
ARTICLE IN PRESS

Computers in Biology and Medicine ( ) –
www.intl.elsevierhealth.com/journals/cobm

Generalized training subset selection for statistical estimation of epicardial
activation maps from intravenous catheter measurements

Bülent Yılmaz∗, Robert S. MacLeod
Biomedical Engineering Department, Başkent University, Ankara 06530, Turkey
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Abstract

Catheter-based electrophysiological studies of the epicardium are limited to regions near the coronary vessels or require transthoracic access.
We have developed a statistical approach by which to estimate high-resolution maps of epicardial activation from very low-resolution multi-
electrode venous catheter measurements. This technique uses a linear estimation model that derives a relationship between venous catheter
measurements and unmeasured epicardial sites from a set of previously recorded, high-resolution epicardial activation-time maps used as a
training data set based on the spatial covariance of the measurement sites. We performed 14 dog experiments with various interventions
to create an epicardial activation-time map database. This database included a total of 592 epicardial activation maps which were recorded
using a sock array placed on the ventricles of dog hearts. We present five approaches, which examined sequential addition and removal of
maps to select a generalized training set for the estimation technique. The selection consisted of choosing a subset of epicardial ectopic
activation-time maps from the database of beats which resulted in estimation accuracy levels better than or at least similar to using all the
maps in database. Our aim was to minimize the redundancy in the database and to be able to guide the eventual procedures required to
obtain training data from open-chest surgery patients. The results from this study illustrated this redundancy and suggested that by including
an optimal subset (around 100 maps) of the full database the estimation technique was able to perform as well as and even in some
cases better than including all the maps in the database. The results also suggest that such an approach is feasible for providing accurate
reconstruction of complete epicardial activation-time maps in a clinical setting and with fewer maps we can obtain similar reconstruction
accuracy levels.
! 2006 Elsevier Ltd. All rights reserved.

Keywords: Instance selection; Training set selection; Statistical estimation; Epicardial activation-time maps; Catheter mapping

1. Introduction

Heart rhythm disturbances, or “arrhythmias,” affect over four
million Americans and are the cause of an estimated 500,000
deaths in the U.S. each year [1]. Therefore, the study and treat-
ment of cardiac arrhythmias have major implications for public
health.

Localization of the source of arrhythmias ranges from sim-
ple noninvasive body-surface electrograms (ECGs) to highly
invasive open-chest epicardial and transmural electrical mea-
surements. Cardiac mapping is the general term for collec-
tion of these methods. Cardiac mapping techniques that are
limited to the endocardium are unsuccessful when arrhythmic
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substrates are located deep in the subendocardium or in the
subepicardium, which is the case in 15% of all ventricular ar-
rhythmias [2]. Epicardial mapping using standard [3,4] special-
ized CARTO catheters [5] have been investigated and found
to be highly efficient in this subgroup of patients. The disad-
vantage of both systems is that they require lengthy sequential
mapping procedures and stable arrhythmias. In addition, the
risk of hemopericardium has been reported in around 8% of
the cases [6].

Another mapping approach targeting the epicardium uses
the multielectrode catheters placed in the coronary veins [7,8].
These catheters (Cardima Inc., Fremont, CA, USA) have 4-to-
20 electrodes on each and are small enough (outer diameter
is around 0.8 mm) to fit within the coronary veins. Their
design permits insertion of multiple catheters using one guide-
wire; therefore, simultaneous mapping of different regions of
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the heart is possible. However, transvenous signals from mul-
tielectrode catheters are limited to nearby regions in approxi-
mately 2 mm vicinity, missing most of the epicardium.

To overcome this limitation, we developed a statistical esti-
mation technique to reconstruct the activation pattern over the
entire epicardium using highly sparse venous catheter electrode
recordings. The technique was a linear least-squares estimator
based on a set of previously recorded, high-resolution epicar-
dial activation-time maps used as a training data set. The spatial
covariance computed from the training set derives a relation-
ship between the venous catheter measurements and unmea-
sured epicardial sites; therefore the training set becomes a key
component in this approach.

