
ALBERT: An adaptive hierarchical finite element toolbox

Alfred Schmidt and Kunibert G. Siebert

Institut für Angewandte Mathematik
Albert–Ludwigs–Universität Freiburg i. Br.

Hermann–Herder Straße 10
D–79 104 Freiburg

http://www.mathematik.uni-freiburg.de/IAM/Research/projectsdz/albert

Version: ALBERT-1.0, February 2000

http://www.mathematik.uni-freiburg.de/IAM/Research/projectsdz/albert

Abstract

ALBERT is an Adaptive multi-Level finite element toolbox using Bisec-
tioning refinement and Error control by Residual Techniques. Its design
is based on appropriate data structures holding geometric, finite element,
and algebraic information. Using such data structures, abstract adaptive
methods for stationary and time dependent problems, assembly tools for
discrete systems, and dimension dependent tasks like mesh modifications
can be provided in a library. This allows dimension–independent devel-
opment and programming of a general class of applications. In ALBERT,
hierarchical 2d and 3d meshes are stored in binary trees. Several sets of
finite elements can be used on the same mesh, either using predefined ones,
or by adding new sets for special applications. Depending on the currently
used finite element spaces, all degrees of freedom are automatically man-
aged during mesh modifications. Tools for assembling system matrices and
right hand sides as well as (linear) system solvers are included.

Contents

Introduction 7

1 Concepts and abstract algorithms 13
1.1 Mesh refinement and coarsening . 13

1.1.1 Refinement algorithms for simplicial meshes 15
1.1.2 Coarsening algorithm for simplicial meshes 20
1.1.3 Operations during refinement and coarsening 21

1.2 The hierarchical mesh . 23
1.3 Degrees of freedom . 25
1.4 Finite element spaces and finite element discretization 27

1.4.1 Barycentric coordinates . 27
1.4.2 Finite element spaces . 29
1.4.3 Evaluation of finite element functions 30
1.4.4 Interpolation and restriction during refinement and coarsening 32
1.4.5 Discretization of 2nd order problems 34
1.4.6 Numerical quadrature . 36
1.4.7 Finite element discretization of 2nd order problems 37

1.5 Adaptive Methods . 40
1.5.1 Adaptive method for stationary problems 40
1.5.2 Mesh refinement strategies . 41
1.5.3 Coarsening strategies . 43
1.5.4 Adaptive methods for time dependent problems 45

2 Data structures and implementation 50
2.1 Basic types, utilities, and parameter handling 50

2.1.1 Basic types . 50
2.1.2 Message macros . 51
2.1.3 Memory allocation and deallocation 53
2.1.4 Parameters and parameter files . 56
2.1.5 Parameters used by the utilities . 60

2.2 Data structures for the hierarchical mesh . 61
2.2.1 Constants describing the dimension of the mesh 61
2.2.2 Constants describing the elements of the mesh 61
2.2.3 Neighbour information . 62
2.2.4 Element indices . 62
2.2.5 The BOUNDARY data structure . 62
2.2.6 The local indexing on elements . 63
2.2.7 The MACRO EL data structure . 64
2.2.8 The EL data structure . 65
2.2.9 The EL INFO data structure . 66

3

4 CONTENTS

2.2.10 The NEIGH, OPP VERTEX and EL TYPE macros 67
2.2.11 The INDEX macro . 68
2.2.12 The LEAF DATA INFO data structure 68
2.2.13 The RC LIST EL data structure . 69
2.2.14 The MESH data structure . 70
2.2.15 Initialization of meshes . 72
2.2.16 Reading macro triangulations . 73
2.2.17 Writing macro triangulations . 77
2.2.18 Mesh traversal routines . 77

2.3 Administration of degrees of freedom . 82
2.3.1 The DOF ADMIN data structure . 83
2.3.2 Vectors indexed by DOFs: The DOF VEC data structures 85
2.3.3 Interpolation and restriction of DOF vectors during mesh refinement

and coarsening . 87
2.3.4 The DOF MATRIX data structure . 88
2.3.5 Access to global DOFs: Macros for iterations using DOF indices . . . 89
2.3.6 Access to local DOFs on elements . 90
2.3.7 BLAS routines for DOF vectors and matrices 92
2.3.8 Reading and writing of meshes and vectors 92

2.4 The refinement and coarsening implementation 95
2.4.1 The refinement routines . 95
2.4.2 The coarsening routines . 99

2.5 Implementation of basis functions . 100
2.5.1 Data structures for basis functions . 100
2.5.2 Lagrange finite elements . 105
2.5.3 Linear finite elements . 106
2.5.4 Quadratic finite elements . 109
2.5.5 Cubic finite elements . 113
2.5.6 Quartic finite elements . 116
2.5.7 Access to Lagrange elements . 116

2.6 Implementation of finite element spaces . 118
2.6.1 The finite element space data structure 118
2.6.2 Access to finite element spaces . 118

2.7 Routines for barycentric coordinates . 120
2.8 Data structures for numerical quadrature . 120

2.8.1 The QUAD data structure . 121
2.8.2 The QUAD FAST data structure . 123

2.9 Functions for the evaluation of finite elements 125
2.10 Calculation of norms for finite element functions 129
2.11 Calculation of errors of finite element approximations 129
2.12 Tools for the assemblage of linear systems . 131

2.12.1 Updating of matrices and right hand sides 131
2.12.2 Data structures and function for matrix assemblage 133
2.12.3 Data structures for storing pre–computed integrals of basis functions . 141
2.12.4 Data structures and functions for vector update 147
2.12.5 Dirichlet boundary conditions . 150
2.12.6 Interpolation into finite element spaces 151

2.13 Data structures and procedures for adaptive methods 152
2.13.1 ALBERT adaptive method for stationary problems 152
2.13.2 Standard ALBERT marking routine . 156

CONTENTS 5

2.13.3 ALBERT adaptive method for time dependent problems 156
2.13.4 Initialization of data structures for adaptive methods 159

2.14 Implementation of error estimators . 160
2.14.1 Error estimator for elliptic problems 160
2.14.2 Error estimator for parabolic problems 163

2.15 Solver for linear and nonlinear systems . 165
2.15.1 General linear solvers . 165
2.15.2 Linear solvers for DOF matrices and vectors 168
2.15.3 Access of functions for matrix–vector multiplication 170
2.15.4 Access of functions for preconditioning 170
2.15.5 Multigrid solvers . 170
2.15.6 Nonlinear solvers . 174

2.16 Graphics output . 176
2.16.1 Two dimensional graphics subroutines 177
2.16.2 gltools interface . 179
2.16.3 GRAPE interface . 180

3 Implementation of model problems 182
3.1 Poisson equation . 182

3.1.1 Graphical output of the discrete solution and error estimate 182
3.1.2 Include file and global variables . 184
3.1.3 Initialization of the finite element space 185
3.1.4 Functions for leaf data . 185
3.1.5 Data of the differential equation . 186
3.1.6 The assemblage of the discrete system 187
3.1.7 The solution of the discrete system . 189
3.1.8 Error estimation . 190
3.1.9 The main program for the Poisson equation 191
3.1.10 The parameter file for the Poisson equation 192

3.2 Nonlinear Poisson equation . 193
3.2.1 The Newton method . 194
3.2.2 Program organization and header file 194
3.2.3 Global variables . 195
3.2.4 Initialization of the finite element space and leaf data 196
3.2.5 The build routine . 196
3.2.6 The solve routine . 196
3.2.7 The estimator for the nonlinear problem 197
3.2.8 The main program for the nonlinear reaction–diffusion equation . . . 198
3.2.9 Initialization of problem dependent data 199
3.2.10 Implementation of the nonlinear solver 201
3.2.11 The parameter file for the nonlinear Poisson equation 212

3.3 Heat equation . 213
3.3.1 Global variables . 213
3.3.2 Functions for leaf data . 213
3.3.3 Data of the differential equation . 214
3.3.4 Time discretization . 214
3.3.5 Initial data interpolation . 215
3.3.6 The assemblage of the discrete system 215
3.3.7 Error estimation . 219
3.3.8 Time steps . 220

6 CONTENTS

3.3.9 The main program for the heat equation 221
3.3.10 The parameter file for the heat equation 223

3.4 File organization, ALBERT libraries, and Makefiles 224
3.4.1 File organization . 224
3.4.2 ALBERT libraries . 225
3.4.3 Makefiles . 225

Bibliography 228

Index 231

Data types, symbolic constants, functions, and macros 239

INTRODUCTION 7

Introduction

Adaptive procedures for the numerical solution of partial differential equations started in
the late 70’s and are now standard tools in science and engineering. Adaptive finite element
methods are a meaningful approach for handling multi scale phenomena and making realistic
computations feasible, specially in 3d.

Finite element methods calculate approximations to the true solution in some finite di-
mensional function space. This space is built from local function spaces, usually polynomials
of low order, on elements of a partitioning of the domain (the mesh). An adaptive method
adjusts this mesh (or the local function space, or both) to the solution of the problem. This
adaptation is based on information extracted from a posteriori error estimators.

The basic iteration of an adaptive finite element code for a stationary problem is
• assemble and solve the discrete system;
• calculate the error estimate;
• adapt the mesh, when needed.

For time dependent problems, such an iteration is used in each time step, and the step size
of a time discretization may be subject to adaptivity, too.

The core part of every finite element program is the problem dependent assembly and
solution of the discretized problem. This holds for programs that solve the discrete problem on
a fixed mesh as well as for adaptive methods that automatically adjust the underlying mesh
to the actual problem and solution. In the adaptive iteration, the assemblage and solution of
a discrete system is necessary after each mesh change. Additionally, this step is usually the
most time consuming part of that iteration.

A general finite element toolbox must provide flexibility in problems and finite element
spaces while on the other hand this core part can be performed efficiently. Data structures
are needed which allow an easy and efficient implementation of the problem dependent parts
and also allow to use adaptive methods, mesh modification algorithms, and solvers for linear
and nonlinear discrete problems by calling library routines. On one hand, large flexibility is
needed in order to choose various kinds of finite element spaces, with higher order elements
or combinations of different spaces for mixed methods or systems. On the other hand, the
solution of the resulting discrete systems may profit enormously from a simple vector–oriented
storage of coefficient vectors and matrices. This also allows the use of optimized solver and
BLAS libraries. Additionally, multilevel preconditioners and solvers may profit from hierarchy
information, leading to highly efficient solvers for the linear (sub–) problems.

ALBERT provides all those tools mentioned above for the efficient implementation and
adaptive solution of general nonlinear problems in two and three space dimensions. The design
of the ALBERT data structures allows a dimension independent implementation of problem
dependent parts. The mesh adaptation is done by local refinement and coarsening of mesh
elements, while the same local function space is used on all mesh elements.

Starting point for the design of ALBERT data structures is the abstract concept of a finite
element space defined (similar to the definition of a single finite element by Ciarlet [9]) as a
triple consisting of
• a collection of mesh elements;
• a set of local basis functions on a single element, usually a restriction of global basis

functions to a single element;
• a connection of local and global basis functions giving global degrees of freedom of a finite

element function.
This directly leads to the definition of three main groups of data structures:

8 INTRODUCTION

• data structures for geometric information storing the underlying mesh together with
element coordinates, boundary type and geometry, etc.;
• data structures for finite element information providing values of local basis functions

and their derivatives;
• data structures for algebraic information linking geometric data and finite element data.

Using these data structures, the finite element toolbox ALBERT provides the whole ab-
stract framework like finite element spaces and adaptive strategies, together with hierarchi-
cal meshes, routines for mesh adaptation, and the complete administration of finite element
spaces and the corresponding degrees of freedom (DOFs) during mesh modifications. The
underlying data structures allow a flexible handling of such information. Furthermore, tools
for numerical quadrature, matrix and load vector assembly as well as solvers for (linear)
problems, like conjugate gradient methods, are available.

A specific problem can be implemented and solved by providing just some problem depen-
dent routines for evaluation of the (linearized) differential operator, data, nonlinear solver,
and (local) error estimators, using all the above mentioned tools from the library.

Both geometric and finite element information strongly depend on the space dimension.
Thus, mesh modification algorithms and basis functions are implemented for two (2d) and
three (3d) dimensions separately and are provided by the toolbox. Everything besides that
can be formulated in such a way that the dimension only enters as a parameter (like size of
local coordinate vectors, e.g.). For usual finite element applications this results in a dimension
independent programming, where all dimension dependent parts are hidden in a library. This
allows a dimension independent programming of applications to the greatest possible extent.

The hierarchical mesh

The underlying mesh is a conforming triangulation of the computational domain into sim-
plices, i.e. triangles (2d) or tetrahedra (3d). The simplicial mesh is generated by refinement of
a given initial triangulation. Refined parts of the mesh can be de–refined, but elements of the
initial triangulation (macro elements) must not be coarsened. The refinement and coarsening
routines construct a sequence of nested meshes with a hierarchical structure. In ALBERT, the
recursive refinement by bisection is implemented, using the notation of Kossaczký [26].

During refinement, new degrees of freedom are created. A single degree of freedom is
shared by all elements which belong to the support of the corresponding finite element basis
function (compare next section). The mesh refinement routines must create a new DOF only
once and give access to this DOF from all elements sharing it. Similarly, DOFs are handled
during coarsening. This is done in cooperation with the DOF administration tool, see below.

The bisectioning refinement of elements leads naturally to nested meshes with the hi-
erarchical structure of binary trees, one tree for every element of the initial triangulation.
Every interior node of that tree has two pointers to the two children; the leaf elements are
part of the actual triangulation, which is used to define the finite element space. The whole
triangulation is a list of given macro elements together with the associated binary trees. The
hierarchical structure allows the generation of most information by the hierarchy, which re-
duces the amount of data to be stored. Some information is stored on the (leaf) elements
explicitly, other information is located at the macro elements and is transfered to the leaf
elements while traversing through the binary tree. Element information about vertex coor-
dinates, domain boundaries, and element adjacency can be computed easily and very fast
from the hierarchy, when needed. Data stored explicitly at tree elements can be reduced to
pointers to the two possible children and information about local DOFs (for leaf elements).
Furthermore, the hierarchical mesh structure directly leads to multilevel information which
can be used by multilevel preconditioners and solvers.

INTRODUCTION 9

Access to mesh elements is available solely via routines which traverse the hierarchical
trees; no direct access is possible. The traversal routines can give access to all tree elements,
only to leaf elements, or to all elements which belong to a single hierarchy level (for a multilevel
application, e.g.). In order to perform operations on visited elements, the traversal routines
call a subroutine which is given to them as a parameter. Only such element information which
is needed by the current operation is generated during the tree traversal.

Finite elements

The values of a finite element function or the values of its derivatives are uniquely defined
by the values of its DOFs and the values of the basis functions or the derivatives of the basis
functions connected with these DOFs. We follow the concept of finite elements which are
given on a single element S in local coordinates: Finite element functions on an element S
are defined by a finite dimensional function space P̄ on a reference element S̄ and the (one to
one) mapping λS : S̄ → S from the reference element S̄ to the element S. In this situation the
non vanishing basis functions on an arbitrary element are given by the set of basis functions
of P̄ in local coordinates λS . Also, derivatives are given by the derivatives of basis functions
on P̄ and derivatives of λS .

Each local basis function on S is uniquely connected to a global degree of freedom, which
can be accessed from S via the DOF administration tool. ALBERT supports basis functions
connected with DOFs, which are located at vertices of elements, at edges, at faces (in 3d), or
in the interior of elements. DOFs at a vertex are shared by all elements which meet at this
vertex, DOFs at an edge or face are shared by all elements which contain this edge or face,
and DOFs inside an element are not shared with any other element. The support of the basis
function connected with a DOF is the patch of all elements sharing this DOF.

For a very general approach, we only need a vector of the basis functions (and its deriva-
tives) on S̄ and a function for the communication with the DOF administration tool in order
to access the degrees of freedom connected to local basis functions. By such information ev-
ery finite element function (and its derivatives) is uniquely described on every element of the
mesh.

During mesh modifications, finite element functions must be transformed to the new finite
element space. For example, a discrete solution on the old mesh yields a good initial guess for
an iterative solver and a smaller number of iterations for a solution of the discrete problem on
the new mesh. Usually, these transformations can be realized by a sequence of local operations.
Local interpolations and restrictions during refinement and coarsening of elements depend
on the function space P̄ and the refinement of S̄ only. Thus, the subroutine for interpolation
during an atomic mesh refinement is the efficient implementation of the representation of
coarse grid functions by fine grid functions on S̄ and its refinement. A restriction during
coarsening is implemented using similar information.

Lagrange finite element spaces up to order four are currently implemented in two and
three dimensions. This includes the communication with the DOF administration as well as
the interpolation and restriction routines.

Degrees of freedom

Degrees of freedom (DOFs) connect finite element data with geometric information of a tri-
angulation. For general applications, it is necessary to handle several different sets of degrees
of freedom on the same triangulation. For example, in mixed finite element methods for
the Navier-Stokes problem, different polynomial degrees are used for discrete velocity and
pressure functions.

10 INTRODUCTION

During adaptive refinement and coarsening of a triangulation, not only elements of the
mesh are created and deleted, but also degrees of freedom together with them. The geometry
is handled dynamically in a hierarchical binary tree structure, using pointers from parent
elements to their children. For data corresponding to DOFs, which are usually involved with
matrix–vector operations, simpler storage and access methods are more efficient. For that
reason every DOF is realized just as an integer index, which can easily be used to access data
from a vector or to build matrices that operate on vectors of DOF data. This results in a
very efficient access during matrix/vector operations and in the possibility to use libraries for
the solution of linear systems with a sparse system matrix ([13], e.g.).

Using this realization of DOFs two major problems arise:

• During refinement of the mesh, new DOFs are added, and additional indices are needed.
The total range of used indices has to be enlarged. At the same time, all vectors and
matrices that use these DOF indices have to be adjusted in size, too.
• During coarsening of the mesh, DOFs are deleted. In general, the deleted DOF is not the

one which corresponds to the largest integer index. Holes with unused indices appear in
the total range of used indices and we have to keep track of all used and unused indices.

These problems are solved by a general DOF administration tool. During refinement, it
enlarges the ranges of indices, if no unused indices produced by a previous coarsening are
available. During coarsening, a book–keeping about used and unused indices is done. In order
to reestablish a contiguous range of used indices, a compression of DOFs can be performed; all
DOFs are renumbered such that all unused indices are shifted to the end of the index range,
thus removing holes of unused indices. Additionally, all vectors and matrices connected to
these DOFs are adjusted correspondingly. After this process, vectors do not contain holes
anymore and standard operations (BLAS, e.g.) can be applied.

In many cases, information stored in DOF vectors has to be adjusted to the new dis-
tribution of DOFs during mesh refinement and coarsening. Each DOF vector can provide
pointers to subroutines that implements these operations on data (which usually strongly
depend on the corresponding finite element basis). Providing such a pointer, a DOF vector
will be transformed during mesh modifications.

All tasks of the DOF administration are performed automatically during refinement and
coarsening for every kind and combination of finite elements defined on the mesh.

