than standard nor
The constraint on the weighting matrix for norm prope
ties to be preserved is that it be symmetric and posit
definite.

Spatiotemporal Constraints.If we use the augmented
model described earlier to include multiple time instan
in the problem formulation, we may wish to define co
straints in the augmented solution space that ope
pointwise in space, pointwise in time, globally in spa
or time, or jointly in space and time.

We can define global spatial constraints simply
extending the single time instant formulations above.
the case of derivative operators and weighting matric
it may be necessary to premultiply the block data vec
ȳ or the block solution vectorx̄ by the appropriate block
diagonal matrix. For instance, to constrain the two-no
of the Laplacian overL time instants, we would define

f2,L~ x̄!5i L̄ x̄i2
2, ~4!

and the constraintf2,L<e2,L , where L̄ is an (NL)
3(NL) block diagonal matrix, diag(L, L , ...,L ) with L
a Laplacian operator matrix as in the section on stand
constraints. Global temporal constraints such as temp
derivative approximators or high-pass filters6 can be de-
fined in a similar fashion except that the block constra
matrix will have both diagonal and off-diagonal block
each a diagonal submatrix. Constraints on points o
both space and time can be obtained by generalizati
We can form pointwise constraints in space and time
premultiplying the solution vectorx̄ either by a block
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283Admissible Solution
diagonal matrix with only one nonzero block—selecti
all locations at a particular time—or by a block diagon
matrix each of whose blocks is nonzero only at the sa
diagonal location—selecting a particular point in spa
over all time instants. By using max norms over colle
tions of such localized constraints, we can also const
the behavior of the worst time instant or spatial mod

Novel Constraints.We give only a few examples of con
straints which would be difficult to employ in conven
tional approaches but would not cause any concep
difficulties here ~although some might cause comput
tional difficulties in practice!. We can, for example, con
sider constraints on spatial norms such as thel1 or l4
norm, or on the standard deviation of the potentials, o
the epicardium. Using the augmented model, we
constrain not only temporal norms over electrogram
similarly to the spatial norms, but also the temporal f
quency behavior of the solution electrograms. For
stance, we can constrain the location of the peak
median frequency, or the size of the bandwidth, or
variation measure such as the standard deviation of p
frequencies. We can also employ entropy measures4 such
as minimum relative entropy to constrain the multicha
nel temporal frequency behavior of the solution.7 We
note that, as described in Ref. 11, we have begun
explore the elucidation of such constraints using reco
ings from isolated canine hearts suspended in a to
shaped electrolytic tank~see the section on results!.

The Ellipsoid Algorithm

In this subsection, we describe the ellipsoid algorith
as we used it. In the description that follows, we will u
~sub!gradients, which define a supporting hyperpla
The main idea here is to use the gradient“x or subgra-
dient gx of the convex functionf at a pointx to define
a hyperplane normal to the gradient or subgradient. T
hyperplane dividesRN into two parts, one of which is
‘‘above’’ the level set off at x. Formally, for convex
functionals of the formF : RN→R that are differen-
tiable and satisfy the convexity condition in Eq.~2!, we
have

f~y!>f~x!1¹xf~x!T~y2x!, ;yPRN. ~5!

In other words, the hyperplane tangent to the graph
f at x never lies below the level set off at x.

If f is convex but not necessarily differentiable, th
gPRN is by definition a subgradient off at x if

f~y!>f~x!1gT~y2x!, ;yPRN. ~6!

Thus the subgradient, like the gradient, dividesRN by
its normal hyperplane into two sets, on one of whi
l

k

-

f>f(x). For example, in the diagram in Fig. 1, a su
gradient of the functionf3 at a corner~where it is not
differentiable! would be any vector pointingaway from
the polygon, whose normal hyperplane, the line norm
to it through the corner point, did not intersect the int
rior. There may be an infinite number of subgradients
nondifferentiable convex functions at a given point wh
there is only one subgradient, the gradient, for differe
tiable ones. More discussion of the properties of conv
optimization tools, along with other preliminaries, can
found in Ref. 15.