We previously showed that signal morphology and activation
time values from venous catheters recordings were highly cor-
related with those from nearby epicardial sites [9]. We selected
a subset of electrodes that lay near the coronary veins from a
high-resolution epicardial electrode array and treated them as
surrogates for true catheter measurements. Flexibility in sur-
rogate electrode number and placement was thereby possible
while still creating realistic conditions for potential clinical ap-
plications of the technique.

In the preliminary step of our research [10] with fewer maps
in the database, we found that selection of the training data set
had a bearing on the accuracy of the resulting estimation and
set out to examine this behavior in more detail. We wished to
address systematically the relationship between training data
set selection and estimation accuracy. This topic has challenged
investigators for many years in a large number of application
areas, for example, pattern recognition [11–14], pattern classi-
fication [15,16], medical image segmentation [17], and remote
sensing [18–20]. We followed two paths in the training data set
selection problem; (1) “case-specific training data set selection”
methods, which examined the optimal content of a training set
for each map to be reconstructed individually, and (2) “gener-
alized training data set selection” methods, which consisted of
choosing a subset of epicardial activation maps from a database
that could be used in all possible test cases. We reported the re-
sults from the first approach in Ref. [21]. In this particular study,
we concentrated on the second approach in training data set
selection for statistical estimation of epicardial activation maps
using sparse measurements from the intravenous catheters. The
ultimate goal of this study was to determine the best number
and location of pacing sites from which we should obtain the
epicardial activation-time training maps (as a generalized train-
ing data set) so as to minimize the data acquisitions required.
Our aim was to minimize the redundancy in the database and
to be able to guide the eventual procedures required to obtain
training data from open-chest surgery patients.

The general goal of training data set selection is to determine
the relevant data to employ in a prediction algorithm (in our
case statistical estimation) in the situation in which there is
more data than necessary. The assumption is that in most cases
all data are not equally useful in the training phase of a learning
algorithm. Starting from a data set consisting of all the data,
training set selection algorithm finds a suitable subset to be used
in the learning algorithm. In the context of machine learning,

this concept is referred to as data reduction. The main problem
of data reduction or scaling down data, in machine learning
is how to select the relevant data for a particular problem.
Data reduction can be achieved in two main ways: by selecting
features or by selecting patterns. In this study, our focus will
be the selection of patterns (a subset of the full data set) in data
reduction.

Subset generation (or selection) is a search procedure that
produces candidate subsets for evaluation based on a certain
search strategy. Different search strategies have been developed
until now: complete, sequential, and random search. The ones
we were interested in were the sequential and random search
algorithms. The sequential search can be classified in three
categories: sequential forward selection, sequential backward
elimination, and bidirectional selection. These approaches add
or remove features or patterns one at a time. Another alterna-
tive includes the addition (or removal) of certain number of
patterns in one step. Algorithms with sequential search are fast
and simple to implement. On the other hand, random search
algorithms include the generation of the next subset in a com-
pletely random manner. This approach uses randomness to es-
cape local optima in the search space. The detailed descriptions
of these methods can be found in Refs. [14,22]. Especially, the
methods on ordered removal and addition and random search
inspired the approaches we developed in this research.

In this study, our specific hypothesis was that there was a re-
dundancy in the full training data set and the number of maps
necessary for successful estimation could be reduced. For this
purpose, we examined the best number of activation maps to
be included in a general purpose training set. Specifically, we
present five approaches, which examined sequential addition
and removal of maps to select a generalized training set for
the estimation technique. The selection consisted of choosing a
subset of epicardial ectopic activation-time maps from a large
database of beats which resulted in estimation accuracy levels
better than or at least similar to using all the maps in database.
We tested our approaches using a separate test set, thus deter-
mined the number of beats to be included as a generalized train-
ing set. The results of these tests showed that including only
one third of the activation maps in our database would result in
similar or even in some cases better estimation accuracy when
compared to using all the maps in the database and, moreover,
suggest that such an approach is feasible for providing accurate
reconstruction of complete epicardial activation-time maps in
a clinical setting.