Adaptive solution of the discrete problem

The aim of adaptive methods is the generation of a mesh which is adapted to the problem
such that a given criterion, like a tolerance for the estimated error between exact and discrete
solution, is fulfilled by the finite element solution on this mesh. An optimal mesh should be as
coarse as possible while meeting the criterion, in order to save computing time and memory
requirements. For time dependent problems, such an adaptive method may include mesh
changes in each time step and control of time step sizes. The philosophy implemented in
ALBERT is to change meshes successively by local refinement or coarsening, based on error
estimators or error indicators, which are computed a posteriori from the discrete solution and
given data on the current mesh.

Several adaptive strategies are proposed in the literature, that give criteria which mesh
elements should be marked for refinement. All strategies are based on the idea of an equidis-
tribution of the local error to all mesh elements. Babuška and Rheinboldt [1] motivate that
for stationary problems a mesh is almost optimal when the local errors are approximately
equal for all elements. So, elements where the error indicator is large will be marked for re-
finement, while elements with a small estimated indicator are left unchanged or are marked
for coarsening. In time dependent problems, the mesh is adapted to the solution in every time

INTRODUCTION 11

step using a posteriori information like in the stationary case. As a first mesh for the new
time step we use the adaptive mesh from the previous time step. Usually, only few iterations
of the adaptive procedure are then needed for the adaptation of the mesh for the new time
step. This may be accompanied by an adaptive control of time step sizes.

Given pointers to the problem dependent routines for assembling and solution of the
discrete problems, as well as an error estimator/indicator, the adaptive method for finding a
solution on a quasi–optimal mesh can be performed as a black–box algorithm. The problem
dependent routines are used for the calculation of discrete solutions on the current mesh and
(local) error estimates. Here, the problem dependent routines heavily make use of library
tools for assembling system matrices and right hand sides for an arbitrary finite element
space, as well as tools for the solution of linear or nonlinear discrete problems. On the other
hand, any specialized algorithm may be added if needed. The marking of mesh elements is
based on general refinement and coarsening strategies relying on the local error indicators.
During the following mesh modification step, DOF vectors are transformed automatically to
the new finite element spaces as described in the previous sections.

Dimension independent program development

Using black–box algorithms, the abstract definition of basis functions, quadrature formulas
and the DOF administration tool, only few parts of the finite element code depend on the
dimension. Usually, all dimension dependent parts are hidden in the library. Hence, program
development can be done in 2d, where execution is usually much faster and debugging is
much easier (because of simple 2d visualization, e.g., which is much more involved in 3d).
With no (or maybe few) additional changes, the program will then also work in 3d. This
approach leads to a tremendous reduction of program development time for 3d problems.

Notations For a domain Ω ⊂ Rd, d = 2, 3 we denote by Lp(Ω), 1 ≤ p ≤ ∞, the usual
Lebesgue spaces with norms

‖f‖Lp(Ω) =
(∫

Ω
|f(x)|p dx

)1/p

for p <∞ and ‖f‖L∞(Ω) = sup
x∈Ω
|f(x)|.

The Sobolev space of functions u ∈ L2(Ω) with weak derivatives ∇u ∈ L2(Ω) is denoted
by H1(Ω) with semi norm

|u|H1(Ω) =
(∫

Ω
|∇u(x)|2 dx

)1/2

and norm ‖u‖H1(Ω) =
(
‖u‖2L2(Ω) + |u|2H1(Ω)

)1/2
.

For a differentiable function f : Ω ⊂ Rd → R we set

∇f(x) = (f,x1(x), . . . , f,xd(x)) =
(

∂

∂x1
f(x), . . . ,

∂

∂xd
f(x)

)
and

D2f(x) = (f,xkxl)k,l=1,...d =
(

∂2

∂xkxl
f(x)

)
k,l=1,...d

.

In the case of a vector valued, differentiable function f = (f1, . . . , fn) : Ω ⊂ Rd → R
n we

write

∇f(x) = (fi,x1(x), . . . , fi,xd(x))i=1,... ,n =
(

∂

∂x1
fi(x), . . . ,

∂

∂xd
fi(x)

)
i=1,... ,n

12 INTRODUCTION

and

D2f(x) = (fi,xkxl) i=1,... ,n
k,l=1,...d

=
(

∂2

∂xkxl
fi(x)

)
i=1,... ,n
k,l=1,...d

.

This report is organized as follows: In Chapter 1 we describe the mathematical concepts
of the underlying mesh, DOFs, local basis functions, assemblage of the discrete system, and
adaptive methods. In Chapter 2 we describe the ALBERT data structures derived from the
concepts of Chapter 1 and all functions implemented in ALBERT. In the last chapter we
finally discuss the implementation of three model problems.

Chapter 1

Concepts and abstract algorithms

1.1 Mesh refinement and coarsening

In this section, we describe the basic algorithms for the local refinement and coarsening of
simplicial meshes in two and three dimensions. In 2d the grid is built from triangles and in
3d from tetrahedra. We restrict ourselves here to simplicial meshes, for several reasons:

1. A simplex is one of the most simple geometric types and complex domains may be
approximated by a set of simplices quite easily.

2. Simplicial meshes allow local refinement (see Figure 1.1) without the need of non–
conforming meshes (hanging nodes), parametric elements, or mixture of element types
(which is the case for quadrilateral meshes, e.g., see Figure 1.2).

3. Polynomials of any degree are easily represented on a simplex using local (barycentric)
coordinates.

Figure 1.1: Global and local refinement of a triangular mesh.

Figure 1.2: Local refinements of a rectangular mesh: with hanging nodes, conforming closure
using bisected rectangles, and conforming closure using triangles. Using a conforming closure
with rectangles, a local refinement has always global effects up to the boundary.

First of all we start with the definition of a simplex, parametric simplex and triangulation:

13

14 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

1.1.1. Definition (Simplex). a) Let a0, . . . , ad ∈ Rn be given such that a1 − a0, . . . , ad−a0

are linear independent vectors in Rn. The convex set

S = conv hull{a0, . . . , ad} (1.1)

is called a d–simplex in Rn. For k < d let

S′ = conv hull{a′0, . . . , a′k} ⊂ ∂S (1.2)

be a k–simplex with a′0, . . . , a
′
k ∈ {a0, . . . , ad}. Then S′ is called a k–sub–simplex of S. A

0–sub–simplex is called vertex, a 1–sub–simplex edge and a 2–sub–simplex face.
b) The standard simplex in Rd is defined by

Ŝ = conv hull {â0 = 0, â1 = e1, . . . , âd = ed} , (1.3)

where ei are the unit vectors in Rd.
c) Let FS : Ŝ → S ⊂ R

n be an invertible, differentiable mapping. Then S is called a
parametric d–simplex in Rn. The k–sub–simplices S′ of S are given by the images of the
k–sub–simplices Ŝ′ of Ŝ. Thus, the vertices a0, . . . , ad of S are the points FS(â0), . . . , FS(âd).

d) For a d–simplex S, we define

hS := diam(S) and ρS := sup{2r; Br ⊂ S is a d–ball of radius r}, (1.4)

the diameter and inball–diameter of S.

1.1.2. Remark. Every d–simplex S in Rn is a parametric simplex. Defining the matrix
AS ∈ Rn×d by

AS =


...

...
a1 − a0 · · · ad − a0

...
...

 ,
the parameterization FS : Ŝ → S is given by

FS(x̂) = AS x̂+ a0. (1.5)

Since FS is affine linear it is differentiable. It is easy to check that FS : Ŝ → S is invertible
and that FS(âi) = ai, i = 0, . . . , d holds.

1.1.3. Definition (Triangulation). a) Let S be a set of (parametric) d–simplices and de-
fine

Ω = interior
⋃
S∈S

S ⊂ Rn.

We call S a conforming triangulation of Ω, iff for two simplices S1, S2 ∈ S with S1 6= S2 the
intersection S1 ∩S2 is either empty or a complete k–sub–simplex of both S1 and S2 for some
0 ≤ k < d.

b) Let Sk, k ≥ 0, be a sequence of conforming triangulations. This sequence is called
(shape) regular, iff

sup
k∈N0

max
S∈Sk

max
x̂∈Ŝ

cond(DF tS(x̂) ·DFS(x̂)) <∞ (1.6)

holds, where DFS is the Jacobian of FS and cond(A) = ‖A‖‖A−1‖ denotes the condition
number.

1.1. MESH REFINEMENT AND COARSENING 15

1.1.4. Remark. For a sequence Sk, k ≥ 0, of non–parametric triangulations the regularity
condition (1.6) is equivalent to the condition

sup
k∈N0

max
S∈Sk

hS
ρS

<∞.

In order to construct a sequence of triangulations, we consider the following situation:
An initial (coarse) triangulation S0 of the domain is given. We call it macro triangulation. It
may be generated by hand or by some mesh generation algorithm ([33, 35]).

Some (or all) of the simplices are marked for refinement, depending on some error esti-
mator or indicator. The marked simplices are then refined, i.e. they are cut into smaller ones.
After several refinements, some other simplices may be marked for coarsening. Coarsening
tries to unite several simplices marked for coarsening into a bigger simplex. A successive
refinement and coarsening will produce a sequence of triangulations S0,S1, The refine-
ment of single simplices that we describe in the next section produces for every simplex of
the macro triangulation only a finite and small number of similarity classes for the resulting
elements. The coarsening is more or less the inverse process of refinement. This leads to a
finite number of similarity classes for all simplices in the whole sequence of triangulations.

The refinement of non–parametric and parametric simplices is the same topological op-
eration and can be performed in the same way. The actual children’s shape of parametric
elements additionally involves the children’s parameterization. In the following we describe
the refinement and coarsening for triangulations consisting of non–parametric elements. The
refinement of parametric triangulations can be done in the same way, additionally using given
parameterizations. Regularity for the constructed sequence can be obtained with special prop-
erties of the parameterizations for parametric elements and the finite number of similarity
classes for simplices.

Marking criteria and marking strategies for refinement and coarsening are subject of
Section 1.5.

1.1.1 Refinement algorithms for simplicial meshes

For simplicial elements, several refinement algorithms are widely used. One example is reg-
ular refinement (“red refinement”), which divides every triangle into four similar triangles,
see Figure 1.3. The corresponding refinement algorithm in three dimensions cuts every tetra-
hedron into eight tetrahedra, and only a small number of similarity classes occur during
successive refinements, see [5]. Unfortunately, hanging nodes arise during local regular refine-
ment. To remove them and create a conforming mesh, in two dimensions some triangles have
to be bisected (“green closure”). In three dimensions, several types of irregular refinement
are needed for the green closure. This creates more similarity classes, even in two dimensions.
Additionally, these bisected elements have to be removed before a further refinement of the
mesh, in order to keep the triangulations regular.

Figure 1.3: Global and local regular refinement of triangles and conforming closure by bisec-
tion.

16 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

Another possibility is to use bisection of simplices only. For every element (triangle or
tetrahedron) one of its edges is marked as the refinement edge, and the element is refined into
two elements by cutting this edge at its midpoint. There are several possibilities to choose
such a refinement edge for a simplex, one example is to use the longest edge. Mitchell [29]
compared different approaches. We focus on an algorithm where the choice of refinement
edges on the macro triangulation prescribes the refinement edges for all simplices that are
created during mesh refinement. This makes sure that shape regularity of the triangulations
is conserved.

In two dimensions we use the newest vertex bisection (in Mitchell’s notation) and in three
dimensions the bisection procedure of Kossaczký described in [26]. We use the convention,
that all vertices of an element are given fixed local indices. Valid indices are 0, 1, and 2 for
vertices of a triangle, and 0, 1, 2, and 3 for vertices of a tetrahedron. Now, the refinement
edge for an element is fixed to be the edge between the vertices with local indices 0 and 1.

During refinement, the new vertex numbers, and thereby the refinement edges, for the
newly created child simplices are prescribed by the refinement algorithm. For both children
elements, the index of the newly generated vertex at the midpoint of this edge has the highest
local index (2 resp. 3 for triangles and tetrahedra). These numbers are shown in Figure 1.4
for 2d and in 1.5 for 3d. In 2d this numbering is the same for all refinement levels. In 3d,
one has to make some special arrangements: the numbering of the second child’s vertices
does depend on the type of the element. There exist three different types 0, 1, and 2, and
the type of a child element is ((parent’s type + 1) modulo 3). In Figure 1.5 we used the
following convention: for the index set {1,2,2} on child[1] of a tetrahedron of type 0 we
use the index 1 and for a tetrahedron of type 1 and 2 the index 2. Figure 1.6 shows successive
refinements of a type 0 tetrahedron, producing tetrahedra of types 1, 2, and 0 again.

By the above algorithm the refinements of simplices are totally determined by the local
vertex numbering on the macro triangulation, plus a prescribed type for every macro element
in three dimensions. Furthermore, a successive refinement of every macro element only pro-
duces a small number of similarity classes. In case of the “generic” triangulation of a (unit)
square and cube into two triangles resp. six tetrahedra (see Figure 1.7 for a single triangle
and tetrahedron from such a triangulation – all other elements are generated by rotation
and reflection), the numbering and the definition of the refinement edge during refinement of
the elements guarantee that always the longest edge will be the refinement edge and will be
bisected, see Figure 1.8.

The refinement of a given triangulation now uses the bisectioning of single elements
and can be performed either iteratively or recursively. For tetrahedra, the first description
of such refinements was done in the iterative way by Bänsch [2]. It needs the intermediate
handling of hanging nodes and not one to one inter–element adjacencies during the refinement
process. Two recursive algorithms, which do not create such hanging nodes and are therefore
easier to implement, are published by Kossaczký [26] and Maubach [28]. For special macro
triangulations they result in exactly the same tetrahedral meshes as the iterative algorithm.

In order to keep the mesh conforming during refinement, the bisection of an edge is
allowed only when such an edge is the refinement edge for all elements which share this
edge. Bisection of an edge and thus of all elements around the edge is the atomic refinement
operation, and no other refinement operation is allowed. See Figures 1.9 and 1.10 for the two
and three–dimensional situations.

If an element has to be refined, we have to collect all elements at its refinement edge. In
two dimensions this is either the neighbour opposite this edge or there is no other element in
the case that the refinement edge belongs to the boundary. In three dimensions we have to
loop around the edge and collect all neighbours at this edge. If for all collected neighbours
the common edge is the refinement edge too, we can refine the whole patch at the same time

1.1. MESH REFINEMENT AND COARSENING 17

Figure 1.4: Numbering of nodes on parent and children for triangles.

Figure 1.5: Numbering of nodes on parent and children for tetrahedra.

Figure 1.6: Successive refinements of a type 0 tetrahedron.

18 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

Figure 1.7: Generic elements in two and three dimensions.

Figure 1.8: Refined generic elements in two and three dimensions.

Figure 1.9: Atomic refinement operation in two dimensions. The common edge is the refine-
ment edge for both triangles.

Figure 1.10: Atomic refinement operation in three dimensions. The common edge is the
refinement edge for all tetrahedra sharing this edge.

1.1. MESH REFINEMENT AND COARSENING 19

by inserting one new vertex in the midpoint of the common refinement edge and bisecting
every element of the patch. The resulting triangulation then is a conforming one.

But sometimes the refinement edge of a neighbour is not the common edge. Such a neigh-
bour is not compatibly divisible and we have to perform first the atomic refinement operation
at the neighbour’s refinement edge. In 2d the child of such a neighbour at the common edge
is then compatibly divisible; in 3d such a neighbour has to be bisected at most three times
and the resulting tetrahedron at the common edge is then compatibly divisible.

1.1.5. Algorithm (Recursive refinement of one simplex).

subroutine recursive refine(S, S)
do
A := {S′ ∈ S; S′ is not compatibly divisible with S}
for all S′ ∈ A do

recursive refine(S′, S);
end for
A := {S′ ∈ S; S′ is not compatibly divisible with S}

until A = ∅

A := {S′ ∈ S; S′ is element at the refinement edge of S}
for all S′ ∈ A

bisect S′ into S′0 and S′1
S := S\{S′} ∪ {S′0, S′1}

end for

In Figure 1.11 we show a two–dimensional situation where recursion is needed. For all
triangles, the longest edge is the refinement edge. Let us assume that triangles A and B are
marked for refinement. Triangle A can be refined at once, as its refinement edge is a boundary
edge. For refinement of triangle B, we have to recursively refine triangles C and D. Again,
triangle D can be directly refined, so recursion stops there. This is shown in the second part
of the figure. Back in triangle C, this can now be refined together with its neighbour. After
this, also triangle B can be refined together with its neighbour.

Figure 1.11: Recursive refinement in two dimensions. Triangles A and B are initially marked
for refinement.

The refinement of a given triangulation S where some or all elements are marked for
refinement is then performed by

1.1.6. Algorithm (Recursive refinement algorithm).

subroutine refine(S)
for all S ∈ S do

if S is marked for refinement
recursive refine(S, S)

end if
end for

20 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

Since we use recursion, we have to guarantee that recursions terminates. Kossaczký [26]
and Mitchell [29] proved

1.1.7. Theorem.

1. The recursion terminates if the macro triangulation fulfills certain criteria.

2. We obtain shape regularity for all elements at all levels.

1.1.8. Remark. 1.) A first observation is, that simplices initially not marked for refinement
are bisected, enforced by the refinement of a marked simplex. This is a necessity to obtain a
conforming triangulation, also for the regular refinement.

2.) It is possible to mark an element for more than one bisection. The natural choice is
to mark a d–simplex S for d bisections. After d refinement steps all original edges of S are
bisected. A simplex S is refined k times by refining the children S1 and S2 k − 1 times right
after the refinement of S.

3.) The recursion does not terminate for an arbitrary choice of refinement edges on the
macro triangulation. In two dimensions, such a situation is shown in Figure 1.12. The selected
refinement edges of the triangles are shown by dashed lines. One can easily see, that there
are no patches for the atomic refinement operation. This triangulation can only be refined if
other choices of refinement edges are made, or by a non–recursive algorithm.

Figure 1.12: A macro triangulation where recursion does not stop.

4.) In two dimensions, for every macro triangulation it is possible to choose the refinement
edges in such a way that the recursion terminates (selecting the ‘longest edge’). In three
dimensions the situation is more complicated. But there is a maybe refined grid such that
refinement edges can be chosen in such a way that recursion terminates [26].

1.1.2 Coarsening algorithm for simplicial meshes

The coarsening algorithm is more or less the inverse of the refinement algorithm. The basic
idea is to collect all those elements that were created during the refinement at same time, i.e.
the parents of these elements build a compatible refinement patch. The elements must only
be coarsened if all involved elements are marked for coarsening and are of finest level locally,
i.e. no element is refined further. The actual coarsening again can be performed in an atomic
coarsening operation without the handling of hanging nodes. Information is passed from all
elements on the parents and the whole patch is coarsened at the same time by removing the
vertex in the parent’s common refinement edge (see Figures 1.13 and 1.14 for the atomic
coarsening operation in 2d and 3d).

During refinement, the bisection of an element can enforce the refinement of an unmarked
element in order to keep the mesh conforming. During coarsening, an element must only be
coarsened if all elements involved in this operation are marked for coarsening. This is the
main difference between refinement and coarsening. In an adaptive method it guarantees that

1.1. MESH REFINEMENT AND COARSENING 21

Figure 1.13: Atomic coarsening operation in two dimensions.

Figure 1.14: Atomic coarsening operation in three dimensions.

elements with a large local error indicator marked for refinement are refined and no element
is coarsened where the local error indicator is not small enough (compare Section 1.5.3).