In general, anellipsoid is defined to be a set of th
form

$xPRN:~x2c!TB21~x2c!<1%, ~7!

whereB is an N3N symmetric positive definite matrix
that gives the ‘‘size’’ and orientation of the ellipsoid~the
square roots of the eigenvalues ofB are the lengths of
the semiaxis!, andcPRN is its center. Thus the ellipsoid
is parameterized by the matrixB and the vectorc.

The ellipsoid algorithm is initialized by choosing a
ellipsoid that is large enough to contain the entire fe
sible region. The initial ellipsoid, for instance, can b
chosen with centerc50 and withB5aIN , wherea is a
constant. Thus all pointsxPRN satisfying

xTx<a, ~8!

are contained in this initial ellipsoid.
The central idea of the ellipsoid algorithm is to iter

tively eliminate regions inRN found to contain no fea-
sible points. We use the hyperplanes associated w
~sub!gradients to shrink the set that contains the points
interest. This shrinking process can be used to arrive
feasible solution.

Geometrically, we can describe this key idea in t
following way: we treat the center of the ellipsoidc as a
candidate solution and evaluate the convex constr
f~c!. Either the constraint is satisfied, in which casec is
a feasible solution, or it is not satisfied. In the latter ca
if we evaluate the~sub!gradient off at c, the associated
hyperplane described above dividesRN into a set of
points for which the constraint is ‘‘less satisfied’’ than
c and a set of points at which it is ‘‘at least as satisfied
The goal is to find a new ellipsoid that contains all t
points in the original ellipsoid which are on the ‘‘at lea
as satisfied’’ side of the hyperplane. Moreover, we wa
to find such an ellipsoid in a manner that ensures tha
gets smaller. Finding this ellipsoid, in practice, mea
computing its associated matrix and center. Once
new center has been computed, it becomes the new
didate solution and we then repeat the constraint ev
ation and ellipsoid update steps.
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This process is illustrated in Fig. 2. The solid ellip
labeledEi is our original ‘‘ellipsoid,’’ and the ‘‘1’’ sign
labeled Ci marks its center. The shaded circle is t
boundary of the constraint set, the arrows show the
rection of the subgradient of the associated function
Ci , and the normal hyperplane defines the undesira
half-space. The dashed ellipseEi11 is the new, smaller
ellipsoid, and the new candidate solution is its cen
Ci11. This process continues until the center of the
lipsoid enters the constraint set.

More precisely, for a convex functionf with x andy
as two of its elements, withg a ~sub!gradient~g is also
used here for,x for simplicity!, if f(y)<f(x), then

gT~y2x!<0. ~9!

In particular, if a minimizerx* exists, then

gT~x* 2x!<0, ;x. ~10!

By evaluatingg, we can construct a half-space that
guaranteed to contain any minimizer. The new half-sp
can be denoted as

$yPRN:gT~y2x!<0%. ~11!

Now assume we have an initial ellipsoid with matr
B and centerc. If the constraintf is not satisfied atc,
we can then identify a half-space guaranteed to con
the feasible points:

$xPRN:~x2c!TB21~x2c!<1, gT~x2c!<0%.
~12!

FIGURE 2. Illustration of one iteration of the ellipsoid algo-
rithm. The solid ellipse Ei represents the ellipsoid at one
iteration, with center Ci as shown by the ‘‘ 1.’’ The shaded
circle represents a constraint set. The hyperplane is normal
to the gradient at the ellipse center. The dashed ellipse Ei 11
is the new ellipsoid, with center Ci 11 the new candidate so-
lution for the next iteration.
Now we need to find a smaller volume ellipsoi
represented by the matrixB̃ and the vectorc̃,

$xPRN:~x2 c̃!TB̃21~x2 c̃!<1%, ~13!

which covers this half-space. It turns out4 that an
appropriate pair (B̃, c̃) can be computed as

c̃5c2
Bg̃

N11
, ~14!

and

B̃5
N2

N221 S B2
2

N11
Bg̃g̃TBD , ~15!

with

g̃5
g

AgTBg
~16!

being a normalized subgradient.
Thus the basic ellipsoid algorithm can be summariz

as the following.
Step ~1!, initialization:

~1! Set iteration counterk50.
~2! Choose the initial ellipsoid and center, such asB(0)

5aIN and c(0)50.