2. Methods

In this study, we performed 14 dog experiments with various
interventions, which were approved by our institution’s animal
care and use committee, to create an epicardial activation-time
map database. This database included a total of 592 epicardial
activation maps. In all the experiments, we used a 490-electrode
sock array (average inter-electrode distance was 4.3 mm) to
record epicardial electrograms from dog hearts. We fabricated
the sock from a piece of nylon stocking material mounted on
a plaster mold of a dog heart. The locations of the coronary
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Fig. 1. A diagram representing the 490-electrode epicardial sock. The 490
electrodes are located in the nodes of the mesh; the 42 leads used as a
surrogate catheter subset are indicated by larger dots. The top row contains
the anterior and posterior view of the sock including coronary vessels and the
lower row shows the sets of nodes on the sock corresponding to the 42-lead
subset. The vessels we used include great cardiac vein (GCV), the coronary
sinus (CS), the left ventricular posterior vein (LVP), and the middle cardiac
vein (MCV).

vessels, from which we defined the 42-lead surrogate venous
catheter subset, were also indicated on the mold, as shown in
Fig. 1. The maps in our database were separated into two sets;
training and test data sets. The training data set was obtained
by electrically stimulating (pacing) a total of 470 different ven-
tricular sites (maps with 239 right ventricular (RV) and 231
left ventricular (LV) pacing sites) in 12 dogs. Selecting a single
map from each pacing site removed any bias that might come
from over-representation of any activation pattern in the esti-
mation process. The purpose of using single site stimulation in
both of the training and test sets was to simulate the early acti-
vation that occurs from exit sites in reentry and focal activation
that occurs in ectopic tachycardias. Ninety percent of the maps
came from healthy hearts. However, in some experiments we
also applied interventions that included localized heating and
cooling, infusion of ethanol into a coronary artery, and a five-
day-old infarction. The test set included data from two exper-
iments (53 maps with RV and 69 with LV pacing sites): (1)
75 healthy, single pacing site maps from two different experi-
ments, (2) 47 single pacing site maps with an ethanol injected
heart.

The custom-built measurement system for the study was ca-
pable of sampling and saving continuously to magnetic disk
up to 1024 channels with 1 kHz sampling rate and 12-bit res-
olution. Processing of the resulting recordings consisted of

selecting one representative and relatively high-quality beat
from each 3-s recording. Determination of activation times was
by means of finding the time of the minimum slope during the
QRS complex of each of the electrograms. When the signal
quality was low due to poor contact or broken leads, we applied
wave-equation-based interpolation [23] to compute the poten-
tial values at the locations where measured data were not avail-
able. We then manually checked each resulting activation map
for anomalous features or obvious errors using our custom-built
visualization software map3d [24].

2.1. Linear estimation algorithm

Details of the estimation algorithm have been reported else-
where [25]. Briefly, we first defined a training database consist-
ing of up to 470 activation-time maps and selected the surrogate
catheter leadset (42 leads) as a subset of the 490-lead sock. We
assumed that those 42 leads contained “known” values (surro-
gates for the venous catheter leads) and the remaining 448 leads
(for which we wished to estimate values) contained “unknown”
activation values. We reordered the training set in such a way
that the activation times for a given beat were treated as ele-
ments of a column vector, and then the various beats stacked
side-by-side to form a matrix, AT, such that the known values
comprised the first 42 rows of the matrix. We then calculated
the covariance matrix, K, by the equation,