Since the coarsening process is the inverse of the refinement, refinement edges on parent
elements are again at their original position. Thus, further refinement is possible with a
terminating recursion and shape regularity for all resulting elements.

1.1.9. Algorithm (Local coarsening).

subroutine coarsen element(S, S)
A := {S′ ∈ S; S′ must not be coarsened with S}
if A = ∅

for all child pairs S′0, S
′
1 at common coarsening edge do

coarse S′0 and S′1 into the parent S′

S := S\{S′0, S′1} ∪ {S′}
end for

end if

The following routine coarsens as many elements as possible of a given triangulation S:

1.1.10. Algorithm (Coarsening algorithm).

subroutine coarsen(S)
for all S ∈ S do

if S is marked for coarsening
coarsen element(S, S)

end if
end for

1.1.11. Remark. Also in the coarsening procedure an element can be marked for several
coarsening steps. Usually, the coarsening markers for all patch elements are cleared if a patch
must not be coarsened. If the patch must not be coarsened because one patch element is not
of locally finest level but may coarsened more than once, elements stay marked for coarsening.
A coarsening of the finer elements can result in a patch which may then be coarsened.

1.1.3 Operations during refinement and coarsening

The refinement and coarsening of elements can be split into four major steps, which are now
described in detail.

22 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

Topological refinement and coarsening

The actual bisection of an element is performed as follows: the simplex is cut into two children
by inserting a new vertex at the refinement edge. All objects like this new vertex, or a new
edge, or face (in 3d) have only to be created once on the refinement patch. For example,
all elements share the new vertex and two children triangles share a common edge. The
refinement edge is divided into two smaller ones which have to be adjusted to the respective
children. In 3d all faces inside the patch are bisected into two smaller ones and this creates an
additional edge for each face. All these objects can be shared by several elements and have to
be assigned to them. If neighbour information is stored, one has to update such information
for elements inside the patch as well as for neighbours at the patch’s boundary.

In the coarsening process the vertex which is shared by all elements is removed, edges and
faces are rejoined and assigned to the respective parent simplices. Neighbour information has
to be reinstalled inside the patch and with patch neighbours.

Administration of degrees of freedoms

Single DOFs can be assigned to a vertex, edge, or face and such a DOF is shared by all
simplices meeting at the vertex, edge, or face respectively. Finally, there may be DOFs on
the element itself, which are not shared with any other simplex. At each object there may be
a single DOF or several DOFs, even for several finite element spaces.

During refinement new DOFs are created. For each newly created object (vertex, edge,
face, center) we have to create the exact amount of DOFs, if DOFs are assigned to the object.
For example we have to create vertex DOFs at the midpoint of the refinement edge, if DOFs
are assigned to a vertex. Again, DOFs must only be created once for each object and have
to be assigned to all simplices having this object in common.

Additionally, all vectors and matrices using these DOFs have automatically to be adjusted
in size.

Transfer of geometric data

Information about the children’s/parent’s shape has to be transformed. During refinement,
for a simplex we only have to calculate the coordinates of the midpoint of the refinement edge,
coordinates of the other vertices stay the same and can be handed from parent to children.
If the refinement edge belongs to a curved boundary, the coordinates of the new vertex are
calculated by projecting this midpoint onto the curved boundary. During coarsening nothing
has to be done. The d+ 1 vertices of the two children which are removed are the vertices of
the parent.

For the shape of parametric elements, usually more information has to be calculated. Such
information can be stored in a DOF–vector, e.g., and may need DOFs on parent and children.
Thus, information has to be assembled after installing the DOFs on the children and before
deleting DOFs on the parent during refinement; during coarsening, first DOFs on the parent
have to be installed, then information can be assembled, and finally the children’s DOFs are
removed.

Transformation of finite element information

Using iterative solvers for the linear systems, we need a good initial guess. Usually, the discrete
solution from the old grid is such a good guess when it is interpolated into the finite element
space on the new grid. For piecewise linear finite elements we only have to compute the value
at the newly created node at the midpoint of the refinement edge and this value is the mean

1.2. THE HIERARCHICAL MESH 23

value of the values at the vertices of the refinement edge:

uh(midpoint) =
1
2

(uh(vertex 0) + uh(vertex 1)).

For linear elements an interpolation during coarsening is trivial since the values at the vertices
of the parents stay the same.

For higher order elements more DOFs are involved, but only DOFs belonging to the
refinement/coarsening patch. The interpolation strongly depends on the local basis functions
and it is described in detail in Section 1.4.4.

Usually during coarsening information is lost (for example, we loose information about
the value of a linear finite element function at the coarsening edge’s midpoint). But linear
functionals applied to basis functions that are calculated on the fine grid and stored in
some coefficient vector can be transformed during coarsening without loss of information, if
the finite element spaces are nested. This is also described in detail in Section 1.4.4. One
application of this procedure is a time discretization, where scalar products with the solution
uold
h from the last time step appear on the right hand side of the discrete problem.

Since DOFs can be shared by several elements, these operations are done on the whole
refinement/coarsening patch. This avoids that coefficients of the interpolant are calculated
more than once for a shared DOF. During the restriction of a linear functional we have to add
contribution(s) from one/several DOF(s) to some other DOF(s). Performing this operation
on the whole patch makes it easy to guarantee that the contribution of a shared DOF is only
added once.

1.2 The hierarchical mesh

In this section we describe the concept of the hierarchical mesh.
There are basically two kinds of storing a finite element grid. One possibility is to store

only the elements of the triangulation in a vector or a linked list. All information about
elements is located at the elements. In this situation there is no direct information of a
hierarchical structure needed, for example, for multigrid methods. Such information has to
be generated and stored separately. During mesh refinement, new elements are added (at the
end) to the vector or list of elements. During mesh coarsening, elements are removed. In case
of an element vector, ‘holes’ may appear in the vector that contain no longer a valid element.
One has to take care of them, or remove them by compressing the vector.

ALBERT uses the second way of storing the mesh. It keeps information about the whole
hierarchy of grids starting with the macro triangulation up to the actual one. Storing infor-
mation about the whole hierarchical structure will need an additional amount of computer
memory. On the other hand, we can save computer memory because such information which
can be produced by the hierarchical structure does not have to be stored explicitly on each
element.

The simplicial grid is generated by refinement of a given macro triangulation. Refined parts
of the grid can be de–refined, but we can not coarsen elements of the macro triangulation
(not implemented at the moment). The refinement and coarsening routines as described in
Section 1.1 construct a sequence of nested grids with a hierarchical structure. Every refined
simplex is refined into two children. Elements that may be coarsened were created by refining
the parent into these two elements and are now just coarsened back into this parent (compare
Sections 1.1.1, 1.1.2).

Using this structure of the refinement/coarsening routines, every element of the macro
triangulation is the root of a binary tree: every interior node of that tree has two pointers to
the two children; the leaf elements are part of the actual triangulation, which is used to define

24 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

the finite element space. The whole triangulation is a list of given macro elements together
with the associated binary trees, compare Figure 1.15.

Figure 1.15: Sample mesh refinement and corresponding element trees

Some information is stored on the (leaf) elements explicitly, other information is located
at the macro elements and is transfered to the leaf elements while traversing through the
binary tree.

Operations on elements can only be performed by using the mesh traversal routines de-
scribed in Section 2.2.18. These routines need as arguments a flag which indicates which
information should be present on the elements, which elements should be called (interior or
leaf elements), and a pointer to a function which performs the operation on a single element.
The traversal routines always start on the first macro element and go to the indicated el-
ements of the binary tree at this macro element. This is done in a recursive way by first
traversing through the subtree of the first child and then by traversing through the subtree
of the second child. This recursion stops if a leaf element is reached. After calling all elements
of this tree we go to the next macro element, traverse through the binary tree located there,
and so on until the end of the list of macro elements.

All information that should be available for mesh elements is stored explicitly for ele-
ments of the macro triangulation. Thus, all information is present on the macro level and is
transfered to the other tree elements by transforming requested data from one element to its
children. These can be done by simple calculations using the hierarchic structure induced by
the refinement algorithm, compare Section 1.1.1.

An example of information which is not stored for each element are the coordinates of the
element’s vertices (in the case of non-parametric elements and polyhedral boundary). Going
from parent to child only the coordinates of one vertex changes and the new ones are simply
the mean value of the coordinates of two vertices at the refinement edge of the parent. The
other vertex coordinates stay the same.

Another example of such information is information about adjacent elements. Using ad-
jacency information of the macro elements we can compute requested information for all
elements of the mesh. But especially in the recursive refinement we have to traverse from an

1.3. DEGREES OF FREEDOM 25

element to some other elements of the mesh by going to a neighbour. This traversing from one
neighbour to another takes about 50% of time which is needed for the refinement. If this is
too time consuming for special applications, it is also possible to store neighbour information
explicitly (which requires more storage but less computational time), compare Section 2.2.3.

User data on leaf elements Many finite element applications need special information
on each element of the actual triangulation, i.e. the leaf elements of the hierarchical mesh.
In adaptive codes this may be, for example, error indicators produced by an error estimator.
Such information has only to be available on leaf elements and not for elements inside the
binary tree.

Information for leaf elements depends strongly on the application and so it seems not to
be appropriate to define a fixed data type for storing this information. Thus, we implemented
the following general concept: The user can define his own type for data that should be
present on leaf elements. ALBERT only needs the size of memory that is required to store leaf
data (one entry in a structure leaf data info described in Section 2.2.12 in detail). During
refinement and coarsening ALBERT automatically allocates and deallocates memory for user
data on leaf elements if the data size is bigger than zero. Thus, after grid modifications each
leaf element possesses a memory area which is big enough to take leaf data.

To access leaf data we must have for each leaf element a pointer to the provided memory
area. This would need an additional pointer on leaf elements. To make the element data
structure as small as possible and in order to avoid different element types for leaf and
interior elements we “hide” leaf data at the pointer of the second child on leaf elements:

By definition, a leaf element is an element without children. For a leaf element the pointers
to the first and second child are pointers to nil, but since we use a binary tree the pointer to
the second child must be nil if the pointer to the first child is a nil pointer and vice versa.
Thus, only testing the first child will give correct information whether an element is a leaf
element or not, and we do not have to use the pointer of the second child for this test. As
consequence we can use the pointer of the second child as a pointer to the allocated area for
leaf data and the user can write or read leaf data via this pointer (using casting to a data
type defined by himself).

The consequence is that a pointer to the second child is only a pointer to an element if
the pointer to the first child is not a nil pointer. Thus testing whether an element is a leaf
element or not must only be done using the pointer to the first child.

If the leaf data size equals zero then the pointer to the second child is also a nil pointer
for leaf elements.

Finally, the user may supply routines for transforming user data from parent to children
during refinement and for transforming user data from children to parent during coarsening. If
these routines are not supplied, information stored for the parent or the children respectively
is lost.

1.3 Degrees of freedom

Degrees of freedom (DOFs) connect finite element data with geometric information of a
triangulation. Each finite element function is uniquely determined by the values (coefficients)
of all its degrees of freedom.

For example, a continuous and piecewise linear finite element function can be described
by the values of this function at all vertices of the triangulation. They build this function’s
degrees of freedom. A piecewise constant function is determined by its value in each element.
In ALBERT, every abstract DOF is realized as an integer index into vectors, which corresponds
to the global index in a vector of coefficients.

26 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

ALBERT supports DOFs, which are located at vertices of elements, at edges, at faces (in
3d), or in the interior of elements. DOFs at a vertex are shared by all elements which meet
at this vertex, DOFs at an edge or face are shared by all elements which contain this edge or
face, and DOFs inside an element are not shared with any other element. The location of a
DOF and the sharing between elements corresponds directly to the support of basis functions
that are connected to them, see Figure 1.16.

Figure 1.16: Support of basis functions connected with a DOF at a vertex, edge, face (only
in 3d), and the interior.

When DOFs and basis functions are used in a hierarchical manner, then the above applies
only to a single hierarchical level. Due to the hierarchies, the supports of basis functions which
belong to different levels do overlap.

For general applications, it may be necessary to handle several different sets of degrees
of freedom on the same triangulation. For example, in mixed finite element methods for
the Navier–Stokes problem, different polynomial degrees are used for discrete velocity and
pressure functions. In Figure 1.17, three examples of DOF distributions for continuous finite
elements in 2d are shown: piecewise quadratic finite elements (left), piecewise linear and
piecewise quadratic finite elements (middle, Taylor–Hood element for Navier–Stokes: linear
pressure and quadratic velocity), piecewise cubic and piecewise quartic finite elements
(right, Taylor–Hood element for Navier–Stokes: quartic velocity and linear pressure).

Figure 1.17: Examples of DOF distributions in 2d.

Additionally, different finite element spaces may use the same set of degrees of freedom,
if appropriate. For example, higher order elements with Lagrange type basis or a hierarchical
type basis can share the same abstract set of DOFs.

The DOFs are directly connected to the mesh and its elements, by the connection between
local (on each element) and global degrees of freedom. On the other hand, an application
uses DOFs only in connection with finite element spaces and basis functions. Thus, while
the administration of DOFs is handled by the mesh, definition and access of DOFs is mainly
done via finite element spaces.

1.4. FINITE ELEMENT SPACES AND FINITE ELEMENT DISCRETIZATION 27

1.4 Finite element spaces and finite element discretization

In the sequel we assume that Ω ⊂ Rd is a bounded domain triangulated by S, i.e.

Ω̄ =
⋃
S∈S

S.

The following considerations are also valid for a triangulation of an immersed surface
(with n > d). In this situation one has to exchange derivatives (those with respect to x) by
tangential derivatives (tangential to the actual element, derivatives are always taken element–
wise) and the determinant of the parameterization’s Jacobian has to be replaced by Gram’s
determinant of the parameterization. But for the sake of clearness and simplicity we restrict
our considerations to the case n = d.

The values of a finite element function or the values of its derivatives are uniquely defined
by the values of its DOFs and the values of the basis functions or the derivatives of the
basis functions connected with these DOFs. Usually, evaluation of those values is performed
element–wise. On a single element the value of a finite element function at a point x in this
element is determined by the DOFs associated with this specific element and the values of
the non vanishing basis functions at this point.

We follow the concept of finite elements which are given on a single element S in local
coordinates. We distinguish two classes of finite elements:

Finite element functions on an element S defined by a finite dimensional function space
P̄ on a reference element S̄ and the (one to one) mapping λS from the reference element S̄ to
S. For this class the dependency on the actual element S is fully described by the mapping
λS . For example, all Lagrange finite elements belong to this class.

Secondly, finite element functions depending on the actual element S. Hence, the basis
functions are not fully described by P̄ and the one to one mapping λS . But using an ini-
tialization of the actual element (which defines a finite dimensional function space P̄ with
information about the actual element), we can implement this class in the same way as the
first one. This class is needed for Hermite finite elements which are not affine equivalent
to the reference element. Examples in 2d are the Hsieh–Clough–Tocher or HCT element or
the Argyris element where only the normal derivative at the midpoint of edges are used in
the definition of finite element functions; both elements lead to functions which are globally
C1(Ω̄). The concrete implementation for this class in ALBERT is future work.

All in all, for a very general situation, we only need a vector of basis functions (and
its derivatives) on S̄ and a function which connects each of these basis functions with its
degree of freedom on the element. For the second class, we additionally need an initialization
routine for the actual element. By such information, every finite element function is uniquely
described on every element of the grid.

1.4.1 Barycentric coordinates

For describing finite elements on simplicial grids, it is very convenient to use d+1 barycentric
coordinates as a local coordinate system on an element of the triangulation. Using d+ 1 local
coordinates, the reference simplex S̄ is a subset of a hyper surface in Rd+1:

S̄ :=
{

(λ0, . . . , λd) ∈ Rd+1;λk ≥ 0,
d∑

k=0

λk = 1
}

(1.7)

On the other hand, for numerical integration on an element it is much more convenient to
use the standard element Ŝ ∈ Rd defined in (1.3) as

Ŝ = conv hull {â0 = 0, â1 = e1, . . . , âd = ed}

28 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

where ei are the unit vectors in Rd; using Ŝ for the numerical integration, we only have to
compute the determinant of the parameterization’s Jacobian and not Gram’s determinant.

The relation between a given simplex S, the reference simplex S̄, and the standard simplex
Ŝ is now described in detail.

Let S be an element of the triangulation with vertices {a0, . . . , ad}; let FS : Ŝ → S be the
diffeomorphic parameterization of S over Ŝ with regular Jacobian DFS , such that

F (âk) = ak, k = 0, . . . , d

holds. For a point x ∈ S we set

x̂ = F−1
S (x) ∈ Ŝ. (1.8)

For a simplex S the easiest choice for FS is the unique affine mapping (1.5). For an affine
mapping, DFS is constant. In the following, we assume that the parameterization FS of a
simplex S is affine.

For a simplex S the barycentric coordinates

λS(x) = (λS0 , . . . , λ
S
d)(x) ∈ Rd+1

of some point x ∈ Rd are (uniquely) determined by the (d+ 1) equations

d∑
k=0

λSk (x) ak = x and
d∑

k=0

λSk (x) = 1.

The following relation holds:

x ∈ S iff λSk (x) ∈ [0, 1] for all k = 0, . . . , d iff λS ∈ S̄.

On the other hand, each λ ∈ S̄ defines a unique point xS ∈ S by

xS(λ) =
d∑

k=0

λk ak.

Thus, xS : S̄ → S is an invertible mapping with inverse λS : S → S̄. The barycentric coordi-
nates of x on S are the same as those of x̂ on Ŝ, i.e. λS(x) = λŜ(x̂).

In the general situation, when FS may not be affine, i.e. we have a parametric element,
the barycentric coordinates λS are given by the inverse of the parameterization FS and the
barycentric coordinates on Ŝ:

λS(x) = λŜ(x̂) = λŜ
(
F−1
S (x)

)
(1.9)

and the world coordinates of a point xS ∈ S with barycentric coordinates λ are given by

xS(λ) = FS

(
d∑

k=0

λkâk

)
= FS

(
xŜ(λ)

)
(1.10)

(see also Figure 1.18).
Every function f : S → V defines (uniquely) two functions

f̄ : S̄ → V
λ 7→ f(xS(λ))

and f̂ : Ŝ → V
x̂ 7→ f(FS(x̂)).

1.4. FINITE ELEMENT SPACES AND FINITE ELEMENT DISCRETIZATION 29

Figure 1.18: Definition of λS : S → S̄ via F−1
S and λŜ , and xS : S̄ → S via xŜ and FS

Accordingly, f̂ : Ŝ → V defines two functions f : S → V and f̄ : S̄ → V , and f̄ : S̄ → V
defines f : S → V and f̂ : Ŝ → V .

Assuming that a function space P̄ ⊂ C0(S̄) is given, it uniquely defines function spaces P̂
and PS by

P̂ =
{
ϕ̂ ∈ C0(Ŝ); ϕ̄ ∈ P̄

}
and PS =

{
ϕ ∈ C0(S); ϕ̄ ∈ P̄

}
. (1.11)

We can also assume that the function space P̂ is given and this space uniquely defines P̄ and
PS in the same manner. In ALBERT, we use the function space P̄ on S̄; the implementation of
a basis

{
ϕ̄1, . . . , ϕ̄m

}
of P̄ is much simpler than the implementation of a basis

{
ϕ̂1, . . . , ϕ̂m

}
of P̂ as we are able to use symmetry properties of the barycentric coordinates λ.