Step~2!, constraint evaluation: At iterationk, evaluate
f(c(k)) andg(k), any ~sub!gradient off at the centerc(k)

of the kth ellipsoid defined by matrixB(k). With multiple
constraints, this step involves finding thef i that maxi-
mizesf.

Step ~3!, branch: Check for the termination conditio
f,0. If met, then stop; otherwise go to step~4!. Thus,
the process continues until an ellipsoid is found who
center meets all the conditions summarized inf.

Step ~4!, update: Update the new ellipsoid by upda
ing the matrixB(k11) and the centerc(k11) as

g̃5
g~k!

Ag~k!T
B~k!g~k!

, ~17!

c~k11!5c~k!2
B~k!g̃

N11
, ~18!

B~k11!5
N2

N221 S B~k!2
2

N11
B~k!g̃g̃TB~k!D . ~19!
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285Admissible Solution
Step ~5!, loop: Incrementk and go to step~2!.
This sequence of ellipsoids is guaranteed to have

creasing volume, so that the algorithm will converge
long as the intersection of the constraint setsÞB. The
volume of an ellipsoid defined in Eq.~7! depends on the
determinant ofB and on the dimension of the spaceRN.
More precisely, we have

V~E!5Adet B•VN , ~20!

where VN is the volume of the unit ball inRN. Even
though the ellipsoidE(k11) can be larger than the ellip
soid Ek in the sense of maximum semiax
@lmax(B

(k11)).lmax(B
(k)) is possible#, it is shown in

Ref. 15 that the volumes are related as follows:

V~E~k11!!5S N

N11D ~N11!/2S N

N21D ~N21!/2

V~E~k!!.

~21!

The last equation reveals, in addition, that the shri
ing rate of the volume is rather slow and a large num
of iterations may be required for convergence. Howev
since this volume relation only depends on the dimens
N, and the initial ellipsoid contains a minimizing poin
in its interior, the ellipsoid algorithm converges to
feasible point. If there is no feasible point~e.g., the
admissible set is empty!, the algorithm will continue to
iterate indefinitely, alternating between two or more co
straints.

We note that the update of the ellipsoid matrixB in
each iteration equation19 is computationally expensive
and can be avoided by computing the update of
centerc recursively, as shown in Ref. 1. There is a lar
computational savings for smallk but both computa-
tional and memory requirements grow with the iterati
index. Combined recursive/block implementations a
also possible.

RESULTS

In this section, we present a few examples of t
application of the admissible solution approach to
verse electrocardiography. These examples include b
dipole source simulations and simulations based on d
recorded from experiments using canine hearts. The
pose of this section is to show that the approach gi
reasonable results despite the lack of a global objec
function, and to give a few illustrations of how it can b
used to evaluate constraints and assumptions. Spe
cally, we will present

~1! results of a feasibility study showing that the meth
gives reasonable results~first reported in Ref. 2!;
-

-

-

~2! an illustration of how the iterative solution can b
used to reveal efficacy of constraints~first reported
in Ref. 3!; and

~3! an illustration of how the method can be used
study the interaction of modeling assumptions a
constraints on inverse solutions.

Experimental Techniques and Error Evaluation

We include results based on two simulation scenar
which we will denote DS, for ‘‘dipole simulation,’’ and
TS, for ‘‘tank simulation.’’ Model DS had two differen
implementations, denoted DSa and DSb.

In both cases, simulated torso data were compu
and then noise was added at specified signal-to-n
ratios, before inverse computing epicardial potentia
Epicardial potentials, either computed from dipo
sources or measured from the dog hearts, were the
solution against which different inverse solutions we
evaluated. These scenarios, with known epicardial d
and computed torso data, allowed us to explicitly co
pare various inverse solutions.