K = (AT − AT)(AT − AT)T

N
, (1)

where N is the number of maps in the training set.
The covariance matrix is central to the estimation approach

we used. Hence, it is important to appreciate its contents and
meaning. The covariance of two datasets (data from measure-
ment site i and j) can be defined as their tendency to vary to-
gether. The covariance value will be larger than 0 if data from
i and j tend to increase together, below 0 if data from i tends
to decrease as the data from j increase, and 0 if they are un-
correlated (independent if Gaussianity applies). The covariance
matrix consists of the variances of the variables along the main
diagonal and the covariances between each pair of variables in
the other matrix positions. The covariance matrix contains the
covariance between each of the columns of a data matrix. That
is, row i and column j of the covariance matrix represent the
covariance between row (or column) i and row (or column) j of
the original matrix. The diagonal elements are the variances of
the rows (or columns) and the covariance matrix is symmetric.

We then formed an estimation matrix, E, to be used to esti-
mate the activation-times at the unmeasured sites as,

E = KT
ukK−1

kk , (2)

where Kkk and Kuk are submatrices of K representing the
auto-covariance of the known leads and the cross-covariance of
known and unknown leads, respectively. E is a matrix of basis
vectors unique to the training set such that left multiplication
by E of any measurement vector of the 42 leads (with some
manipulation to take care of the means, see Eq. (2), yields an
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estimate of the activation values at all remaining sites and thus
a complete, high-resolution map.

ATi
U = E × (ATi

K − ATK) + ATU, (3)

where ATi
U and ATi

K are the measured and estimated por-
tions, respectively, ith map. ATK and ATU are the rows of the
first column of AT that correspond to the known and unknown
leads, respectively. In the computation of the inverse of Kkk,
we used the truncated singular-value decomposition technique
[26] when the condition number (ratio between the largest and
smallest singular value) of the Kkk matrix was greater than
100,000. The number of singular values used in the truncation
was set equal to the number of largest singular values whose
summation comprised 99.1% of the cumulative sum of all of
them.

2.2. Testing paradigms and error metrics

To evaluate the performance of the estimator, we used a
“separate-test-set” protocol (STest), in which training data did
not include any maps from the hearts that were used to ob-
tain test data. This protocol represents the anticipated clinical
application of the estimation method most closely. Comparing
the test map to the associated estimate for each of the maps in
the database provided a means of computing overall statistics
that included beats from a range of pacing sites. The Euclidean
distance between the actual and the estimated site of earliest
activation, LDist, served as an index for error in each map es-
timation. The LDist is thereby a specific and clinically relevant
measure based on the anticipated use of such a procedure.

2.3. Generalized training data set selection

To find a generalized training data set, we investigated
five different selection methods, which were adopted from
the data reduction literature in machine learning. The first
method, which we referred to as “single-map-addition,” con-
sisted of adding one map at a time to an initial training set
with 10 maps whose pacing sites were evenly distributed over
the epicardium. The addition metric was the mean LDist and
the selection algorithm had four steps: (1) add one map from
the full database (one out of remaining 460 maps in the first
iteration); (2) apply estimation using the maps included in the
current training set (11 maps in the first iteration) on the sep-
arate test set (122 maps used in STest testing paradigm); (3)
compute mean LDist over the test maps; and (4) repeat steps
1–3 and determine the map whose addition resulted in the
best performance (minimum mean LDist). We performed the
addition until the training set contained all the maps in the full
database.

The second training set selection method, which we referred
to as “random-ten-maps-addition,” used a similar addition ap-
proach with a slight modification. In this method we added
maps in groups of 10 which were selected randomly from the
full database. The steps in this algorithm included (1) gen-
eration of 30 sets of 10 unique maps for each addition, (2)

selection of the maps whose addition gave the best performance
in terms of earliest activation site determination (mean LDist),
and (3) repetition of the first steps for the remaining maps in
the full database. The goal of adding batches of maps was to
increase the speed of selection. We experimented with different
number of sets and number of maps in each set and found 30
sets and 10 maps in each set to perform the best.