In the following we shall often drop the superscript S of λS and xS . The mappings
λ(x) = λS(x) and x(λ) = xS(λ) are always defined with respect to the actual element S ∈ S.

1.4.2 Finite element spaces

ALBERT supports scalar and vector valued finite element functions. The basis functions are
always real valued; thus, the coefficients of a finite element function in a representation by
the basis functions are either scalars or vectors of length n.

For a given function space P̄ and some given real valued function space C on Ω, a finite
element space Xh is defined by

Xh = Xh(S, P̄, C) =
{
ϕ ∈ C; ϕ|S ∈ PS for all S ∈ S

}
(1.12)

for scalar finite elements. For vector valued finite elements, Xh is given by

Xh = Xh(S, P̄, C)
=
{
ϕ = (ϕ1, . . . , ϕn) ∈ (C × C × · · · × C); ϕi |S ∈ PS for all i = 1, . . . , n, S ∈ S

}
.

(1.13)

for vector valued finite elements. The spaces PS are defined by P̄ via (1.11).
For conforming finite element discretizations, C is the continuous space X (for 2nd order

problems, C = X = H1(Ω)). For non–conforming finite element discretizations, C may
control the non conformity of the ansatz space which has to be controlled in order to obtain
optimal error estimates (for example, in the discretization of the incompressible Navier–Stokes
equation by the non–conforming Crouzeix–Raviart element, the finite element functions are
continuous only in the midpoints of the edges).

The abstract definition of finite element spaces as a triple (mesh, local basis functions,
and DOFs) now matches the mathematical definition as Xh = Xh(S, P̄, C) in the following
way: The mesh is the underlying triangulation S, the local basis functions are given by the

30 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

function space P̄, but together with the relation between global and local degrees of freedom
every finite element function has globally to satisfy the continuity constraint C. The relation
between global and local DOFs is now described in detail.

1.4.3 Evaluation of finite element functions

Let
{
ϕ̄1, . . . , ϕ̄m

}
be a basis of P̄ and let {ϕ1, . . . , ϕN} be a basis of Xh, N = dimXh, such

that for every S ∈ S and for all basis functions ϕj which do not vanish on S

ϕj|S(x(λ)) = ϕ̄i(λ) for all λ ∈ S̄

holds with some i ∈ {1, . . . ,m} depending on j and S. Thus, the numbering of the basis
functions in P̄ and the mapping xS induces a local numbering of the non vanishing basis
functions on S. Denoting by JS the index set of all non vanishing basis functions on S, the
mapping iS : JS → {1, . . . ,m} is one to one and uniquely connects the degrees of freedom of
a finite element function on S with the local numbering of basis functions. If jS : [1,m]→ JS
denotes the inverse mapping of iS , the connection between global and local basis functions is
uniquely determined on each element S by

ϕj(x(λ)) = ϕ̄iS(j)(λ), for all λ ∈ S̄, j ∈ JS , (1.14a)

ϕjS(i)(x(λ)) = ϕ̄i(λ), for all λ ∈ S̄, i ∈ {1, . . . ,m}. (1.14b)

For uh ∈ Xh denote by (u1, . . . , uN) the global coefficient vector of the basis {ϕj} with
uj ∈ R for scalar finite elements, uj ∈ Rn for vector valued finite elements, i.e.

uh(x) =
N∑
j=1

ujϕj(x) for all x ∈ Ω,

and the local coefficient vector(
u1
S , . . . , u

m
S

)
=
(
ujS(1), . . . , ujS(m)

)
(1.15)

of uh on S with respect to the local numbering of the non vanishing basis functions (local
numbering is denoted by a superscript index and global numbering is denoted by a subscript
index). Using the local coefficient vector and the local basis functions we obtain the local
representation of uh on S:

uh(x) =
m∑
i=1

uiS ϕ̄
i(λ(x)) for all x ∈ S. (1.16)

In finite element codes, finite element functions are not evaluated at world coordinates x as
in (1.16), but they are evaluated on a single element S at barycentric coordinates λ on S
giving the value at the world coordinates x(λ):

uh(x(λ)) =
m∑
i=1

uiS ϕ̄
i(λ) for all λ ∈ S̄. (1.17)

The mapping jS , which allows the access of the local coefficient vector from the global one, is
the relation between local DOFs and global DOFs. Global DOFs for a finite element space are
stored on the mesh elements at positions which are known to the DOF administration of the
finite element space. Thus, the corresponding DOF administration will provide information
for the implementation of the function jS and therefore information for reading/writing local
coefficients from/to global coefficient vectors (compare Section 2.5.1).

1.4. FINITE ELEMENT SPACES AND FINITE ELEMENT DISCRETIZATION 31

Evaluating derivatives of finite element functions

Derivatives of finite element functions are also evaluated on single elements S in barycentric
coordinates. In the calculation of derivatives in terms of the basis functions ϕ̄i, the Jacobian
Λ = ΛS ∈ R(DIM+1)×DIM OF WORLD of the barycentric coordinates on S is involved (we consider
here only the case DIM = DIM OF WORLD = d):

Λ(x) =

λ0,x1(x) λ0,x2(x) · · · λ0,xd(x)
...

...
...

λd,x1(x) λd,x2(x) · · · λd,xd(x)

 =

– ∇λ0(x) –
...

– ∇λd(x) –

 . (1.18)

Now, using the chain rule we obtain for every function ϕ ∈ PS

∇ϕ(x) = ∇ (ϕ̄(λ(x))) =
d∑

k=0

ϕ̄,λk(λ(x))∇λk(x) = Λt(x)∇λϕ̄(λ(x)), x ∈ S (1.19)

and

D2ϕ(x) = Λt(x)D2
λϕ̄(λ(x))Λ(x) +

d∑
k=0

D2λk(x) ϕ̄,λk(λ(x)), x ∈ S. (1.20)

For a simplex S with an affine parameterization FS , ∇λk is constant on S and we get

∇ϕ(x) = Λt∇λϕ̄(λ(x)) and D2ϕ(x) = ΛtD2
λϕ̄(λ(x))Λ, x ∈ S.

Using these equations, we immediately obtain

∇uh(x) = Λt(x)
m∑
i=1

uiS ∇λϕ̄i(λ(x)), x ∈ S (1.21)

and

D2uh(x) = Λt(x)
m∑
i=1

uiS D
2
λϕ̄

i(λ(x))Λ(x) +
d∑

k=0

D2λk(x)
m∑
i=1

uiS ϕ̄
i
,λk

(λ(x)), x ∈ S.

(1.22)

Since the evaluation is actually done in barycentric coordinates, this turns on S into

∇uh(x(λ)) = Λt(x(λ))
m∑
i=1

uiS ∇λϕ̄i(λ), λ ∈ S̄ (1.23)

and

D2uh(x(λ)) = Λt(x(λ))
m∑
i=1

uiS D
2
λϕ̄

i(λ)Λ(x(λ)) +
d∑

k=0

D2λk(x(λ))
m∑
i=1

uiS ϕ̄
i
,λk

(λ), λ ∈ S̄.

(1.24)

Once the values of the basis functions, its derivatives, and the local coefficient vector
(u1
S , . . . , u

m
S) are known, the evaluation of uh and its derivatives does only depend on Λ and

can be performed by some general evaluation routine (compare Section 2.9).

32 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

1.4.4 Interpolation and restriction during refinement and coarsening

We assume the following situation: Let S be a (non–parametric) simplex with children S0

and S1 generated by the bisection of S (compare Algorithm 1.1.5). Let XS , XS0,S1 be the
finite element spaces restricted to S and S0 ∪ S1 respectively.

Throughout this section we denote by
{
ϕi
}
i=1,...,m

the basis of the coarse grid space XS

and by
{
ψj}j=1,...,k the basis functions of XS0∪S1 . For a function uh ∈ XS we denote by

uϕ = (u1
ϕ, . . . , u

m
ϕ)t the coefficient vector with respect to the basis

{
ϕi
}

and for a function
vh ∈ XS0∪S1 by vψ = (v1

ψ, . . . , v
k
ψ)t the coefficient vector with respect to

{
ψj
}

.
We now derive equations for the transformation of local coefficient vectors for finite ele-

ment functions that are interpolated during refinement and coarsening, and for vectors storing
values of a linear functional applied to the basis functions on the fine grid which are restricted
to the coarse functions during coarsening.

Let

I
S
S0,S1

: XS → XS0∪S1

be an interpolation operator. For nested finite element spaces, i.e. XS ⊂ XS0∪S1 , every coarse
grid function uh ∈ XS belongs also to XS0∪S1 , so the natural choice is ISS0,S1

= id on XS (for
example, Lagrange finite elements are nested). The interpolants ISS0,S1

ϕi can be written in
terms of the fine grid basis functions

I
S
S0,S1

ϕi =
k∑
j=1

aijψ
j

defining the (m× k)–matrix

A = (aij) i=1,...,m
j=1,...,k

. (1.25)

This matrix A is involved in the interpolation during refinement and the transformation of a
linear functional during coarsening.

For the interpolation of functions during coarsening, we need an interpolation operator
I
S0,S1

S : XS0∪S1 → XS . The interpolants IS0,S1

S ψj of the fine grid functions can now be repre-
sented by the coarse grid basis

I
S0,S1

S ψj =
m∑
i=1

bij ϕ
i

defining the (m× k)–matrix

B = (bij) i=1,...,m
j=1,...,k

. (1.26)

This matrix B is used for the interpolation during coarsening.
Both matrices do only depend on the set of local basis functions on parent and children.

Thus, they depend on the reference element S̄ and one single bisection of the reference element
into S̄0, S̄1. The matrices do depend on the local numbering of the basis functions on the
children with respect to the parent. Thus, in 3d the matrices depend on the element type
of S also (for an element of type 0 the numbering of basis functions on S̄1 differs from the
numbering on S̄1 for an element of type 1, 2). But all matrices can be calculated by the local
set of basis functions on the reference element.

DOFs can be shared by several elements, compare Section 1.3. Such a DOF is connected
to a basis function which has a support on all elements sharing this DOF. Every DOF refers

1.4. FINITE ELEMENT SPACES AND FINITE ELEMENT DISCRETIZATION 33

to one coefficient of a finite element function, and this coefficient must only be calculated
once during interpolation. During the restriction of a linear functional, contributions from
several basis functions are added to the coefficient of another basis function. Here we have
to control that for two DOFs, both shared by several elements, the contribution of the basis
function at one DOF is only added once to the other DOF and vice versa. This can only
be done by performing the interpolation and restriction on the whole refinement/coarsening
patch at the same time.

Interpolation during refinement

Let uϕ = (u1
ϕ, . . . , u

m
ϕ)t be the coefficient vector of a finite element function uh ∈ XS with

respect to
{
ϕi
}

, and let uψ = (u1
ψ, . . . , u

k
ψ)t the coefficient vector of ISS0,S1

uh with respect to{
ψj
}

. Using matrix A defined in (1.25) we conclude

I
S
S0,S1

uh =
m∑
i=1

uiϕ I
S
S0,S1

ϕi =
m∑
i=1

uiϕ

k∑
j=1

aij ψ
j =

k∑
j=1

(
Atuϕ

)
j
ψj ,

or equivalently

uψ = Atuϕ.

A subroutine which interpolates a finite element function during refinement is an efficient
implementation of this matrix–vector multiplication.

Restriction during coarsening

In an (Euler, e.g.) discretization of a time dependent problem, the term (uold
h , ϕi)L2(Ω) appears

on the right hand side of the discrete system, where uold
h is the solution from the last time

step. Such an expression can be calculated exactly, if the grid does not change from one time
step to another. Assuming that the finite element spaces are nested, it is also possible to
calculate this expression exactly when the grid was refined, since uold

h belongs to the fine
grid finite element space also. Usually, during coarsening information is lost, since we can
not represent uold

h exactly on a coarser grid. But we can calculate (uold
h , ψi)L2(Ω) exactly on

the fine grid; using the representation of the coarse grid basis functions ϕi by the fine grid
functions ψi, we can transform data during coarsening such that (uold

h , ϕi)L2(Ω) is calculated
exactly for the coarse grid functions too.

More general, assume that the finite element spaces are nested and that we can evaluate
a linear functional f exactly for all basis functions of the fine grid. Knowing the values
fψ = (〈f, ψ1〉, . . . , 〈f, ψk〉)t for the fine grid functions, we obtain with matrix A from (1.25)
for the values fϕ = (〈f, ϕ1〉, . . . , 〈f, ϕm〉)t on the coarse grid

fϕ = Afψ

since

〈f, ϕi〉 = 〈f,
k∑
j=1

aijψ
j〉 =

k∑
j=1

aij〈f, ψj〉

holds (here we used the fact, that ISS0,S1
= id on XS since the spaces are nested).

Thus, given a functional f which we can evaluate exactly for all basis functions of a grid
S̃ and its refinements, we can also calculate 〈f, ϕi〉 exactly for all basis functions ϕi of a grid

34 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

S obtained by refinement and coarsening of S̃ in the following way: First refine all elements of
the grid that have to be refined; calculate 〈f, ϕ〉 for all basis functions ϕ of this intermediate
grid; in the last step coarsen all elements that may be coarsened and restrict this vector
during each coarsening step as described above.

Interpolation during coarsening

Finally, we can interpolate a finite element function during coarsening. The matrix for trans-
forming the coefficient vector uψ = (u1

ψ, . . . , u
k
ψ)t of a fine grid function uh to the coefficient

vector uϕ = (u1
ϕ, . . . , u

m
ϕ)t of the interpolant on the coarse grid is given by matrix B defined

in (1.26):

I
S0,S1

S uh = I
S0,S1

S

k∑
j=1

ujψ ψ
j =

k∑
j=1

ujψ I
S0,S1

S ψj

=
k∑
j=1

ujψ

m∑
i=1

bij ϕ
i =

m∑
i=1

 k∑
j=1

bij u
j
ψ

ϕi.

Thus we have the following equation for the coefficient vector of the interpolant of uh:

uϕ = B uψ.

In contrast to the interpolation during refinement and the above described transformation of
a linear functional, information is lost during an interpolation to the coarser grid.

1.4.1. Example (Lagrange elements). Lagrange finite elements are connected to La-
grange nodes xi. For linear elements, these nodes are the vertices of the triangulation, and
for quadratic elements, the vertices and the edge–midpoints. The Lagrange basis functions{
ϕi
}

satisfy

ϕi(xj) = δij for i, j = 1, . . . ,dimXh.

Consider the situation of a simplex S with children S0, S1. Let
{
ϕi
}
i=1,...,m

be the Lagrange
basis functions of XS with Lagrange nodes

{
xiϕ
}
i=1,...,m

on S and
{
ψj}j=1,...,k be the Lagrange

basis functions of XS0∪S1 with Lagrange nodes
{
xjψ}j=1,...,k on S0 ∪S1. The Matrix A is then

given by

aij = ϕi(xjψ), i = 1, . . . ,m, j = 1, . . . , k

and matrix B is given by

bij = ψj(xiϕ), i = 1, . . . ,m, j = 1, . . . , k.

1.4.5 Discretization of 2nd order problems

In this section we describe the assembling of the discrete system in detail.
We consider the following second order differential equation in divergence form:

Lu := −∇ ·A∇u+ b · ∇u+ c u = f in Ω, (1.27a)
u = g on ΓD, (1.27b)

νΩ ·A∇u = 0 on ΓN , (1.27c)

1.4. FINITE ELEMENT SPACES AND FINITE ELEMENT DISCRETIZATION 35

where A ∈ L∞(Ω;Rd×d), b ∈ L∞(Ω;Rd), c ∈ L∞(Ω), and f ∈ L2(Ω). By ΓD ⊂ ∂Ω (with
|ΓD| 6= 0) we denote the Dirichlet boundary and we assume that the Dirichlet boundary
values g : ΓD → R have an extension to some function g ∈ H1(Ω).

By ΓN = ∂Ω\ΓD we denote the Neumann boundary, and by νΩ we denote the outer normal
vector on ∂Ω. The boundary condition (1.27c) is a so called natural Neumann condition.

Equations (1.27) describe not only a simple model problem. The same kind of equations
result from a linearization of nonlinear elliptic problems (for example by a Newton method)
as well as from a time discretization scheme for (non–) linear parabolic problems.

Setting

X = H1(Ω) and X̊ =
{
v ∈ H1(Ω); v = 0 on ΓD

}
(1.28)

this equation has the following weak formulation: We are looking for a solution u ∈ X, such
that u ∈ g + X̊ and∫

Ω
(∇ϕ(x)) ·A(x)∇u(x) + ϕ(x) b(x) · ∇u(x) + c(x)ϕ(x)u(x) dx =

∫
Ω
f(x)ϕ(x) dx (1.29)

for all ϕ ∈ X̊
Denoting by X̊∗ the dual space of X̊ we identify the differential operator L with the linear

operator L ∈ L(X, X̊∗) defined by〈
Lv, ϕ

〉
X̊∗×X̊ :=

∫
Ω
∇ϕ ·A∇v +

∫
Ω
ϕ b · ∇v +

∫
Ω
c ϕ v for all v, ϕ ∈ X̊ (1.30)

and the right hand side f with the linear functional f ∈ X̊∗ defined by〈
F, ϕ

〉
X̊∗×X̊ :=

∫
Ω
f ϕ for all ϕ ∈ X̊. (1.31)

With these identifications we use the following reformulation of (1.29): Find u ∈ X such
that

u ∈ g + X̊ : Lu = f in X̊∗ (1.32)

holds.
Suitable assumptions on the coefficients imply that L is elliptic, i.e. there is a constant

C = CA,b,c,Ω such that 〈
Lϕ, ϕ

〉
X̊∗×X̊ ≥ C ‖ϕ‖

2
X for all ϕ ∈ X̊.

The existence of a unique solution u ∈ X of (1.32) is then a direct consequence of the
Lax–Milgram–Theorem.

We consider a finite dimensional subspace Xh ⊂ X for the discretization of (1.32) with
N = dim Xh. We set X̊h = Xh ∩ X̊ with N̊ = dim X̊h. Let gh ∈ Xh be an approximation of
g ∈ X. A discrete solution of (1.32) is then given by: Find uh ∈ Xh such that

uh ∈ gh + X̊h : Luh = f in X̊∗h, (1.33)

i.e.

uh ∈ gh + X̊h :
〈
Luh, ϕh

〉
X̊∗h×X̊h

=
〈
f, ϕh

〉
X̊∗h×X̊h

for all ϕh ∈ X̊h

holds. If L is elliptic, we have a unique discrete solution uh ∈ Xh of (1.33), again using the
Lax–Milgram–Theorem.

36 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

Choose a basis
{
ϕ1, . . . , ϕN

}
of Xh such that

{
ϕ1, . . . , ϕN̊

}
is a basis of X̊h. For a function

vh ∈ Xh we denote by v = (v1, . . . , vN) the coefficient vector of vh with respect to the basis{
ϕ1, . . . , ϕN

}
, i.e.

vh =
N∑
j=1

vjϕj .