Dipole Source Simulation, DS.The simulation model
DS employed

~1! a single fixed dipole as the equivalent cardiac sour
~2! a forward solution for a homogeneous~i.e., epicar-

dium and body surface only! geometric model based
on a human subject~the Dalhousie torso24!; and

~3! body surface potentials computed in two differe
ways as described below.

The geometric model used with the dipole source w
based on a single subject and consisted of 352 to
nodes connected to form 700 triangles and 98 epicar
nodes connected to form 192 triangles.24 The cardiac
source was a single fixed current dipole located near
center of the left ventricle. We aligned the dipole wi
the X, Y, andZ axes of the torso geometry to genera
different potential distributions, and also generated lin
combinations of these three orientations. Epicardial a
torso surface potentials were then calculated by two
ferent numerical pathways, producing two distinct imp
mentations of simulation DS:

~1! DSa, dipole computed: both epicardial and torso p
tentials were computed directly from the dipo
source without using the forward model in the com
putation of the torso potentials.

~2! DSb, forward computed: epicardial potentials we
computed from the dipole source. Then, using the
computed epicardial potentials as an equivale
source, torso potentials were calculated using the
ward solution matrixA.

Figure 3 shows isopotential maps for both sets
torso potentials. The potentials produced by these
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286 AHMAD, BROOKS, and MACLEOD
techniques are similar in shape and slightly different
amplitude. We used these two distinct sets of dipo
based torso surface data to study the relationship
tween modeling assumptions and multiple constrain
Since the second of these data sets, DSb, uses the
forward model in inverse solutions as was used to g
erate the data, we refer to DSb as the ‘‘exact mod
case. In contrast, for the scenario DSa, the forw
model used in the inverse solution doesnot match ex-
actly the way the data were generated, so we refer to
as the model error, or model mismatch, case.

Two major limitations of the dipole simulation exper
ments are the difficulty of reproducing realistic epicard
potential distributions~due to the simplicity of the sourc
model! and the lack of a natural way to produce t
realistic time-varying epicardial distributions needed
test temporal constraints.

Torso Tank Preparations, TS.To test our inverse meth
ods with time-varying measured data, we used the t
model, TS, which included

~1! epicardial data recorded from an isolated can
heart preparation in a fiberglass tank molded in
shape of an adolescent human torso;

FIGURE 3. Forward computed and dipole computed torso
potentials, as described in the text. The isopotential maps
were calculated after projecting the potentials onto a two-
dimensional surface. The left „right … side of each map repre-
sents the projection of the anterior „posterior … torso surface.
The contour levels are arranged in logarithmic steps and the
location and magnitude of the maximum and minimum are
shown by a „1… and „2…, respectively. Solid lines show
positive potentials and dashed lines negative potentials.
-

e

~2! a homogeneous forward solution based on the ge
etry of the tank; and

~3! body surface potentials computed from the epicard
data and the forward model.

The perfused, isolated canine heart was suspende
a tank molded in the shape of an adolescent thorax~Fig.
4 contains an illustration of the torso tank and he
surface geometry!. The tank was filled with electrolytic
solution at a resistivity representative of a typical hum
thorax ~500 V cm!. Epicardial potentials were recorde
at a sampling rate of 1000 Hz per channel via 64 el
trodes sewn into a nylon sock placed over the isola
heart.26 Within a 4–7 s recording window, individua
beats were either selected or averaged to obtain a re
sentative beat for that window.