The third method, which we referred to as “single-map-
removal,” consisted of removing one map at a time from the
470-map training set and training the estimation matrix with
the remaining maps (469 in the first iteration). We then de-
termined the map whose removal yielded the minimum mean
LDist and removed it from the data set from which additional
selection occurred. The next iteration applied the same concept
with the remaining maps and determined the map that would
be removed. The removal process continued until the number
of maps in the training data set was 10.

The fourth method, which we referred to as “random-ten-
maps-removal,” removed 10 random maps from the database
at each iteration instead of removing one map at a time. In
the removal of 10 random maps we tried 30 different sets and
determined the 10-map set whose removal resulted in the best
mean LDist value and removed it; the remaining 460 maps
were used in the second iteration, in which we selected 30 new
random sets and determined the set to be removed, and so on.
The test set was always the same for evaluating the training
data set.

The fifth method, on the other hand, which we referred to as
“spatial covariance-based removal,” was based on the training
data set itself and the spatial covariance of the measurement
sites using the training set. In this approach, we first obtained
the spatial covariance using all the maps in the training database
and then removed each map from this set one-by-one and com-
puted the spatial covariance of the one-map-removed set. We
compared the rows of the all-maps covariance matrix and each
covariance matrix from the one-map-removed set (490-by-490
matrices) using correlation coefficient. We could determine the
least contributing map to the spatial covariance by finding the
largest average correlated set and thus the removed map. In the
next iteration we removed one map from the remaining 469
maps, computed the spatial covariance matrix and performed
the correlation comparison to determine the least contribut-
ing map. This algorithm stopped when the number of maps
was 10.

Examining the plots of mean LDist vs. number of maps gave
us the number of maps to be included in the generalized train-
ing set, which would yield an estimation accuracy level close
to or better than that was obtained using all the maps in the full
database. We also present estimation results and spatial covari-
ance maps to compare different training set contents obtained
with different approaches.

3. Results

The correlation between those maps in the training database
(470 maps) that had nearby pacing sites was quite high. We
computed the correlation coefficients (“CC”) by comparing
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Fig. 2. Generalized training data set selection using the single-map-addition
method. Axes are the mean LDist vs. the number of maps used in the training.

Fig. 3. Generalized training data set selection using the random-ten-maps-
addition method for four different trials.

each map with the maps whose pacing sites were the closest
to pacing site of that map and determined the mean of CC for
each map. The maximum of mean CCs was 0.99, minimum was
0.64, and mean was 0.91. In addition, we found that 97% of the
maps had a CC that was greater than 0.80. When we compared
the maps from different experiments but paced from the same
site (totally 83 comparisons), mean CC was 0.88 (max 0.98 min
0.65) which showed the high correlation of ectopic foci maps
even when they came from different hearts. These results indi-
cated the redundancy in this database and motivated the need
for determining the set of maps in the training data that mini-
mized redundancy yet still maintained the best performance.

Fig. 2 shows the mean LDist values with respect to the num-
ber of added maps using the single-map-addition method. With
only 150 maps we could obtain an LDist value (10.8 mm) sim-
ilar to that when using all the maps in the database. After the

Fig. 4. Generalized training data set selection using the single-map-removal
method for four different trials.

Fig. 5. Generalized training data set selection using the random-ten-maps-
removal method for four different trials.

further addition of approximately 100 maps, the mean LDist
did not change significantly and oscillated between 10.5 and
12 mm. This general selection method was based on including
all possible combinations of maps in the training set one-by-
one and evaluating them on the separate test set, therefore, it
was time-consuming (approximately 70 h of computation on
SGI workstations with two 300 MHz processors).