Using (1.33) with test functions ϕi, i = 1, . . . , N̊ , we get the following N equations for the
coefficient vector u = (u1, . . . , uN) of uh:

N∑
j=1

uj
〈
Lϕj , ϕi

〉
X̊∗h×X̊h

=
〈
f, ϕi

〉
X̊∗h×X̊h

for i = 1, . . . , N̊ , (1.34a)

ui = gi for i = N̊ + 1, . . . , N. (1.34b)

Defining the system matrix L by

L :=



〈
Lϕ1, ϕ1

〉
. . .

〈
LϕN̊ , ϕ1

〉 〈
LϕN̊+1, ϕ1

〉
. . .

〈
LϕN , ϕ1

〉
...

. . .
...

...
. . .

...〈
Lϕ1, ϕN̊

〉
. . .

〈
LϕN̊ , ϕN̊

〉 〈
LϕN̊+1, ϕN̊

〉
. . .

〈
LϕN , ϕN̊

〉
0 . . . 0 1 0 . . . 0
0 . . . 0 0 1 . . . 0
...

. . . 0 0 0
. . .

...
0 . . . 0 0 0 . . . 1


(1.35)

and the right hand side vector or load vector f by

f :=



〈
f, ϕ1

〉
...〈

f, ϕN̊
〉

gN̊+1
...
gN


, (1.36)

we can write (1.34) as the linear N ×N system

Lu = f , (1.37)

which has to be assembled and solved numerically.

1.4.6 Numerical quadrature

For the assemblage of the system matrix and right hand side vector of the linear system
(1.37), we have to compute integrals, for example∫

Ω
f(x)ϕi(x) dx.

For general data A, b, c, and f , these integrals can not be calculated exactly. Quadrature
formulas have to be used in order to calculate the integrals approximately. Numerical in-
tegration in finite element methods is done by looping over all grid elements and using a
quadrature formula on each element.

1.4. FINITE ELEMENT SPACES AND FINITE ELEMENT DISCRETIZATION 37

1.4.2. Definition (Numerical quadrature). A numerical quadrature Q̂ on Ŝ is a set
{(wk, λk) ∈ R × Rd+1; k = 0, . . . , nQ − 1} of weights wk and quadrature points λk ∈ S̄
(i.e. given in barycentric coordinates) such that

∫
Ŝ
f(x̂) dx̂ ≈ Q̂(f) :=

nQ−1∑
k=0

wkf(x̂(λk)).

It is called exact of degree p for some p ∈ N if∫
Ŝ
q(x̂) dx̂ = Q̂(q) for all q ∈ Pp(Ŝ).

It is called stable if

wk > 0 for all k = 0, . . . , nQ − 1.

1.4.3. Remark. A given numerical quadrature Q̂ on Ŝ defines for each element S a numer-
ical quadrature QS . Using the transformation rule we define QS on an element S which is
parameterized by FS : Ŝ → S and a function f : S → R:

∫
S
f(x) dx ≈ QS(f) := Q̂((f ◦ FS)|detDFS |) =

nQ−1∑
k=0

wkf(x(λk))|detDFS(x̂(λk)|. (1.38)

For a simplex S this results in

QS(f) = d! |S|
nQ−1∑
k=0

wkf(x(λk)). (1.39)

1.4.7 Finite element discretization of 2nd order problems

Let P̄ be a finite dimensional function space on S̄ with basis {ϕ̄1, . . . , ϕ̄m}. For a conforming
finite element discretization of (1.29) we use the finite element space Xh = Xh(S, P̄, X). For
this space X̊h is given by Xh(S, P̄, X̊).

By the relation (1.14a) for global and local basis functions, we obtain for the jth compo-
nent of the right hand side vector f〈

f, ϕj
〉

=
∫

Ω
f(x)ϕj(x) dx =

∑
S∈S

∫
S
f(x)ϕj(x) dx =

∑
S∈S

S⊂supp(ϕj)

∫
S
f(x)ϕ̄iS(j)(λ(x)) dx

=
∑
S∈S

S⊂supp(ϕj)

∫
Ŝ
f(FS(x̂))ϕ̄iS(j)(λ(x̂))|detDFS(x̂)| dx̂,

where S is parameterized by FS : Ŝ → S. The above sum is reduced to a sum over all
S ⊂ supp(ϕj) which are only few elements due to the small support of ϕj .

The right hand side vector can be assembled in the following way: First, the right hand
side vector is initialized with zeros. For each element S of S we calculate the element load
vector fS = (f1

S , . . . , f
m
S)t, where

f iS =
∫
Ŝ
f(FS(x̂))ϕ̄i(λ(x̂))|detDFS(x̂)| dx̂, i = 1, . . . ,m. (1.40)

38 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

Denoting again by jS : [1,m] → JS the function which connects the local DOFs with the
global DOFs (defined in (1.14b)), the values f iS are then added to the jS(i)th component of
the right hand side vector f , i = 1, . . . ,m.

For general f , the integrals in (1.40) can not be calculated exactly and we have to use a
quadrature formula for the approximation of the integrals (compare Section 1.4.6). Given a
numerical quadrature Q̂ on Ŝ we approximate

f iS ≈ Q̂
(
(f ◦ FS) (ϕ̄i ◦ λ)|detDFS |

)
=

nQ−1∑
k=0

wkf(x(λk)) ϕ̄i(λk)|detDFS(x̂(λk)|. (1.41)

For a simplex S this is simplified to

f iS ≈ d! |S|
nQ−1∑
k=0

wkf(x(λk)) ϕ̄i(λk). (1.42)

In ALBERT, information about values of basis functions and its derivatives as well as
information about the connection of global and local DOFs (i.e. information about jS) is
stored in special data structures for local basis functions (compare Section 2.5). By such
information, the element load vector can be assembled by a general routine if a function for
the evaluation of the right hand side is supplied. For parametric elements, a function for
evaluating |detDFS | is additionally needed. The assemblage into the global load vector f
can again be performed automatically, using information about the connection of global and
local DOFs.

The calculation of the system matrix is also done element–wise. Additionally, we have to
handle derivatives of basis functions. Looking first at the second order term we obtain by the
chain rule (1.19) and the relation (1.14) for global and local basis functions∫

S
∇ϕi(x) ·A(x)∇ϕj(x) dx =

∫
S
∇(ϕ̄iS(i) ◦ λ)(x) ·A(x)∇(ϕ̄iS(j) ◦ λ)(x) dx

=
∫
S
∇λϕ̄iS(i)(λ(x)) · (Λ(x)A(x) Λt(x))∇λϕ̄iS(j)(λ(x)) dx,

where Λ is the Jacobian of the barycentric coordinates λ on S. In the same manner we obtain
for the first and zero order terms∫

S
ϕi(x) b(x) · ∇ϕj(x) dx =

∫
S
ϕ̄iS(i)(λ(x)) (Λ(x) b(x)) · ∇λϕ̄iS(j)(λ(x)) dx

and ∫
S
c(x)ϕi(x)ϕj(x) dx =

∫
S
c(x) ϕ̄iS(i)(λ(x)) ϕ̄iS(j)(λ(x)) dx.

Using on S the abbreviations

Ā(λ) := (ākl(λ))k,l=0,... ,d := |detDFS(x̂(λ))|Λ(x(λ))A(x(λ)) Λt(x(λ)), (1.43a)

b̄(λ) :=
(
b̄l(λ)

)
l=0,... ,d

:= |detDFS(x̂(λ))|Λ(x(λ)) b(x(λ)), and (1.43b)

c̄(λ) := |detDFS(x̂(λ))| c(x(λ)) (1.43c)

and transforming the integrals to the reference simplex, we can write the element matrix
LS = (LijS)i,j=1,...,m as

LijS =
∫
Ŝ
∇λϕ̄i(λ(x̂)) · Ā(λ(x̂))∇λϕ̄j(λ(x̂)) dx̂+

∫
Ŝ
ϕ̄i(λ(x̂)) b̄(λ(x̂)) · ∇λϕ̄j(λ(x̂)) dx̂

+
∫
Ŝ
c̄(λ(x̂)) ϕ̄i(λ(x̂)) ϕ̄j(λ(x̂)) dx̂, (1.44)

1.4. FINITE ELEMENT SPACES AND FINITE ELEMENT DISCRETIZATION 39

or writing the matrix–vector and vector–vector products explicitly

LijS =
d∑

k,l=0

∫
Ŝ
ākl(λ(x̂)) ϕ̄i,λk(λ(x̂)) ϕ̄j,λl(λ(x̂)) dx̂+

d∑
l=0

∫
Ŝ
b̄l(λ(x̂)) ϕ̄i(λ(x̂)) ϕ̄j,λl(λ(x̂)) dx̂

+
∫
Ŝ
c̄(λ(x̂)) ϕ̄i(λ(x̂)) ϕ̄j(λ(x̂)) dx̂, (1.44’)

i, j = 1, . . . ,m. Using quadrature formulas Q̂2, Q̂1, and Q̂0 for the second, first and zero order
term we approximate the element matrix

LijS ≈ Q̂2

 d∑
k,l=0

(āklϕ̄i,λk ϕ̄
j
,λl

) ◦ λ

+ Q̂1

(
d∑
l=0

(b̄l ϕ̄i ϕ̄
j
,λl

) ◦ λ

)
+ Q̂0

(
(c̄ ϕ̄i ϕ̄j) ◦ λ

)
, (1.45)

i, j = 1, . . . ,m. Having access to functions for the evaluation of

ākl(λq), b̄l(λq), c̄(λq) (1.46)

at all quadrature points λq on S, (1.45) can be computed by some general routine. The
assemblage into the system matrix can also be done automatically (compare the assemblage
of the load vector).

1.4.4. Remark. Due to the small support of the global basis function, the system matrix is
a sparse matrix, i.e. the maximal number of entries in all matrix rows is much smaller than
the size of the matrix. Special data structures are needed for an efficient storage of sparse
matrices and they are described in Section 2.3.4.

1.4.5. Remark. The calculation of the gradient of the barycentric coordinates Λ(x(λ)) usu-
ally involves the determinant of the parameterization’s Jacobian |detDFS(x̂(λ))|. Thus, a
calculation of |detDFS(x̂(λ))|Λ(x(λ))A(x(λ)) Λt(x(λ)) may be much faster than the calcu-
lation of Λ(x(λ))A(x(λ)) Λt(x(λ)) only; the same holds for the first order term.

Assuming that the coefficients A, b, and c are piecewise constant on a non–parametric
triangulation, the abbreviations (1.43) are on each simplex S simplified to

ĀS = (ākl)k,l=0,... ,d = d!|S|ΛA|S Λt, b̄S =
(
b̄l
)
l=0,... ,d

= d!|S|Λ b|S , c̄S = d!|S| c|S . (1.47)

For the approximation of the element matrix by quadrature we then obtain

LijS ≈
d∑

k,l=0

āklQ̂2

(
(ϕ̄i,λk ϕ̄

j
,λl

) ◦ λ
)

+
d∑
l=0

b̄l Q̂1

(
(ϕ̄i ϕ̄j,λl) ◦ λ

)
+ c̄S Q̂0

(
(ϕ̄i ϕ̄j) ◦ λ

)
(1.48)

i, j = 1, . . . ,m. Here, the numerical quadrature only involves basis functions on the standard
simplex. Theses values have to be computed only once, and can then be used on each simplex
S. This will speed up the assembling of the system matrix. Additionally, for polynomial basis
functions we can use quadrature formulas which integrate these integrals exactly.

As a result, using information about values of basis functions and their derivatives, and
information about the connection of global and local DOFs, the linear system can be assem-
bled automatically by some general routines. Only functions for the evaluation of given data
have to be provided for special applications. The general assemble routines are described in
Section 2.12.

40 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

1.5 Adaptive Methods

The aim of adaptive methods is the generation of a mesh which is adapted to the problem
such that a given criterion, like a tolerance for the estimated error between exact and discrete
solution, if fulfilled by the finite element solution on this mesh. An optimal mesh should be as
coarse as possible while meeting the criterion, in order to save computing time and memory
requirements. For time dependent problems, such an adaptive method may include mesh
changes in each time step and control of time step sizes.

The philosophy implemented in ALBERT is to change meshes successively by local re-
finement or coarsening, based on error estimators or error indicators, which are computed a
posteriori from the discrete solution and given data on the current mesh.

1.5.1 Adaptive method for stationary problems

Let us assume that a triangulation S of Ω, a finite element solution uh ∈ Xh to an elliptic
problem, and an a posteriori error estimate

‖u− uh‖ ≤ η(uh) =

(∑
S∈S

ηS(uh)p
)1/p

, p ∈ [1,∞) (1.49)

on this mesh are given. If tol is a given allowed tolerance for the error, and η(uh) > tol , the
problem arises

• where to refine the mesh in order to reduce the error,

• while at the same time the number of unknowns should not become too large.

A global refinement of the mesh would lead to the best reduction of the error, but the
amount of new unknowns might be much larger than needed to reduce the error below the
given tolerance. Using local refinement, we hope to do much better.

The design of an “optimal” mesh, where the number of unknowns is as small as possible to
keep the error below the tolerance, is an open problem and will probably be much too costly.
Especially in the case of linear problems, the design of an optimal mesh will be much more
expensive than the solution of the original problem, since the mesh optimization is a highly
nonlinear problem. Usually, some heuristic arguments are then used in the algorithm. The
aim is to produce a result that is “not too far” from an optimal mesh, but with a relatively
small amount of additional work to generate it.

Several adaptive strategies are proposed in the literature, that give criteria which mesh
elements should be marked for refinement. All strategies are based on the idea of an equidis-
tribution of the local error to all mesh elements. Babuška and Rheinboldt [1] motivate that
a mesh is almost optimal when the local errors are approximately equal for all elements. So,
elements where the error indicator is large will be marked for refinement, while elements with
a small error indicator are left unchanged.

The general outline of the adaptive algorithm for a stationary problem is the following.
Starting from an initial triangulation S0, we produce a sequence of triangulations Sk, k =
1, 2, . . . , until the estimated error is below the given tolerance:

1.5.1. Algorithm (General adaptive refinement strategy).

Start with S0 and error tolerance tol

k := 0

1.5. ADAPTIVE METHODS 41

solve the discrete problem on Sk
compute global error estimate η and local indicators ηS, S ∈ Sk
while η > tol do

mark elements for refinement (or coarsening)
adapt mesh Sk, producing Sk+1

k := k + 1
solve the discrete problem on Sk
compute global error estimate η and local indicators ηS, S ∈ Sk

end while

1.5.2 Mesh refinement strategies

Since a discrete problem has to be solved in every iteration of this algorithm, the number of
iterations should be as small as possible. Thus, the marking strategy should select not too
few mesh elements for refinement in each cycle. On the other hand, not much more elements
should be selected than is needed to reduce the error below the given tolerance.

In the sequel, we describe several marking strategies that are commonly used in adaptive
finite element methods.

The basic assumption for all marking strategies is the fact that the mesh is “optimal”
when the local error is the same for all elements of the mesh. This optimality can be shown
under some heuristic assumptions, see [1]. As a consequence, elements with a large local error
indicator should be refined, while elements with a very small local error indicator may be
coarsened.

Global refinement: The simplest strategy is not really “adaptive” at all, at least not
producing a locally refined mesh. It refines the mesh globally, until the given tolerance is
reached.

If an a priori estimate for the error in terms of the maximal size of a mesh element h is
known, where the error is bounded by a positive power of h, and if the error estimate tends
to zero if the error gets smaller, then this strategy is guaranteed to produce a mesh and a
discrete solution which meets the error tolerance.

But, in most cases, global refinement produces far too much mesh elements than are
needed to meet the error tolerance.

Maximum strategy: Another simple strategy is the maximum strategy. A threshold γ ∈
(0, 1) is given, and all elements S ∈ Sk with

ηS > γ max
S′∈Sk

ηS′ (1.50)

are marked for refinement. A small γ leads to more refinement and maybe non–optimal
meshes, while a large γ leads to more cycles until the error tolerance is reached, but usually
produces a mesh with less unknowns. Typically, a threshold value γ = 0.5 is used when the
power p in (1.49) is p = 2 [39, 40].

1.5.2. Algorithm (Maximum strategy).

Given parameter γ ∈ (0, 1)

ηmax := max(ηS, S ∈ Sk)
for all S in Sk do

if ηS > γ ηmax then mark S for refinement
end for

42 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

Equidistribution strategy: Let Nk be the number of mesh elements in Sk. If we assume
that the error is equidistributed over all elements, i. e. ηS = ηS′ for all S, S′ ∈ Sk, then

η =

∑
S∈Sh

ηpS

1/p

= N
1/p
k ηS

!= tol and ηS =
tol

N
1/p
k

.

We can try to reach this equidistribution by refining all elements where it is violated because
the error indicator is larger than tol/N1/p

k . To make the procedure more robust, a parameter
θ ∈ (0, 1), θ ≈ 1, is included in the method.

1.5.3. Algorithm (Equidistribution strategy[19]).

Start with parameter θ ∈ (0, 1), θ ≈ 1

for all S in Sk do

if ηS > θtol/N1/p
k then mark S for refinement

end for

If the error η is already near tol , then the choice θ = 1 leads to the selection of only very
few elements for refinement, which results in more iterations of the adaptive process. Thus,
θ should be chosen smaller than 1, for example θ = 0.9. Additionally, this accounts for the
fact that Nk+1 > Nk, and thus the tolerance for local errors will be smaller after refinement.

Guaranteed error reduction strategy: Usually, it is not clear whether the adaptive
refinement strategy Algorithm 1.5.1 using a marking strategy (other than global refinement)
will converge and stop. Dörfler [15] describes a strategy with a guaranteed relative error
reduction for the Poisson equation.

We need the assumptions, that

- given data of the problem (like the right hand side) is sufficiently resolved by the current
mesh Sk (such that, for example, errors from the numerical quadrature are negligible),

- all edges of marked mesh elements are at least bisected by the refinement procedure
(using regular refinement or two/three iterated bisections of triangles/tetrahedra, for
example).

The idea is to refine a subset of the triangulation whose element errors sum up to a fixed
amount of the total error η. Given a parameter θ∗ ∈ (0, 1), the procedure is:

Mark a set A ⊆ Sk such that
∑
S∈A

ηpS ≥ (1− θ∗)pηp .

It follows from the assumptions that the error will be reduced by at least a factor κ < 1
depending of θ∗ and data of the problem. Selection of the set A can be done in the following
way. The maximum strategy threshold γ is reduced in small steps of size ν ∈ (0, 1), ν << 1,
until the maximum strategy marks a set which is large enough. This inner iteration is not
costly in terms of CPU time as no computations are performed.

1.5.4. Algorithm (Guaranteed error reduction strategy[15]).

Start with given parameters θ∗ ∈ (0, 1), ν ∈ (0, 1)

ηmax := max(ηS, S ∈ Sk)
sum := 0

1.5. ADAPTIVE METHODS 43

γ := 1
while sum < (1− θ∗)pηp do
γ := γ − ν
for all S in Sk do

if S is not marked
if ηS > γ ηmax

mark S for refinement
sum := sum + ηpS

end if
end if

end for
end while

Using the above algorithm, Dörfler [14] describes a robust adaptive strategy also for the
nonlinear Poisson equation −∆u = f(u). It is based on a posteriori error estimates and a
posteriori saturation criteria for the approximation of the nonlinearity.