Evaluation of Results. We evaluated our results usin
two error measures that are standard in the literatu
relative rms error ~RE! and correlation coefficients

FIGURE 4. Triangulated surface of isolated canine heart ge-
ometry „top … and of the torso tank in which it was suspended
„bottom …. Thick lines in the heart geometry indicate the lo-
cations of major coronary arteries.
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287Admissible Solution
~CC!,33 together with visual inspection of epicardial tim
signals ~electrograms! and isopotential maps~IPM!. On
each IPM, the location and magnitude of the maximu
and the minimum are indicated by~1! and ~2! signs,
respectively, and the contours are drawn as interpola
equipotential lines over a polar two-dimensional proje
tion of the epicardial surface with the apex at the cen
and the A/V ring around the outside. Solid lines rep
sent positive potentials and dashed lines negative po
tials. The contours are drawn in logarithmic steps ba
on the largest absolute extremum in each map. One
is drawn for each time instant, and where appropria
the maps are then presented as an IPM sequence.

Feasibility Study

In the feasibility study, we used a small number
constraints, assumed we knew the exact value of th
constraints, and then compared the results of the ad
sible solution inverse method with some standard me
ods in a simple test scenario. We used five typical ‘‘sta
dard’’ constraints as described in the section on stand
constraints:

~1! the square of the 2-norm of the residual;
~2! the square of the 2-norm of the Laplacian of t

solution;
~3! the square of the 2-norm of the solution;
~4! the square of the 2-norm of the Tikhonov error usi

an identity matrix as the regularizer; and
~5! the max norm of the solution.

FIGURE 5. Top: An epicardial electrogram. Results are
shown in the bottom figure for the portion of the cycle be-
tween the dotted vertical lines. Dashed vertical lines show
time instants illustrated in the next figure. Bottom: correla-
tion coefficients „CC… for various reconstructions at a SNR of
40 dB. The solid line shows the CC’s for convex optimization
results and the dotted, dashed, and dash-dot lines show the
CC’s for energy, Laplacian, and joint energy/Laplacian regu-
larization, respectively.
-

p

e
-

The constraint values~the e’s in the section on standar
constraints! were calculated based on the measured e
cardial potentials. We note that the true epicardial so
tions were not usedduring the inverse procedure, bu
only to obtain the constraint values before beginnin
This is analogous to comparing standard regularizat
methods using their respective optimal regularization
rameters, as in Ref. 29.

Thus, we used a very limited subset of available co
straints, but with an unrealistically accurate foreknow
edge of the correct value of the constraints. The g
here was simply to establish whether such a proced
which does not pose any overall objective function, c
arrive at solutions that are comparable in accuracy
those using traditional methods. The initial ellipsoid w
taken as B5aIN with a515iyi2

2 and initial center
c050.

We performed numerical experiments using both
pole and tank scenarios, but will illustrate only our r
sults with tank data~TS! and a SNR of 40 dB. The
bottom panel in Fig. 5 shows CC’s as a function of tim
for four different inverse methods over the portion of t
cycle marked by the dotted vertical lines in the upp
panel. The four inverse methods were: admissible so
tion approach~solid line!, two-norm regularization~dot-
ted line!, Laplacian regularization~dashed line!, and joint
two-norm/Laplacian regularization~dash-dot!. To illus-
trate the spatial behavior of the solution, in Fig. 6, w
show isopotential maps of the original measured pot
tials ~on the left! and two inverse reconstructions, usin
two-norm regularization~middle! and the admissible so
lution method~right!, at two time instants during QRS
The RE and CC values are shown in Fig. 6 for ea
reconstruction.

FIGURE 6. This figure displays the inverse computed isopo-
tential maps for two time instants. The time instants are 124
and 140 ms after the stimulus that initiated the heart beat, as
indicated by the dashed vertical lines in the previous figure.
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288 AHMAD, BROOKS, and MACLEOD
Evaluation of Constraint Efficacy

As described in the section on the admissible solut
approach, at each iteration we selected the ‘‘worst’’ co
straint ~i.e., the one that achieved the maximum off! to
control the next iteration. Thus, by monitoring whic
constraint was chosen by the algorithm at each itera
for a particular simulation, we were able to obser
which constraints were active and how they interacted
the ellipsoid shrank. We performed many tests using
approach,1 and here present some illustrations.