Fig. 3 shows the relationship between mean LDist values and
the number of maps added using the random-ten-maps-addition
method. The figure includes the results from four different trials
of random batch (10 maps at a time) selections, which were
not very different from each other. They showed a parabola-
shape relationship, i.e., for small and very large number of maps
mean LDist values were high while medium-size training sets
(from 130 to 370 maps) performed better and determined the
earliest activation sites in a vicinity of approximately 9 mm.
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Fig. 6. Sets of spatial covariance patterns from two leads (shown with stars; one on the left ventricle and one on the right ventricle) for different number of
maps selected using the spatial covariance-based removal method. The numbers of maps selected were 470, 200, 100, and 50 from left to right, respectively.
The same scaling was used for each pattern. The covariance values are high on the regions that are close to the star, becomes zero at distant sites, and go to
negative values on the opposite side of the heart.

Fig. 7. Examples of estimation results using 100 maps selected with the single-map-removal, single-map-addition, and spatial covariance-based removal methods
and all the maps in the training database. Blue shows the early activated region and each contour corresponds to 10 ms increments in the activation times.

In terms of computational power, the batch selection methods
were more efficient and less time consuming (approximately
45 min of computation on the same processors).

As shown in Fig. 4, in the single-map-removal method re-
moval of maps improved estimation until the number of maps
was around 100 and estimation error stayed in a similar range
until there were 70 maps in the training set, after which the
mean LDist increased with the removal of additional maps.
This method resulted in a mean LDist of 7.9 mm with 100 maps
compared to 10.6 mm with 470 maps (2.7 mm improvement on
average). This was also a highly time consuming method (ap-
proximately 70 h of computation). Fig. 5 shows a similar pat-
tern of first improvement and then degradation in performance
as we removed the maps from the full training database using
the random-ten-maps-removal method. Again, at around 100
maps the mean LDist values were lowest. A further decrease
in the number of maps in the training set below 70, resulted
in mean LDist increasing, indicating a critical threshold in the
number of maps included in the training set. The computation
took approximately 45 min on the same processors.

In the spatial covariance-based removal method, performance
did not change significantly until the number of maps was
around 150. A slight decrease in the mean LDist values oc-
curred as we decreased the number of maps to 70. When the
maps were fewer than 70, the estimation resulted in 12.5 mm
and worse mean LDist. The computation took approximately
50 h on the same processors.

Fig. 6 contains sets of spatial covariance patterns from two
leads (shown with stars; one on the left ventricle and one on the
right ventricle) for different number of maps selected using the
spatial covariance-based removal method. The numbers of maps
selected were 470, 200, 100, and 50 from left to right, respec-
tively. The resulting spatial covariance patterns were not signif-
icantly different from each other. The selection algorithm was
based on the correlation coefficient and the mean correlation
coefficient between the full database covariance matrices and
covariance matrices computed with 50 maps was approximately
0.99. The covariance values are high on the regions that are
close to the star (pacing site), becomes zero at relatively distant
sites, and go to negative values on the opposite side of the heart.

Fig. 7 contains a set of original and estimated maps using
either 100 maps selected with the single-map-removal, single-
map-addition, and spatial covariance-based removal methods
or all the maps in the training database (470 maps). This figure
shows the similar performance of the four training sets, one of
size 100 and the other 470 on a test map with a pacing site on
the posterior right ventricle. Black (blue in color version) rep-
resents the early activated region and each contour corresponds
to approximately 10 ms increments in the activation times.

4. Discussions

The aim of this study was to develop strategies for determin-
ing the optimal number of maps in generalized training data
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sets for estimation of epicardial activation-time maps from in-
travenous catheter measurements. The driving hypothesis was
that there was a redundancy in the full training data set and the
number of maps necessary for successful estimation could be
reduced. For this purpose, we examined the problem of opti-
mal number of epicardial activation maps to be included in a
general purpose training set so as to minimize the data acqui-
sitions required. Our aim was to minimize the redundancy in
the database and to be able to guide the eventual procedures re-
quired to obtain training data from open-chest surgery patients.
The results from this study illustrated the redundancy in our
database and suggested that by including an optimal subset of
the full database the estimation technique was able to perform
as well as and even in some cases better than including all the
maps in the database.