1.5.5. Remark. Using this GERS strategy and an additional marking of elements due to
data approximation, Morin, Nochetto, and Siebert [30] could remove the assumption that
data is sufficiently resolved on Sk in order to prove convergence. The result is a simple
and efficient adaptive finite element method for linear elliptic PDEs with a linear rate of
convergence without any preliminary mesh adaptation.

Other refinement strategies: Babuška and Rheinboldt [1] describe an extrapolation
strategy, which estimates the local error decay. Using this estimate, refinement of elements is
done when the actual local error is larger than the biggest expected local error after refine-
ment.

Jarausch [23] describes a strategy which generates quasi–optimal meshes. It is based on
an optimization procedure involving the increase of a cost function during refinement and
the profit while minimizing an energy functional.

For special applications, additional information may be generated by the error estima-
tor and used by the adaptive strategy. This includes (anisotropic) directional refinement of
elements [25, 36], or the decision of local h– or p–enrichment of the finite element space
[11, 32].

1.5.3 Coarsening strategies

Up to now we presented only refinement strategies. Practical experience indicates that for
linear elliptic problems, no more is needed to generate a quasi–optimal mesh with nearly
equidistributed local errors.

In time dependent problems, the regions where large local errors are produced can move
in time. In stationary nonlinear problems, a bad resolution of the solution on coarse meshes
may lead to some local refinement where it is not needed for the final solution, and the mesh
could be coarsened again. Both situations result in the need to coarsen the mesh at some
places in order to keep the number of unknowns small.

Coarsening of the mesh can produce additional errors. Assuming that these are bounded
by an a posteriori estimate ηc,S , we can take this into account during the marking procedure.

Some of the refinement strategies described above can also be used to mark mesh elements
for coarsening. Actually, elements will only be coarsened if all neighbour elements which are
affected by the coarsening process are marked for coarsening, too. This makes sure that

44 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

only elements where the error is small enough are coarsened, and motivates the coarsening
algorithm in Section 1.1.2.

The main concept for coarsening is again the equidistribution of local errors mentioned
above. Only elements with a very small local error estimate are marked for coarsening. On
the other hand, such a coarsening tolerance should be small enough such that the local error
after coarsening should not be larger than the tolerance used for refinement. If the error after
coarsening gets larger than this value, the elements would be directly refined again in the
next iteration (which may lead to a sequence of oscillating grid never meeting the desired
criterion).

Usually, an upper bound µ for the mesh size power of the local error estimate is known,
which can be used to determine the coarsening tolerance: if

ηS ≤ chµS ,

then coarsening by undoing b bisections will enlarge the local error by a factor smaller than
2µb/DIM, such that the local coarsening tolerance tolc should be smaller than

tolc ≤
tolr

2µb/DIM
,

where tolr is the local refinement tolerance.

Maximum strategy: Given two parameters γ > γc, refine all elements S with

ηpS > γ max
S′∈Sk

ηpS′

and mark all elements S with

ηpS + ηpc,S ≤ γc max
S′∈Sk

ηpS′

for coarsening.

Equidistribution strategy: Equidistribution of the tolerated error tol leads to

ηS ≈
tol

N
1/p
k

for all S ∈ S.

If the local error at an element is considerably smaller than this mean value, we may coarsen
the element without producing an error that is too large. All elements with

ηS > θ
tol

N
1/p
k

are marked for refinement, while all elements with

ηS + ηc,S ≤ θc
tol

N
1/p
k

are marked for coarsening.

1.5. ADAPTIVE METHODS 45

Guaranteed error reduction strategy: Similar to the refinement in Algorithm 1.5.4,
Dörfler [16] describes a marking strategy for coarsening. Again, the idea is to coarsen a
subset of the triangulation such that the additional error after coarsening is not larger than
a fixed amount of the given tolerance tol . Given a parameter θc ∈ (0, 1), the procedure is:

Mark a set B ⊆ Sk such that
∑
S∈B

ηpS + ηpc,S ≤ θ
p
cη
p .

The selection of the set B can be done similar to Algorithm 1.5.4.

1.5.6. Remark. When local h– and p–enrichment and coarsening of the finite element space
is used, then the threshold θc depends on the local degree of finite elements. Thus, local
thresholds θc,S have to be used.

Handling information loss during coarsening: Usually, some information is irre-
versibly destroyed during coarsening of parts of the mesh, compare Section 2.3.3. If the
adaptive procedure iterates several times, it may occur that elements which were marked for
coarsening in the beginning are not allowed to coarsen at the end. If the mesh was already
coarsened, an error is produced which can not be reduced anymore.

One possibility to circumvent such problems is to delay the mesh coarsening until the
final iteration of the adaptive procedure, allowing only refinements before. If the coarsening
marking strategy is not too liberal (θc not too large), this should keep the error below the
given bound.

Dörfler [16] proposes to keep all information until it is clear, after solving and by estimating
the error on a (virtually) coarsened mesh, that the coarsening does not lead to an error which
is too large.

1.5.4 Adaptive methods for time dependent problems

In time dependent problems, the mesh is adapted to the solution in every time step using
a posteriori error estimators or indicators. This may be accompanied by an adaptive control
of time step sizes, see below.

Bänsch [3] lists several different adaptive procedures (in space) for time dependent prob-
lems:

• Explicit strategy: The current time step is solved once on the mesh from the previous
time step, giving the solution uh. Based on a posteriori estimates of uh, the mesh is
locally refined and coarsened. The problem is not solved again on the new mesh, and
the solve–estimate–adapt process is not iterated.
This strategy is only usable when the solution is nearly stationary and does not change
much in time, or when the time step size is very small. Usually, a given tolerance for
the error can not be guaranteed with this strategy.

• Semi–implicit strategy: The current time step is solved once on the mesh from the
previous time step, giving an intermediate solution ũh. Based on a posteriori estimates
of ũh, the mesh is locally refined and coarsened. This produces the final mesh for the
current time step, where the discrete solution uh is computed. The solve–estimate–
adapt process is not iterated.
This strategy works quite well, if the time steps are not too large, such that regions of
refinement move too fast.

46 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

• Implicit strategy A: In every time step starting from the previous time step’s triangu-
lation, a mesh is generated using local refinement and coarsening based on a posteriori
estimates of a solution which is calculated on the current mesh. This solve–estimate–
adapt process is iterated until the estimated error is below the given bound.
This guarantees that the estimated error is below the given bound. Together with an
adaptive control of the time step size, this leads to global (in time) error bounds. If
the time step size is not too large, the number of iterations of the solve–estimate–adapt
process is usually very small.

• Implicit strategy B: In every time step starting from the macro triangulation, a mesh
is generated using local refinements based on a posteriori estimates of a solution which
is calculated on the current (maybe quite coarse) mesh; no mesh coarsening is needed.
This solve–estimate–adapt process is iterated until the estimated error is below the
given bound.
Like implicit strategy A, this guarantees error bounds. As the initial mesh for every
time step is very coarse, the number of iterations of the solve–estimate–adapt process
becomes quite large, and thus the algorithm might become expensive. On the other
hand, a solution on a coarse grid is fast and can be used as a good initial guess for finer
grids, which is usually better than using the solution from the old time step.
Implicit strategy B can also be used with anisotropically refined triangular meshes, see
[20]. As coarsening of anisotropic meshes and changes of the anisotropy direction are
still open problems, this implies that the implicit strategy A can not be used in this
context.

The following algorithm implements one time step of the implicit strategy A. The adaptive
algorithm ensures that the mesh refinement/coarsening is done at least once in each time step,
even if the error estimate is below the limit. Nevertheless, the error might be not equally
distributed between all elements; for some simplices the local error estimates might be bigger
than allowed.

1.5.7. Algorithm (Implicit strategy A).

Start with given parameters tol and time step size τ,
the solution un from the previous time step on grid Sn
Sn+1 := Sn
solve the discrete problem for un+1 on Sn+1 using data un
compute error estimates on Sn+1

do
mark elements for refinement or coarsening
if elements are marked then

adapt mesh Sn+1 producing a modified Sn+1

solve the discrete problem for un+1 on Sn+1 using data un
compute error estimates on Sn+1

end if
while η > tol

Adaptive control of the time step size

A posteriori error estimates for parabolic problems usually consist of four different types of
terms:
• terms estimating the initial error;

1.5. ADAPTIVE METHODS 47

• terms estimating the error from discretization in space;
• terms estimating the error from mesh coarsening between time steps;
• terms estimating the error from discretization in time.

Thus, the total estimate can be split into parts

η0, ηh, ηc, and ητ

estimating these four different error parts.

Example: Eriksson and Johnson [19] prove an a posteriori error estimate for the discon-
tinuous Galerkin time discretization of the heat equation

ut −∆u = f in Ω, u|∂Ω
= 0, u|t=0

= u0;

the error estimate for piecewise constant time discretization and piecewise linear discretization
in space is given by

‖u(tN)− UN‖ ≤ ‖u0 − U0‖+ max
1≤n≤N

(
C1‖h2

nf‖L∞(In,L2(S)) + C2

∫
In

‖f‖ dt

+C3

(∑
e∈En

h4
e

∣∣∣[∂Un
∂νe

]∣∣∣2)1/2
+ C4‖Un − Un−1‖+ C5

∥∥∥h2
n

[Un−1]
τn

∥∥∥),
where Un is the discrete solution on In := (tn−1, tn), τn = tn − tn−1 is the nth time step size,
[·] denotes jumps over edges or between time intervals, and ‖ · ‖ denotes the norm in L2(Ω).
The last term C5‖ . . . ‖ is present only in case of mesh coarsening. The constants Ci depend
on the time tN and the size of the last time step: Ci = Ci(log(tNτN)).

This leads to the following error estimator parts:

η0 = ‖u0 − U0‖,

ηh =
∑
S∈Sn

(
C̃1‖h2

nf‖L∞(In,L2(S)) + C̃3

(1
2

∑
e⊂∂S

h4
e

∣∣∣[∂Un
∂νe

]∣∣∣2)1/2
)
,

ηc =
∑
S∈Sn

(
C̃5

∥∥∥h2
n

[Un−1]
τn

∥∥∥
L2(S)

)
,

ητ = τn

(
C2‖f‖L∞(In,L2(S)) + C4

∥∥∥Un − Un−1

τn

∥∥∥).
When a bound tol is given for the total error produced in each time step, the widely

used strategy is to allow one fixed portion Γh tol to be produced by the spatial discretization,
and another portion Γτ tol of the error to be produced by the time discretization, with
Γh + Γτ ≤ 1.0. The adaptive procedure now tries to adjust time step sizes and meshes such
that in every time step

ητ ≈ Γτ tol and ηh + ηc ≈ Γh tol .

The adjustment of the time step size can be done via extrapolation techniques known
from numerical methods for ordinary differential equations, or iteratively: The algorithm
starts from the previous time step size τold or from an initial guess. A parameter δ1 ∈ (0, 1)
is used to reduce the step size until the estimate is below the given bound. If the error is
smaller than the bound, the step size is enlarged by a factor δ2 > 1 (usually depending on the

48 CHAPTER 1. CONCEPTS AND ABSTRACT ALGORITHMS

order of the time discretization). In this case, the actual time step is not recalculated, only
the initial step size for the next time step is changed. Two additional parameters θ1 ∈ (0, 1),
θ2 ∈ (0, θ1) are used to keep the algorithm robust, just like it is done in the equidistribution
strategy for the mesh adaption. The algorithm starts from the previous time step size τold or
from an initial guess.

If δ1 ≈ 1, consecutive time steps may vary only slightly, but the number of iterations
for getting the new accepted time step may increase. Again, as each iteration includes the
solution of a discrete problem, this value should be chosen not too large. For a first order
time discretization scheme, a common choice is δ1 ≈ 0.5, for example.

1.5.8. Algorithm (Time step size control).

Start with parameters δ1 ∈ (0, 1), δ2 > 1, θ1 ∈ (0, 1), θ2 ∈ (0, θ1)

τ := τold

Solve time step problem and estimate the error
while ητ > θ1 Γτ tol do
τ := δ1 τ
Solve time step problem and estimate the error

end while
if ητ ≤ θ2 Γτ tol then
τ := δ2 τ

end if

The above algorithm controls only the time step size, but does not show the mesh adap-
tion. There are several possibilities to combine both controls. An inclusion of the grid adaption
in every iteration of Algorithm 1.5.8 can result in a large number of discrete problems to solve,
especially if the time step size is reduced more than once. A better procedure is first to do
the step size control with the old mesh, then adapt the mesh, and after this check the time
error again. In combination with implicit strategy A, this procedure leads to the following
algorithm for one single time step

1.5.9. Algorithm (Time and space adaptive algorithm).

Start with given parameter tol, δ1 ∈ (0, 1), δ2 > 1, θ1 ∈ (0, 1), θ2 ∈ (0, θ1),
the solution un from the previous time step on grid Sn at time tn
with time step size τn

Sn+1 := Sn
τn+1 := τn
tn+1 := tn + τn+1

solve the discrete problem for un+1 on Sn+1 using data un
compute error estimates on Sn+1

while ητ > θ1 Γτ tol
τn+1 := δ1 τn+1

tn+1 := tn + τn+1

solve the discrete problem for un+1 on Sn+1 using data un
compute error estimates on Sn+1

end while

do
mark elements for refinement or coarsening
if elements are marked then

1.5. ADAPTIVE METHODS 49

adapt mesh Sn+1 producing a modified Sn+1

solve the discrete problem for un+1 on Sn+1 using data un
compute estimates on Sn+1

end if
while ητ > θ1 Γτ tol
τn+1 := δ1 τn+1

tn+1 := tn + τn+1

solve the discrete problem for un+1 on Sn+1 using data un
compute error estimates on Sn+1

end while
while ηh > tol

if ητ ≤ θ2 Γτ tol then
τn+1 := δ2 τn+1

end if

The adaptive a posteriori approach can be extended to the adaptive choice of the order
of the time discretization: Bornemann [6, 7, 8] describes an adaptive variable order time
discretization method, combined with implicit strategy B using the extrapolation marking
strategy for the mesh adaption.

Chapter 2

Data structures and
implementation

The ALBERT toolbox provides two header files albert util.h and albert.h, which con-
tain the definitions of all data structures, macros, and subroutine prototypes. The file
albert util.h is included in the header file albert.h.

2.1 Basic types, utilities, and parameter handling

The file albert util.h contains some type definitions and macro definitions for memory
(de-) allocation and messages, which we describe briefly in this section. The following system
header files are included in albert util.h

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <float.h>

2.1.1 Basic types

ALBERT uses the following basis symbolic constants and macro definition:

#define true 1
#define false 0
#define nil NULL
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define ABS(a) ((a) >= 0 ? (a) : -(a))
#define SQR(a) ((a)*(a))

In order to store information in a compact way, we define two bit fields U CHAR and S CHAR:

typedef unsigned char U_CHAR;
typedef signed char S_CHAR;

The mesh traversal routines need flags which are stored in the data type FLAGS:

typedef unsigned long FLAGS;

By the data type REAL the user can specify to store floating point values in the type float
or double. All pointers to variables or vectors of floating point values have to be defined as
REAL!

50

2.1. BASIC TYPES, UTILITIES, AND PARAMETER HANDLING 51

typedef double REAL;

The use of float is also possible, but it is not guaranteed to work and may lead to problems
when using other libraries (like libs for linear solver or graphics, e.g.).

2.1.2 Message macros

There are several macros to write messages and error messages. Especially for error messages
the exact location of the error is of interest. Thus, error messages are preceded by the name
of the source file and the line number at that this error was detected. Such information
is produced by the C-preprocessor. Additionally, the name of the function is printed. Since
there is no symbolic constant defined by the C-preprocessor holding the function name, in
each function a string funcName containing the name of the function has to be defined. This
is usually done by the macro FUNCNAME

#define FUNCNAME(nn) const char *funcName = nn

as the first declaration:

2.1.1. Example (FUNCNAME).

static void refine_element(EL *el)
{

FUNCNAME("refine_element");

...
}

All message macros use this local variable funcName and it has to be defined in each
function.

Usual output to stdout is done by the macro MSG() which has the same arguments as
printf():

MSG(char *format, ...);

The format string should be ended with the newline character ‘\n’. MSG() usually precedes
the message by the function’s name. If the last message was produced by the same function,
the function’s name is omitted and the space of the name is filled with blanks.

If the format string of MSG() does not end with the newline character, and one wants to
print more information to the same line, this can be done by print msg() which again has
the same arguments as printf():

print_msg(char *format, ...);

2.1.2. Example (MSG(), print msg()).

static void refine_element(EL *el)
{

FUNCNAME("refine_element");

...

MSG("refining element %d\n", INDEX(el));
MSG("neighbours of element: ");
for (i = 0; i < N_VERTICES-1; i++)

print_msg("%d, ", INDEX(NEIGH(el)[i]));
print_msg("%d\n", INDEX(NEIGH(el)[N_VERTICES-1]));

}

52 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

produces for instance output

refine_element: refining element 10
neighbours of element: 0, 14, 42

Often it is useful to suppress messages or to give only information up to a suitable level.
There are two ways for defining such a level of information. The first one is a local level,
which is determined by some variable in a function; the other one is a global restriction for
information. For this global restriction a global variable

int msg_info = 10;

is defined with an default value of 10. Using one of the macros

#define INFO(info,noinfo)\
if (!(msg_info&&(MIN(msg_info,(info))>=(noinfo))));else MSG

#define PRINT_INFO(info,noinfo)\
if (!(msg_info&&(MIN(msg_info,(info))>=(noinfo))));else print_msg

only messages are produced by INFO() or PRINT INFO() if msg info is non zero and the value
MIN(msg info, info) is greater or equal noinfo, where noinfo denotes some local level of
information. Thus after setting msg info = 0, no further messages are produced. Changing
the value of this variable via a parameter file is described below in Section 2.1.5.

2.1.3. Example (INFO(), PRINT INFO()).

static void refine_element(EL *el)
{

FUNCNAME("refine_element");

...

INFO(info,4)("refining element %d\n", INDEX(el));
INFO(info,6)("neighbours of element: ");
for (i = 0; i < N_VERTICES-1; i++)

PRINT_INFO(info,6)("%d, ", INDEX(NEIGH(el)[i]));
PRINT_INFO(info,6)("%d\n", INDEX(NEIGH(el)[N_VERTICES-1]));

}

will print the element index, if the value of the global variable info ≥ 4 and additionally the
indices of neighbours if info ≥ 6.

For error messages macros ERROR and ERROR EXIT are defined. ERROR has the same func-
tionality as the MSG macro but the output is piped to stderr. ERROR EXIT exits the program
after using the ERROR macro with return value 1:

ERROR(char *format, ...);
ERROR_EXIT(char *format, ...);

Furthermore, two macros for testing boolean values are available:

#define TEST(test) if(test); else ERROR
#define TEST_EXIT(test) if(test); else ERROR_EXIT

If test is not true both macros will print an error message. TEST will continue the program
afterwards, meanwhile TEST EXIT will exit the program with return value 1.

Error messages can not be suppressed and the information variable msg info does not
influence these error functions.