Comparing Unweighted and Weighted Norm Constrain
To illustrate this procedure, we present results of t
tests using the dipole model DSb at 30 dB SNR. T
constraints used in the first test were the same as in
feasibility test. In a second simulation, we replaced
standard two-norm and two-norm-of-Laplacian co
straints with locally weightedtwo-norm and two-norm-
of-Laplacian constraints.~This is similar in principle to
the approach reported in Ref. 21.! The spatial weighting
was computed, based on the true solutions, to empha
each constraint in spatial regions where the amplitu
~Laplacian! was small, and deemphasize it in regio
where the amplitude~Laplacian! was large. This was
accomplished by using a diagonal weighting matrixW to
replace a constraint based onf(x)5iRxi2

2 with one
based onf(x)5iWRxi2

2. The diagonal elements ofW
were weight factors calculated at each node as the r
of the two-norm of the amplitude~Laplacian! over the
whole surface to the two-norm of the amplitude~Lapla-
cian! over the neighborhood of the node. We noted t
this is the same as using aweightedtwo-norm where the
weighting matrix is diagonal with the square roots of t
elements ofW as its nonzero elements.

In Fig. 7, we illustrate a typical result: the top figu
shows the correlation coefficient for both methods a
function of the iteration number. The bottom figur
show which constraint the algorithm chose at each ite
tion, coded according to the numbering in the feasibil
study section. The left pair of figures shows results w
standard constraints and the right pair with weigh
constraints.

Efficacy of Temporal Constraints.Here, we present a
sample of our results using tank data~TS! and the aug-
mented forward model with ten time samples (L510)
and global spatial and global temporal constraints~the
latter based on a simple high-pass temporal filter6!. The
temporal constraint used was on the two-norm of
output of this filter, and the spatial constraints were
the two-norm of the residual, amplitude, etc., where
norms are over all time instants and spatial locatio
included in the augmented model. In general, we
served that at relatively high SNR~40 dB!, the temporal
e

e

constraints were used by the algorithm only at the ve
end, just before convergence, while at a somewhat low
SNR ~30 dB!, the temporal constraints were used mu
earlier. In Figs. 8 and 9, we illustrate these results at
dB for an interval of 10 ms~ten time samples! early in
QRS. All constraints used were global over all tim
instants and spatial locations. In addition to the five co
straints used in the previous example, we used a glo
temporal constraint in the form of the two-norm of
simple high-pass filter, as described in the spatiotempo
constraints section.

In Fig. 8, we show examples of time signals from
four epicardial locations. The inclusion of the tempor
constraint tends to improve reconstructed signal sha
and as can be seen in the signal at electrode No. 18, e
when the result is less accurate, it is generally less no
The bottom of Fig. 8 contains comparisons of CC a
RE and shows which constraints were employed as
function of iteration number during the ellipsoid algo
rithm. We note that the coding is the same as in Fig.
except that the temporal constraint has been inserted
No. 2 and the codes of the other constraints incremen
by one. Figure 9 compares an isopotential map seque
from this experiment: the left column shows the origin
data ~shown every 2 ms!, while the middle column
shows the reconstruction with temporal constraints a
the right column without. To make the compariso
clearer, the same isopotential contour spacing has b
used on all maps. Most notable is the increased den
of the isopotential lines in a number of the temporal
constrained maps and the somewhat more accurate sh

FIGURE 7. Correlation coefficients „top … and active con-
straint „bottom … as functions of iteration index for DSb simu-
lations, with the dipole source in the Y direction at 30 dB
SNR using ‘‘exact model’’ data. The left two figures show
results with standard constraints and the right two with
weighted constraints. Constraint coding is described in the
text.
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289Admissible Solution
of the wave front in the later maps in the sequence.