Specifically, we proposed five different approaches for
determining the optimal number of maps with minimal redun-
dancy and the best performance to be included in the general-
ized training set and consistently found that around 100 maps
with unique pacing sites on the epicardium could be used in
the training set to estimate the high-resolution activation-time
maps for epicardially originating ectopic activity. Using a sub-
set of the full database of activation maps brought about a
2.7 mm improvement in determining the earliest activation site.
Even though the performances of different approaches were
quite similar, the single-map-removal approach performed the
best among all five methods.

Our study has focused entirely on beats paced from the epi-
cardium, even though the bulk of clinical catheter mapping con-
centrates on the endocardium. The motivation for this choice
was that for an important percentage of patients with post-
myocardial infarction and nonischemic sustained ventricular
tachycardias, uniquely endocardial approaches do not provide
successful determination of target sites and may even lead to
reoccurrence of arrhythmias after endocardial ablation proce-
dures [3,5,27]. In addition, there now exist the required devices
and technical experience to routinely probe the coronary veins
in patients with up to 20 electrodes on a single catheter. Clini-
cians already make use of the information from these catheters
to reveal local electrical activity in arrhythmia cases but are
unable to identify and localize events that occur more than a
few millimeters from the veins. Perhaps most compelling, once
there is adequate evidence to suggest epicardial involvement,
there are also methods by which to bring radio-frequency ab-
lation catheters to the critical sites and carry out treatment.
Therefore, there exists both a need to develop techniques for
mapping epicardial arrhythmias and an emerging diagnostic
technology that could lead to a treatment paradigm. We note
also that the techniques we have developed would almost cer-
tainly work equally well when applied to the endocardial sur-
face as an activation mapping tool, perhaps enabling more rapid
mapping of unstable dynamic rhythms from fewer catheter mea-
surements. We concentrated in this study on epicardial mapping
even though the approaches we describe also apply to endocar-
dial mapping.

Limitations of this study include that the database did not
include data from hearts with large regions of conduction block

or in which we observed re-entry. Preliminary (unpublished)
results from a small number of test beats with large areas of
previous myocardial infarction suggest that while localizing
the earliest site of activation may be feasible, there will be
difficulties in predicting the entire activation sequence when
the infarcted regions lie far from the venous catheters. Ongoing
experiments will provide the data to develop training sets that
include such profoundly altered hearts.

Although we have shown that this approach to epicardial
mapping is quite feasible and accurate, its application to clin-
ical practice will require overcoming additional technical hur-
dles. Perhaps the first is the need to acquire high-resolution
epicardial maps with which to build the necessary database.
Obtaining such data does require direct access to the heart.
However, open-chest surgery is still a relatively frequent occur-
rence for such procedures as valve repair and replacement and
coronary artery bypass grafts. The time required during such
procedures to obtain epicardial maps is just minutes, so that it
might not present substantial additional burden to the patient.
Another alternative for the creation of the training database
might be to use simulated activation-time maps from a numer-
ical/computational model with different pacing sites under dif-
ferent conditions. Specifically, we would use a heart model; by
which it is possible to simulate large number of activation-time
maps to obtain endocardial, midmyocardial, and epicardial val-
ues to feed into the statistical estimation machine.

An additional challenge to applying this technique in a
clinical setting will be determining the relationship between
venous catheter locations and the corresponding sites in the
high-density epicardial sock array. For this, we anticipate using
fluoroscopic images obtained during the catheterization proce-
dure. A study into the impact of estimation error in localizing
electrode locations is currently underway in our laboratory.

Moreover, we did not deal directly with different sized hearts,
even though we used different animals with various heart sizes.
However, using a flexible nylon sock compensated this phe-
nomenon in terms of training data gathering. Warping and
morphing techniques, which have to include changing the prop-
agation as well as size, might be the alternative approaches to
address this problem faced by the estimation approach.