2.1.4. Example (TEST(), TEST EXIT()).

2.1. BASIC TYPES, UTILITIES, AND PARAMETER HANDLING 53

static void refine_element(EL *el)
{

FUNCNAME("refine_element");

TEST_EXIT(el)("no element for refinement\n");
...

}

Finally, there exists a macro WARNING for writing warnings to the same stream as for
messages. Each warning is preceeded by the word WARNING. Warnings can not be suppressed
by the information variable msg info.

WARNING(char *format, ...);

Sometimes it may be very useful to write messages to file, or write parts of messages to
file. By the functions

void change_msg_out(FILE *fp);
void open_msg_file(const char *filename, const char *type);

the user can select a new stream or file for message output. Using the first routine,
the user directly specifies the new stream fp. If this stream is non nil, all messages are
flushed to this stream, otherwise ALBERT will use the old stream furthermore. The function
open msg file() acts like change msg out(fopen(filename, type)).

Similar functions are available for error messages and they act in the same manner on the
output stream for error messages:

void change_error_out(FILE *fp);
void open_error_file(const char *filename, const char *type);

For setting breakpoints in the program two macros

WAIT
WAIT_REALLY

are defined.

WAIT: this macro uses a global variable msg wait and if the value of this variable is not
zero the statement WAIT; will produce the message

wait for <enter> ...

and will continue after pressing the enter or return key. If the value of msg wait is zero,
no message is produced and the program continues. The value of msg wait can be modified
by the parameter tools (see Section 2.1.5);

WAIT REALLY: the statement WAIT REALLY will always produce the above message and will
wait for pressing the enter or return key.

2.1.3 Memory allocation and deallocation

Various functions and macros for memory allocation and deallocation are implemented. The
basic ones are

void *albert_alloc(size_t size, const char *name, const char *file, int line);
void *albert_realloc(void *ptr, size_t o_size, size_t n_size,

const char *name, const char *file, int line);
void *albert_calloc(size_t n_el, size_t el_size,

const char *name, const char *file, int line);
void albert_free(void *ptr, size_t size);

54 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

In the following name is a pointer to the string holding the function name of the calling
function (defined by the FUNCNAME macro, e.g.), file a pointer to the string holding the
name of the source file (generated by the FILE CPP macro) and line is the line number of
the call (generated by the LINE CPP macro). All functions will exit the running program
with an error message, if the size to be allocated is 0 or the memory allocation by the system
functions fails.

albert alloc(size, name, file, line): returns a pointer to a block of memory of at
least the number of bytes specified by size;

albert realloc(ptr, o size, n size, name, file, line): changes the size of the
block of memory pointed to by the pointer ptr to the number of bytes specified by n size,
and returns a pointer to the block. The contents of the block remain unchanged up to the
lesser of the o size and n size; if necessary, a new block is allocated, and data is copied
to it; if the ptr is a nil pointer, the albert realloc() function allocates a new block of
the requested size;

albert calloc(n el, el size, name, file, line): returns a pointer to a vector with
the n el number of elements, where each element is of the size el size; the space is
initialized to zeros;

albert free(ptr, size): frees the block of memory pointed to by the argument ptr for
further allocation; ptr must have been previously allocated by either albert alloc(),
albert realloc(), or albert calloc().

A more comfortable way to use these functions, is the use of the following macros:

TYPE* MEM_ALLOC(size_t n, TYPE);
TYPE* MEM_REALLOC(TYPE *ptr, size_t n_old, size_t n_new, TYPE);
TYPE* MEM_CALLOC(size_t n, TYPE);
TYPE* MEM_FREE(TYPE *ptr, size_t n, TYPE);

They supply the above described functions with the function name, file name and line number
automatically. For an allocation by these macros, the number of elements and the data type
have to be specified; the actual size in bytes is computed automatically. Additionally, casting
to the correct type is performed.

MEM ALLOC(n, TYPE): returns a pointer to a vector of type TYPE with the n number of
elements;

MEM REALLOC(ptr, n old, n new, TYPE): reallocates the vector of type TYPE at pointer
ptr with n old elements for n new elements; values of the vector are not changed for all
elements up to the minimum of n old and n new; returns a pointer to the new vector;

MEM CALLOC(n, TYPE): returns a pointer to a vector of type TYPE with the n number of
elements; the elements are initialized to zeros;

MEM FREE(ptr, n, TYPE): frees a vector of type TYPE with n number of elements at ptr,
allocated previously by either MEM ALLOC(), MEM REALLOC(), or MEM CALLOC().

2.1.5. Example (MEM ALLOC(), MEM FREE()).

REAL *u = MEM_ALLOC(10, REAL);
...
MEM_FREE(u, 10, REAL);

allocates a vector of 10 REALs and frees this vector again.

For some applications matrices are needed too. Matrices can be allocated and freed by
the functions

2.1. BASIC TYPES, UTILITIES, AND PARAMETER HANDLING 55

void **albert_matrix(size_t nr, size_t nc, size_t el_size,
const char *name, const char *file, int line);

void free_albert_matrix(void **ptr, int nc int nr, size_t el_size);

albert matrix(nr, nc, el size, name, file, line): returns a pointer **ptr to a
matrix with nr number of rows and nc number of columns, where each element is of
size el size; name is a string holding the name of the calling function, file a string
holding the name of the source file and line the line number of the call;

free albert matrix(ptr, nr, nc, el size): frees the matrix pointed to by ptr, pre-
viously allocated by albert matrix().

Again, the following macros simplify the use of the above functions:

TYPE** MAT_ALLOC(size_t nr, size_t nc, TYPE);
void MAT_FREE(TYPE **ptr, size_t nr, size_t nc, TYPE);

They supply the above described functions with the function name, file name and line number
automatically. These macros need the type of the matrix elements instead of the size. Casting
to the correct type is performed.

MAT ALLOC(nr,nc,type): returns a pointer **ptr to a matrix with elements ptr[i][j]
of type TYPE and indices in the range 0 ≤ i < nr and 0 ≤ j < nc;

MAT FREE(ptr,nr,nc,type): frees a matrix allocated by MAT ALLOC();

Many subroutines need additional workspace for storing vectors, etc. (linear solvers like
conjugate gradient methods, e.g.). Many applications need such kinds of workspaces for sev-
eral functions. In order to make handling of such workspaces easy, a data structure WORKSPACE
is available. In this data structure a pointer to the workspace and the actual size of the
workspace is stored.

typedef struct workspace WORKSPACE;

struct workspace
{
size_t size;
void *work;

};

The members yield following information:

size: actual size of the workspace in bytes;

work: pointer to the workspace;

A workspace can be accessed by the function

WORKSPACE *realloc_workspace(WORKSPACE *work_space, size_t size,
const char *name, const char *file, int line);

Description:

realloc workspace(work space, size, name, file, line): return value is a pointer
to a WORKSPACE structure holding a vector of at least length size bytes; the member size
holds the true length of the vector work; if work space is a nil pointer, a new WORKSPACE
structure is allocated; name is a string holding the name of the calling function, file a
string holding the name of the source file and line the line number of the call;

The macro

WORKSPACE* REALLOC_WORKSPACE(WORKSPACE*ws, size_t size)

56 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

simplifies the use of realloc workspace() by supplying the function with name, file, and
line.

REALLOC WORKSPACE(ws, size): returns a pointer to WORKSPACE structure holding a vec-
tor of at least length size bytes; the member size holds the true length of the vector
work; if ws is a nil pointer, a new WORKSPACE structure is allocated;

The functions

void clear_workspace(WORKSPACE *ws);
void free_workspace(WORKSPACE *ws);

are used for WORKSPACE deallocation. Description:

clear workspace(ws): frees the vector ws->work and sets ws->work to nil and ws->size
to 0; the structure ws is not freed;

free workspace(ws): frees the vector ws->work and then the structure ws.

2.1.4 Parameters and parameter files

Many procedures need parameters, for example the maximal number of iterations for an iter-
ative solver, the tolerance for the error in the adaptive procedure, etc. It is often very helpful
to change the values of these parameters without recompiling the program by initializing
them from a parameter file.

In order to avoid a fixed list of parameters, we use the following concept: Every parameter
consists of two strings: a key string by which the parameter is identified, and a second string
containing the parameter values. These values are stored as ASCII-characters and can be
converted to int, REAL, etc. according to a format specified by the user (see below). Using
this concept, parameters can be accessed at any point of the program.

Usually parameters are initialized from parameter files. Each line of the file describes
either a single parameter: the key definition terminated by a ’:’ character followed by the
parameter values, or specifies another parameter file to be included at that point (this can
also be done recursively). The syntax of these files is described below and an example is given
at the end of this section.

Parameter files

The definition of a parameter has the following syntax:

key: parameter values % optional comment

Lines are only read up to the first occurrence of the comment sign ’%’. All characters behind
this sign in the same line are ignored. The comment sign may be a character of the specified
filename in an include statement (see below). In this case, ’%’ is treated as a usual character.

The definition of a new parameter consists out of a key string and a string containing
the parameter values. The definition of the key for a new parameter has to be placed in
one line before the first comment sign. For the parameter values a continuation line can be
used (see below). The key string is a sequence of arbitrary characters except ’:’ and the
comment character. It is terminated by ’:’, which does not belong to the key string. A key
may contain blanks. Optional white space characters as blanks, tabs, etc. in front of a key
and in between ’:’ and the first character of the parameter value are discarded.

Each parameter definition must have at least one parameter value, but it can have more
than one. If there are no parameter values specified, i.e. the rest of the line (and all continu-
ation lines) contain(s) only white-space characters (and the continuation character(s)). Such
a parameter definition is ignored and the line(s) is (are) skipped.

2.1. BASIC TYPES, UTILITIES, AND PARAMETER HANDLING 57

One parameter value is a sequence of non white-space characters. We will call such a
sequence of non white-space characters a word. Two parameter values are separated by at
least one white-space character. A string as a parameter value may not contain white-space
characters. Strings enclosed in single or double quotes are not supported at the moment.
These quotes are treated as usual characters.

Parameter values are stored as a sequence of words in one string. The words are separated
by exactly one blank, although parameter values in the parameter file may be separated by
more than one white-space character.

The key definition must be placed in one line. Parameter values can also be specified
in so called continuation lines. A line is a continuation line if the last two characters in
the preceding line are a ’\’ followed directly by the newline character. The ’\’ and the
newline character are removed and the line is continued at the beginning of the next line. No
additional blank is inserted.

Lines containing only white-space characters (if they are not continuation lines!) are
skipped.

Besides a parameter definition we can include another parameter file with name
filename:

#include "filename"

The effect of an include statement is the same as an include statement in a C-program. Using
the function init parameters() (see below) for reading the parameter file, the named file is
not inserted virtually into the actual parameter file like the C-preprocessor does, but it is read
by a recursive call of the function which reads the parameters. Thus, the included parameter
file may also contain an include statement. The rest of line behind the closing " is skipped.
Initialization then is continued from the next line on. An include statement must not have a
continuation line.

Using the function init parameters cpp(), the file is included using the C-preprocessor
(see below).

If a parameter file can not be opened for reading, an error message is produced and the
reading of the file is skipped.

Errors occur and are reported if a key definition is not terminated in the same line by
’:’, no parameter values are specified, filename for include files are not specified correctly
in between " ". The corresponding lines are ignored. No parameter is defined, or no file is
included.

A parameter can be defined more than once but only the latest definition is valid. All
previous definitions are ignored.

Reading of parameter files

Initializing parameters from such files is done by

void init_parameters(int print, const char *filename);
void init_parameters_cpp(int print, const char *filename, const char *cpp_flags);

Description:

init parameters(print, filename): initializes parameters from a file; filename is a
string holding the name of the file and if values of the argument print and the global
variable msg info are not zero, a list of all defined parameters is printed to the message
stream; if filename is a nil pointer, parameters are read from the file "albert.dat"
located in the current directory; if init parameters() can not open the input file, no
parameter is defined.

58 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

One call of this function should be the first executable statement in the main program.
Several calls of init parameters() are possible. If a key is defined more than once,
parameter values from the latest definition are valid. Parameter values from previous
definition(s) are ignored.

init parameters cpp(print, filename, cpp flags): the behavior of this function is
the same as of init parameters() but the file is first processed by the C–preprocessor
with argument cpp flags, replacing macros by their definitions in the parameter file and
including files specified by #include"...".

init_parameters_cpp(0, "albert.dat", "-DNEIGH_IN_EL=0");

The C–preprocessor will first replace each occurrence of NEIGH IN EL in "albert.dat" by
0. Also preprocessor conditionals depending on such macro definitions are allowed in the
parameter file. Default macro definitions to the preprocessor are

-DDIM=d -DDIM_OF_WORLD=dow

where d and dow are replaced by the actually used values, i.e d equals 2 for 2d and 3 for
3d simulations. After this preprocessing the the parameters are initialized.

This function is only available, if the ALBERT library was compiled with the CPP macro
holding the command for the C–preprocessor.

Adding of parameters or changing of parameter values

Several calls of init parameters() or init parameters cpp() are possible. This may add
new parameters or change the value of an existing parameter since only the values from the
latest definition are valid.

Parameters can also be defined or modified by the function or the macro

void add_parameter(int flag, const char *key, const char *value);
ADD_PARAMETER(int flag, const char *key, const char *value)

Description:

add parameter(flag, key, value): initializes a parameter identified by key with values
value; if the parameter already exists, the old values are replaced by the new one; if flag
is not zero information about the initialization is printed; This message can be suppressed
by a global level of parameter information (see the parameter parameter information
in Section 2.1.5);

ADD PARAMETER(flag, key, value): acts as add parameter(flag, key, value) but
the function is additionally supplied with the name of the calling function, source file
and line, which results in more detailed messages during parameter definition.

Saving of parameters and parameter values

For long time simulations it is important to write all parameters and their values to file; using
this file the simulation can be re–done with exactly the same parameter values although the
original parameter file was changed. Thus, after the initialization of parameters in a long time
simulation, they should be written to a file by the following function:

void save_parameters(const char *file, int info);

Description:

2.1. BASIC TYPES, UTILITIES, AND PARAMETER HANDLING 59

save parameters(file, info): writes all up to now initialized parameters to file ac-
cording to the above described parameter file format; if the value of info is different from
zero, the location of the initialization is supplied for each parameter as a comment; no
original comment is written, since these are not stored.

Getting parameter values

After initializing parameters by init parameters() or init parameters cpp() we can ac-
cess the values of a parameter by a call of

int get_parameter(int flag, char *key, char *format, ...);
int GET_PARAMETER(int flag, char *key, char *format, ...)

Description:

get parameter(flag, key, format, ...): looks for a parameter which matches the
identifying key string key and converts the values of the corresponding string contain-
ing the parameter values according to the control string format. Pointers to variable(s) of
suitable types are placed in the unnamed argument list (compare the syntax of scanf()).
The first argument flag defines the level of information during the initialization of pa-
rameters with a range of 0 to 4: no to full information. The return value is the number of
successfully matched and assigned input items.
If there is no parameter key matching key, get parameter() returns without an initial-
ization. The return value is zero. It will also return without an initialization and return
value zero if no parameter has been defined by init parameters().
In the case that a parameter matching the key is found, get parameter() acts like a
simplified version of sscanf(). The input string is the string containing the parameter
values. The function reads characters from this string, interprets them according to a
format, and stores the results in its arguments. It expects, as arguments, a control string,
format (described below) and a set of pointer arguments indicating where the converted
input should be stored. If there are insufficient arguments for the format, the behavior is
undefined. If the format is exhausted while arguments remain, the excess arguments are
simply ignored. The return value is the number of converted arguments.
The control string must only contain the following characters used as conversion specifi-
cation: %s, %c, %d, %e, %f, %g, %U, %S, or %*. All other characters are ignored. In contrast
to scanf(), a numerical value for a field width is not allowed. For each element of the
control string the next word of the parameter string is converted as follows:

%s: a character string is expected; the corresponding argument should be a character
pointer pointing to an array of characters large enough to accept the string and a
terminating ‘\0’, which will be added automatically; the string is one single word of
the parameter string; as mentioned above strings enclosed in single or double quotes
are not supported at the moment;

%c: matches a single character; the corresponding argument should be a pointer to a
char variable; if the corresponding word of the parameter string consists of more than
one character, the rest of the word is ignored; no space character is possible as argument;

%d: matches an decimal integer, whose format is the same as expected for the subject
sequence of the atoi() function; the corresponding argument should be a pointer to
an int variable;

%e,%f,%g: matches an optionally signed floating point number, whose format is the
same as expected for the subject string of the atof() function; the corresponding
argument should be a pointer to a REAL variable;

60 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

%U: matches an unsigned decimal integer in the range [0,255], whose format is the same
as expected for the subject sequence of the atoi() function; the corresponding argu-
ment should be a pointer to an U CHAR variable;

%S: matches an optionally signed decimal integer in the range [-128,127], whose format is
the same as expected for the subject sequence of the atoi() function; the corresponding
argument should be a pointer to an S CHAR variable;

%*: next word of parameter string should be skipped; there must not be a corresponding
argument.

get parameter() will always finish its work, successfully or not. It may fail if a misspelled
key is handed over or there are not so many parameter values as format specifiers (the re-
maining variables are not initialized!). If flag is zero, get parameter() works silently; no
error message is produced. Otherwise the key and the initialized values and error messages
are printed. The second way to influence messages produced by get parameter() namely
by is a parameter parameter information specified in a parameter file, see Section 2.1.5.

GET PARAMETER(flag, key, format, ...): is a macro and acts in the same way as the
function get parameter(flag, key, format, ...) but the function is additionally sup-
plied with the name of the calling function, source file and line, which results in more
detailed messages during parameter definition.
In order to prevent the program from working with uninitialized variables, all parameters

should be initialized before! By the return value the number of converted arguments can be
checked.

2.1.6. Example (init parameters(), GET PARAMETER()). Consider the following parame-
ter file init.dat:

adapt info: 3 % level of information of the adaptive method
adapt tolerance: 0.001 % tolerance for the error

Then

init_parameters(0, "init.dat");
...
tolerance = 0.1;
GET_PARAMETER(0, "adapt tolerance", "%e", &tolerance);

initializes the REAL variable tolerance with the value 0.001.

2.1.5 Parameters used by the utilities

The utility tools use the following parameters initialized with default values given in ():
level of information (10): the global level of information; can restrict the local level

of information (compare Section 2.1.2);
parameter information (1): enforces more/less information than specified by the argu-

ment flag of the routine get parameter(flag, ...):

0: no message at all is produced, although the value flag may be one;
1: gives only messages if the value of flag is non zero;
2: all error messages are printed, although the value of flag may be zero;
4: all messages are printed, although the value of flag may be zero.

WAIT (1): sets the value of the global variable msg wait and changes by that the behaviour
of the macro WAIT (see Section 2.1.2).

2.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 61

2.2 Data structures for the hierarchical mesh

2.2.1 Constants describing the dimension of the mesh

The symbolic constant DIM defines the dimension of the triangulation:

#define DIM 2

for two dimensional grids and

#define DIM 3

for three dimensional ones. Most parts of the finite element code do not depend on the par-
ticular choice of DIM. But especially the refinement/coarsening and hierarchical information
processing routines strongly depend on DIM.