Interaction of Model Assumptions with Constraints

We can also observe how the efficacy of various c
straints may change depending on our model assu
tions by using the model mismatch dipole body surfa
data DSa. In the DSb test described above, the
residual error norm is proportional to the noise stand
deviation. If we use this as the residual constraint bou
then it is a tight and accurate bound. In the DSa sim
lation, however, the true residual error between the no
simulated torso data and the forward-projected epicar

FIGURE 8. Comparison of admissible solutions with and
without a global temporal constraint for a 10 ms interval
early in QRS: The four panels show time signals at four
epicardial locations. The solid lines are the originals and the
dashed „dot-dash … lines reconstructions with „without … tem-
poral constraints. The next pair of panels show correlation
coefficients and relative error over the 10 ms interval with
„solid line … and without „dashed line … the temporal con-
straints. Constraint usage is shown in the bottom panel:
constraint No. 1 is the residual error two-norm and No. 2 is
the temporal constraint.
-

l

solution is larger than in DSb; it includes both geomet
model error and noise. If we use a constraint bou
based on the noise only, then it will be ‘‘too tight’’ an
the algorithm will tend to overfit the data. Some effec
of these different model assumptions are shown in F
10 and 11. Figure 10 shows results with the mismatch
DSa model when the residual error constraint bound
cluded both the noise and the model error and was, th
the ‘‘true’’ residual error. Figure 11 shows the resu
with the same DSa model but when the bound was ba
only on the noise—in other words, the error in the fo
ward model was ignored, and the residual constraint w
too tight. The format for both Figs. 10 and 11 is th
same as in Fig. 7, showing results for standard a
weighted constraints. As can be seen from Fig. 7, in

FIGURE 9. Same scenario as in previous figure, but here,
comparing isopotential maps every 2 ms.
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290 AHMAD, BROOKS, and MACLEOD
accurate bound case the algorithm stopped after a r
tively small number of iterations because the residu
bound was so loose and none of the other constra
were effective in further constraining the solution. B
contrast, applying the overly tight residual constrai
caused more constraints to be employed and the a
rithm continued for over ten times as many iterations

DISCUSSION AND CONCLUSIONS

In this section, we will discuss some of the importa
features of the admissible solution approach presente
this paper, point out some implications of the simulatio
results, and present conclusions and current and fu
research directions.

Discussion of the Method

The admissible solution method proposed in this p
per for the inverse problem of electrocardiography h
certain advantages over traditional regularization a
proaches. It is flexible in the number and type of co
straints that can be incorporated, requiring only that ea
constraint be defined by a convex set in the soluti
space. Nonstandard constraints such as locally weigh
constraints, frequency domain constraints, nondiffere
tiable constraints, etc., can be incorporated without a
particular difficulty. The need for regularization param
eters is replaced by a need for bounds on the constrai
while this involves the use ofa priori information, the
bounds can be related to measurable physiological qu
tities. One can ensure ‘‘almost-Tikhonov’’ performanc

FIGURE 10. Correlation coefficients „top … and active con-
straint „bottom … as functions of iteration index for DSa simu-
lations, with the dipole source in the Y direction at 30 dB
SNR using model mismatch data and accurate „loose … re-
sidual constraint. Note that the number of iterations is dif-
ferent in the two cases shown. Layout as in the previous
figure.
-

-

d

;

-

by incorporating the Tikhonov error as a constraint in t
procedure. In fact, one could incorporate Tikhonov co
straints for more than one regularization function a
more than one value of the regularization parameter
multaneously. Because of the iterative nature of nume
cal solutions to the resulting convex optimization pro
lem, one can monitor which constraints are employed
the algorithm as it iterates in order to gain understand
of the effect~or lack of effect! of a particular constraint
or constraints on the solution. For instance, one can fi
a solution with a given set of constraints and then rep
the solution while leaving out or adding one constraint
a time, in order to closely study the efficacy of a pa
ticular constraint.

As noted in the introduction, disadvantages of t
approach include the lack of an objective function with
unique solution and increased computational load. R
ning our simulations inMATLAB on a midlevel SGI
workstation with no particular attempt to optimize ou
code, the algorithm takes about 6 min to run for ea
time instant. Using the temporal constraint on an interv
of ten time instants as described earlier, it took 24 h
more to run.