The results of this study encourage further investigation and
provide adequate evidence that an epicardial mapping approach
based on intravenous catheter measurements is feasible and can
provide adequate accuracy for clinical applications. With the
advances in transthoracic access to the pericardial space in order
to apply catheter ablation of cardiac arrhythmias [28,29], such
an estimation approach will complement this type of treatment
as a minimally invasive diagnostic technique.

5. Summary

Minimally invasive catheter-based cardiac mapping tech-
niques that are limited to the endocardium are unsuccessful
when the origin of the arrhythmia is located deep in the
subendocardium or in the subepicardium, which is the case in
15% of all ventricular arrhythmias. However, electrophysio-
logical studies targeting the epicardium are limited to regions
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near the coronary vessels or require transthoracic access.
We have developed a statistical approach by which to esti-
mate high-resolution maps of epicardial activation from very
low-resolution multielectrode venous catheter measurements.
This technique uses a linear estimation model that derives a
relationship between venous catheter measurements and un-
measured epicardial sites from a set of previously recorded,
high-resolution epicardial activation-time maps used as a train-
ing data set based on the spatial covariance of the measurement
sites. The general purpose training data set selection consisted
of choosing a subset of epicardial activation-time maps from a
database that could be used in all possible test cases with focal
ectopic activity. The ultimate goal of this particular study was
to determine the best number and location of pacing sites from
which we should obtain the epicardial activation-time training
maps (as a generalized training data set) so as to minimize the
data acquisitions required. Our aim was to minimize the re-
dundancy in the database and to be able to guide the eventual
procedures required to obtain training data from open-chest
surgery patients. The training set selection consisted of choos-
ing a subset of epicardial activation-time maps which resulted
in estimation accuracy levels better than or at least similar to
using all the maps in database.

In this study, we performed 14 dog experiments with var-
ious interventions to create an epicardial activation-time map
database. This database included a total of 592 epicardial activa-
tion maps. In all the experiments we used a 490-electrode sock
array (average inter-electrode distance was 4.3 mm) to record
epicardial electrograms from dog hearts. The training data set
was obtained by electrically stimulating (pacing) a total of 470
different ventricular sites in 12 dogs. The test set included 122
maps from two experiments which were different from the ones
included in the training data set.

In this study, our hypothesis was that there was a redun-
dancy in the full training data set and the number of maps
necessary for successful estimation could be reduced. To find
a generalized training data set, we investigated five different
selection methods, which were adopted from the data reduc-
tion literature in machine learning. The first method, which
we referred to as single-map-addition, consisted of adding one
map at a time to an initial training set. In the second method
(random-ten-maps-addition), we added maps in groups of 10
which were selected randomly from the full database. The third
method (single-map-removal) consisted of removing one map
at a time from the 470-map training set and training the es-
timation matrix with the remaining maps. The fourth method
(random-ten-maps-removal) removed 10 random maps from
the database at each iteration instead of removing one map at a
time. The fifth method (spatial covariance-based removal) was
based on the training data set itself and the spatial covariance
of the measurement sites using the training set. We could de-
termine the least contributing map to the spatial covariance by
finding the largest average correlated set and thus the removed
map.

Our results showed that 100 maps would be sufficient to
obtain an estimation accuracy level that was better than all the
maps paced from all over the epicardium which brought about a

2.7 mm improvement in determining the earliest activation site.
Even though the performances of different approaches were
quite similar, the single-map-removal approach performed the
best among all five methods.

The results of this study encourage further investigation and
provide adequate evidence that an epicardial mapping approach
based on intravenous catheter measurements is feasible and
can provide adequate accuracy for clinical applications. With
the advances in transthoracic access to the pericardial space in
order to apply catheter ablation of cardiac arrhythmias, such an
estimation approach will complement this type of treatment as
a minimally invasive diagnostic technique.
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