One issue that could surface, in principle, is wh
happens if the admissible set was empty, in which ca
the algorithm would tend to run without stopping. In ou
experience, this only happened when there was a cod
or mathematical error, and has been easy to spot as
number of iterations was clearly excessive. Thus,
practice, after a little experience one can put a ceiling
the number of iterations the algorithm is allowed to ru
If this ceiling is reached, it can be taken as a warni
sign that something is wrong. At a minimum, the boun
can be relaxed on the constraints on which the algorit
is stuck and the algorithm restarted.

FIGURE 11. Same as in the previous figure, but with the
residual constraint bound based only on additive noise vari-
ance, and therefore unrealistically tight.
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Discussion of Simulation Results

We do not wish to overemphasize the significance
the simulation results presented here; as we state in
results section, our purpose in this paper is to present
concepts behind the method and illustrate that it gi
reasonable results. However, we offer the following co
jectures based on our present results:

~1! The results of the feasibility study show that th
method produces reasonable inverse solutions using
a small number of constraints.

~2! When we compare results obtained using weigh
constraints to those obtained with standard constrai
two phenomena that occur are as follows:~a! Due to the
type of weighting used, as explained in the section
the evaluation of constraint efficacy, constraints
weighted features of the solution are more likely to
used by the algorithm~see Figs. 7, 10, and 11!. We
presume that this is because weighted constraints, e
cially when derived from the actual correct answer,
the candidate solutions better and are thus more likel
dominate the overall constraint and thereby actively
rect the iteration path.~b! Although correlation coeffi-
cients are usually comparable, the maxima and min
of reconstructed isopotential maps are generally close
both amplitude and location to the correct values, i
less over-regularized, with weighted than with u
weighted constraints.

~3! When there is a mismatch between the forwa
and inverse models, there seems to be a complic
interaction between the constraints used, the values
sen for the constraint bounds~related to the degree ofa
priori knowledge about the error!, and the resulting in-
verse solutions. For instance, in Fig. 10, where the
sidual constraint is quite loose~since it takes into ac-
count the known model error! the advantage of using
weighted constraints over standard ones is consider
~isopotential maps bear this out!.

~4! When constraints are too tight~as for example in
Fig. 11!, results are reasonably accurate as long
enough constraints are used~this was borne out by othe
simulations, not reproduced here, in which constrai
were added or removed one by one1!.

Conclusions and Future Work

We are encouraged by the preliminary results p
sented here to continue to develop several aspects of
method:

~1! One major area needing further study is how t
method behaves when the constraints used are base
lessa priori knowledge than in this study. We have do
some preliminary testing indicating that, at least for
accuracy in the bounds of less than one order of ma
tude, the deterioration in accuracy and reliability of t
reconstructions is gradual and ameliorated by the inc
e

y

,

-

d
-

e

s

n

sion of more constraints. However, this behavior is
obvious importance and will be the subject of a separ
study.

~2! As mentioned previously, we have begun the p
cess of studying recorded epicardial data to develo
library of realistically derived constraints. We will the
apply these constraints to inverse solutions using
approach presented here.

~3! We are currently working on a more computatio
ally efficient, parallel implementation of convex optim
zation algorithms, which will allow us to incorporate
longer time interval into the augmented model, and th
permit the use of promising frequency-domain co
straints.

~4! We are exploring analytical methods to measu
changes in the ‘‘size’’ of the intersection of the co
straint sets when different combinations of constrai
are used, by studying the problem in a more tracta
geometric setting.

~5! We are exploring the use of more efficient op
mization algorithms.28,34

~6! We feel that the issue of interaction betwee
model error and inverse solutions is a very important o
for any practical application of inverse electrocardi
graphy. We tried to address some of the implications
the problem of unmodeled error in the forward soluti
in a simplified way in some of the dipole simulation
described in this paper. We hope to be able to use to
tank experimental results to study the effects of su
modeling error in a more realistic setting in the ne
future.
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