For finite element methods on two or three dimensional surfaces embedded in Rn (like
mean curvature flow [18]) the vertex coordinates of the simplices have n components. Thus,
we need another symbolic constant DIM OF WORLD to define the number of these compo-
nents. For applications in domains in RDIM, DIM OF WORLD equals DIM otherwise the value of
DIM OF WORLD is the dimension of the Rn where the DIM-dimensional surface is embedded.

As a convention all typedef definitions with the ending D define a new data type for
vectors of length DIM OF WORLD, definitions with the ending DD a matrix of size DIM OF WORLD
× DIM OF WORLD, for example

typedef REAL REAL_D[DIM_OF_WORLD];
typedef REAL REAL_DD[DIM_OF_WORLD][DIM_OF_WORLD];

Several macros are defined for REAL D vectors:

void SET_VAL_DOW(REAL a, REAL_D x)
REAL SCP_DOW(REAL_D x, REAL_D y)
REAL DIST_DOW(REAL_D x, REAL_D y)
REAL NORM_DOW(REAL_D x)

Description:

SET VAL DOW(a, x): set all elements of vector x to a;

SCP DOW(x, y): returns the Euclidean scalar product of the two vectors x, y;

DIST DOW(x, y): returns the Euclidean distance of the two vectors x, y;

NORM DOW(x): returns the Euclidean norm of the vector x.

2.2.2 Constants describing the elements of the mesh

For a simplex we have to define the number of vertices, edges, adjacent simplices, and in
three dimensions the number of boundary faces:

#define N_VERTICES 3
#define N_EDGES 3
#define N_NEIGH 3

for two dimensions and

#define N_VERTICES 4
#define N_EDGES 6
#define N_FACES 4
#define N_NEIGH 4

for three dimensions.

62 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

2.2.3 Neighbour information

As mentioned in Section 1.2 neighbour information is usually not stored explicitly, but such an
explicit storing may speed up special applications. ALBERT supports both kinds of managing
neighbour information. Via the symbolic constant NEIGH IN EL the user can enforce to store
neighbour information explicitly in the elements. Setting

#define NEIGH_IN_EL 0

will result in calculating neighbour information (if requested) by the traversal routines, while

#define NEIGH_IN_EL 1

enforces that neighbour information is stored explicitly on each element and has to be set
by the refinement/coarsening routines. This consumes additional computer memory, but will
speed up the traversal routines that usually have to compute neighbour information. Macros

NEIGH(el, el_info), OPP_VERTEX(el, el_info), EL_TYPE(el,el_info)

are defined to access information independently of the value of NEIGH IN EL, compare Section
2.2.10.

2.2.4 Element indices

It is often very helpfully — especially during program development — that every element
has a unique global index. This requires an entry in the element data structure which adds
to the needed computer memory.

On the other hand this additional amount of computer memory may be a disadvantage in
real applications where a big number of elements is needed, and — after program development
— element index information is no longer of interest.

After setting the value of the symbolic constant EL INDEX to be 1 an element index is
available and adds to the amount of computer memory, and setting it to be 0 no element
index information is available which results in less computer memory usage. The macro

INDEX(el)

is defined to access element indices independently of the value of EL INDEX. If no indices are
available, the macro returns -1, compare Section 2.2.11.

2.2.5 The BOUNDARY data structure

Degrees of freedom (DOFs) which describe the finite element space are located at a node
which is either a vertex, an edge, (a face,) or the barycenter of an element (see Section 1.3).
For each node we have to specify if (Dirichlet) boundary conditions are prescribed for DOFs
at this node or if the DOFs are true degrees of freedom. At the moment we support three
kinds of nodes:

• interior node where DOFs are handled as real degrees of freedom;

• nodes on the Dirichlet boundary where Dirichlet boundary conditions are prescribed;

• nodes on the Neumann boundary which are treated like interior nodes.

The boundary type is specified by a S CHAR. We use the following symbolic constants and
convention:

#define INTERIOR 0
#define DIRICHLET 1
#define NEUMANN -1

2.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 63

An interior node has the boundary type INTERIOR, a node on a Dirichlet boundary has
positive boundary type (≥ DIRICHLET), and a node on the Neumann boundary has negative
type (≤ NEUMANN).

For the approximation of curved boundaries, the new nodes at the midpoint of the refine-
ment edge are projected onto the curved boundary. Most likely, the boundary of the domain
is split in several parts, where different functions for these projections are needed. For ap-
plying such a function to a node we have to know which part of the domain’s boundary the
refinement edge belongs.

In order to handle curved boundaries and to classify the type of nodes located at edges
and faces we define the following structure:

typedef struct boundary BOUNDARY;

struct boundary
{
void (*param_bound)(REAL_D *coord);
S_CHAR bound;

};

The members yield following information:
param bound: pointer to a function which projects a newly generated vertex onto a curved

boundary; the input of this function are the world coordinates of the midpoint of the
refinement edge; after the call, coord contains the coordinates of the projection to the
curved boundary, compare Section 2.4.1, Figure 2.3; if param bound is a pointer to nil,
the edge or face does not belong to a curved boundary;

bound: boundary type of a node at the edge or face; the boundary type is uniquely defined
by the sign of bound; by the value of bound, the part of the domain’s boundary to which
this object belongs can be stored (assuming, that these parts are enumerated).

There are some useful macros for the BOUNDARY structure defined in albert.h. They can be
applied to any BOUNDARY pointer and give a default return value if the value of that pointer
is nil.

#define GET_BOUND(boundary) ((boundary) ? (boundary)->bound : INTERIOR)
#define IS_INTERIOR(boundary)\

((boundary) ? (boundary)->bound == INTERIOR : true)
#define IS_DIRICHLET(boundary)\

((boundary) ? (boundary)->bound >= DIRICHLET : false)
#define IS_NEUMANN(boundary)\

((boundary) ? (boundary)->bound <= NEUMANN : false)

2.2.6 The local indexing on elements

For the handling of higher order discretizations where besides vertices DOFs can be located
at edges, faces, or center, we also need a local numbering for edges, and faces. We also need
a local numbering of neighbours for handling neighbour information which is used in the
refinement algorithm itself and for error estimator calculation, e.g.

In 2d the i-th edge/neighbour is the edge/neighbour opposite the i-th vertex; in 3d the
i-th face/neighbour is the face/neighbour opposite the i-th vertex; edges in 3d are numbered
in the following way (compare Figure 2.1):

edge 0: between vertex 0 and 1, edge 3: between vertex 1 and 2,
edge 1: between vertex 0 and 2, edge 4: between vertex 1 and 3,
edge 2: between vertex 0 and 3, edge 5: between vertex 2 and 3.

64 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

Figure 2.1: Local indices of edges/neighbours in 2d and local indices of edges in 3d.

2.2.7 The MACRO EL data structure

In this section, we describe the macro triangulation and data type for an element of the macro
triangulation.

The macro triangulation is stored in a doubly linked list of macro elements:

typedef struct macro_el MACRO_EL;

struct macro_el
{
MACRO_EL *next, *last;
EL *el;
REAL *coord[N_VERTICES];
int index;

MACRO_EL *neigh[N_NEIGH];
U_CHAR opp_vertex[N_NEIGH];

S_CHAR bound[N_VERTICES];
#if DIM == 2
const BOUNDARY *boundary[N_EDGES];

#else
const BOUNDARY *boundary[N_FACES+N_EDGES];
U_CHAR el_type;

#endif
};

The members yield following information (alternatives for two and three dimensions are
separated by ‘/’):

next: pointer to next macro element; if next is nil then the macro element is the last
macro element;

last: pointer to previous macro element; if last is nil the macro element is the first
macro element;

el: root of the binary tree located at this macro element;

coord: pointer to the world coordinates of the element’s vertices;

index: a unique index of all macro elements;

neigh: neigh[i] points to the macro element at the edge/face with local index i; it is a
pointer to nil for boundary edges/faces;

opp vertex: opp vertex[i] is undefined if neigh[i] is a pointer to nil; otherwise it is
the local index of the neighbour’s vertex opposite the common edge/face.

bound: bound[i] boundary type of vertex i;

2.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 65

boundary: boundary[i] is a pointer to a boundary structure of the i-th edge/face for
0 ≤ i < N NEIGH; in 3d boundary[N FACES+i] is a pointer to a boundary structure of the
i-th edge for 0 ≤ i < N EDGES; for an interior edge/face, it is a pointer to nil;

el type: type of the element ∈ [0, 1, 2] used for refinement and coarsening (for the defini-
tion of the element type see Section 1.1.1, only 3d).

2.2.8 The EL data structure

Now we describe the elements of the binary trees and information that should be present for
tree elements:

typedef struct el EL;

struct el
{
EL *child[2];
DOF **dof;

S_CHAR mark;
REAL *new_coord;

#if EL_INDEX
int index;

#endif

#if NEIGH_IN_EL
EL *neigh[N_NEIGH];
U_CHAR opp_vertex[N_NEIGH];

#if DIM == 3
U_CHAR el_type;

#endif
#endif
};

The members yield following information:

child: pointers to the two children for interior elements of the tree; child[0] is a pointer to
nil for leaf elements; child[1] is a pointer to user data on leaf elements if leaf data size
is bigger than zero, otherwise child[1] is also a pointer to nil for leaf elements (see
Section 2.2.12);

dof: vector of pointers to DOFs; these pointers must be available for the elements vertices
(for the geometric description of the mesh); there may be pointers at the midpoints of
the edges, at the barycenter and in three dimensions at the midpoints of the faces; they
are ordered in the following way: the first N VERTICES entries correspond to the DOFs at
the vertices; the next one are those at the edges, if present, then those at the faces, if
present (only for 3d), and then those at the barycenter; the offsets are defined in the MESH
structure (see Sections 2.2.14, 2.4.1, 2.4.2);

mark: marker for refinement and coarsening: if mark is positive for a leaf element this
element is refined mark times; if it is negative for a leaf element the element may be
coarsened -mark times; (see Sections 2.4.1, 2.4.2);

new coord: if the element has a boundary edge on a curved boundary this is a pointer to
the coordinates of the new vertex that is created due to the refinement of the element,
otherwise it is a nil pointer; thus, coordinate information can also be produced by the
traversal routines in the case of a curved boundary;

66 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

index: unique global index of the element; these indices are not strictly ordered and may
be larger than the number of elements in the binary tree (the list of indices may have holes
after coarsening); the index is available only if EL INDEX is true.

If neighbour information should be present in the element structure (if NEIGH IN EL is true)
then we have the additional entries:

neigh: neigh[i] pointer to the element across the edge/face with local index i; it is a
pointer to nil for boundary edges/faces;

opp vertex: opp vertex[i] is undefined if neigh[i] is a pointer to nil; otherwise it is
the local index of the neighbour’s vertex opposite the common edge/face;

el type: the element’s type (see Section 2.4.1); has to be available on the element if
neighbour information is located at the element, since such information then can not be
produced by the traversal routines going from one element to another by the neighbour
pointers.

2.2.9 The EL INFO data structure

The EL INFO data structure has entries for all information which is not stored on the element
itself, but may be generated. It is filled by the mesh traversal routines, most entries only if
specially requested (see Section 2.2.18).

typedef struct el_info EL_INFO;

struct el_info
{
MESH *mesh;
REAL_D coord[N_VERTICES];
EL *el;
EL *parent;
const MACRO_EL *macro_el;

FLAGS fill_flag;
U_CHAR level;

#if ! NEIGH_IN_EL
EL *neigh[N_NEIGH];
U_CHAR opp_vertex[N_NEIGH];

#if DIM == 3
U_CHAR el_type;

#endif
#endif

REAL_D opp_coord[N_NEIGH];

S_CHAR bound[N_VERTICES];
#if DIM == 2
const BOUNDARY *boundary[N_EDGES];

#else
const BOUNDARY *boundary[N_FACES+N_EDGES];
S_CHAR orientation;

#endif
};

The members yield following information:

2.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 67

mesh: a pointer to the current mesh;
coord: coord[i] is a DIM OF WORLD vector storing world coordinates of the i-th vertex;
el: pointer to the current element;
parent: el is child of element parent;
macro el: el is an element of the binary tree located at macro element macro el;
fill flag: a flag which indicates which elements are called and which information should

be present (see Section 2.2.18);
level: level of the element; the level is zero for macro elements and the level of the children

is (level of the parent + 1); the level is filled always by the traversal routines;
opp coord: opp coord[i] coordinates of the i-th neighbour’s vertex opposite the common

edge/face;
bound: bound[i] boundary type of vertex i;
boundary: boundary[i] is a pointer to a boundary structure of the i-th edge/face for
i = 0, . . . N NEIGH − 1; in 3d boundary[N FACES+i] is a pointer to a boundary structure
of the i-th edge for i = 0, . . . N EDGES− 1; it is a pointer to nil for an interior edge/face;

orientation: ±1: sign of the determinant of the transformation to the reference element
with vertices (0, 0, 0), (1, 1, 1), (1, 1, 0), (1, 0, 0) (see Figure 1.7).

If neighbour information is not present in the element structure (NEIGH IN EL is false), then
we have the additional entries:
neigh: neigh[i] pointer to the elements at the edge/face with local index i; it is a pointer

to nil for boundary edges/faces;
opp vertex: opp vertex[i] is undefined if neigh[i] is a pointer to nil; otherwise it is

the local index of the neighbour’s vertex opposite the common edge/face;
el type: the element’s type (see Section 2.4.1); is filled automatically by the traversal

routines (only 3d).

2.2.10 The NEIGH, OPP VERTEX and EL TYPE macros

If neighbour information is stored explicitly at each element (NEIGH IN EL == 1) we get a
pointer to the i-th neighbour of an element el and the corresponding opp vertex by

neigh = el->neigh[i];
opp_v = el->opp_vertex[i];

If such information is produced by the traversal routines we have to access neighbour infor-
mation by the corresponding el info structure:

neigh = el_info->neigh[i];
opp_v = el_info->opp_vertex[i];

To have same access for both situations there are two macros NEIGH and OPP VERTEX
defined in albert.h:

#if NEIGH_IN_EL
#define NEIGH(el,el_info) el->neigh
#define OPP_VERTEX(el,el_info) el->opp_vertex
#else
#define NEIGH(el,el_info) el_info->neigh
#define OPP_VERTEX(el,el_info) el_info->opp_vertex
#endif

Similarly, the element type (only in 3d) is stored either in the EL structure or is generated
during traversal in EL INFO. A macro EL TYPE is defined to access such information:

68 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

#if NEIGH_IN_EL
#define EL_TYPE(el,el_info) el->el_type
#else
#define EL_TYPE(el,el_info) el_info->el_type
#endif

Using these macros we always get information about the i-th neighbour or the element type
by

neigh = NEIGH(el,el_info)[i];
opp_v = OPP_VERTEX(el,el_info)[i];
type = EL_TYPE(el,el_info);

independently of the value of NEIGH IN EL.

2.2.11 The INDEX macro

In order to avoid to eliminate all lines where the element index is accessed after recompiling
the source with EL INDEX == 0, a macro INDEX is defined:

#if EL_INDEX
#define INDEX(el) ((el) ? (el)->index : -1)
#else
#define INDEX(el) -1
#endif

If element indices are stored at the elements INDEX(el) gives the index of the element, if the
el is not a pointer to nil. If el is a pointer to nil, the value of INDEX(el) is -1. This allows
a construction like INDEX(NEIGH(el,el info)[i]) without testing whether this neighbour
exists or not (in the case of a boundary edge/face). If element indices are not stored, the
value of INDEX(el) is always -1.

2.2.12 The LEAF DATA INFO data structure

As described in Section 1.2, we can “hide” user data on leaf elements at the pointer to the
second child. In order to handle an arbitrary kind of user data on leaf elements we define a
data structure LEAF DATA INFO which gives information about size of user data and may give
access to functions transforming user data during refinement and coarsening. A pointer to
such a structure is an entry in the MESH data structure.

typedef struct leaf_data_info LEAF_DATA_INFO;

struct leaf_data_info
{
char *name;
unsigned leaf_data_size;
void (*refine_leaf_data)(EL *parent, EL *child[2]);
void (*coarsen_leaf_data)(EL *parent, EL *child[2]);

const void *leaf_data_block_info; /* only used by ALBERT!!! */
};

Following information is provided via this structure:

name: textual description of leaf data
leaf data size: size of memory area for storing leaf data; if leaf data size == 0 no

memory for leaf data is allocated and child[1] is also pointer to nil for leaf ele-
ments; if leaf data size > 0 then the value of leaf data size should be bigger than

2.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 69

sizeof(void *) since ALBERT allocates memory for leaf data block wise and builds
a linked list of single leaf data elements; if leaf data size > 0 and leaf data size <
sizeof(void *) ALBERT changes this value to sizeof(void *);

refine leaf data: pointer to a function which transforms leaf data from parent to child
during refinement; after such a transformation leaf data of the parent is destroyed; if
refine leaf data is a pointer to nil no transformation takes place, parent information
is lost; transformation only takes place if leaf data size > 0;

coarse leaf data: pointer to a function which transforms leaf data from children to par-
ent during coarsening; after such a transformation leaf data of the children is destroyed; if
coarse leaf data is a pointer to nil no transformation takes place, children information
is lost; transformation only takes place if leaf data size > 0;

leaf data block info: pointer used by ALBERT for a block wise memory allocation and
deallocation of leaf data; must not be changed in an application.
Following macros for testing leaf elements and accessing leaf data are provided:

#define IS_LEAF_EL(el) (!(el)->child[0])
#define LEAF_DATA(el) ((void *)(el)->child[1])

2.2.13 The RC LIST EL data structure

For refining and coarsening we need information of the elements at the refinement and coars-
ening edge (compare Sections 1.1.1 and 1.1.2). Thus, we have to collect all elements at this
edge. In 2d we have at most the current element and its neighbour across this edge, if the edge
is not part of the boundary. In 3d we have to loop around this edge to collect all the elements.
Every element at the edge has at most two neighbours sharing the same edge. Defining an
orientation for this edge, we can define the right and left neighbour.

For every element at the refinement/coarsening edge we have an entry in a vector. The
elements of this vector build the refinement/coarsening patch. In 2d the vector has length
2 and in 3d length mesh->max no edge neigh since this is the maximal number of elements
sharing the same edge in the mesh mesh.

typedef struct rc_list_el RC_LIST_EL;

struct rc_list_el
{
EL *el;
int no;
int flag;

#if DIM == 3
RC_LIST_EL *neigh[2];
int opp_vertex[2];
U_CHAR el_type;

#endif
};

Information that is provided for every element in this RC LIST EL vector:
el: pointer to the element itself;
no: this is the no–th entry in the vector;
flag: only used in the coarsening module: flag is true if the coarsening edge of the

element is the coarsening edge of the patch, otherwise flag is false;
neigh: neigh[0/1] neighbour of element to the right/left in the orientation of the edge,

or a nil pointer in the case of a boundary face (only 3d);

70 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

opp vertex: opp vertex[0/1] the opposite vertex of neigh[0/1] (only 3d);

el type: the element type; is set during looping around the refinement/coarsening edge; if
neighbour information is produced by the traversal routines, information about the type
of an element can not be accessed via el->el type and thus has to be stored in the
RC LIST EL vector (only 3d).

This RC LIST EL vector is one argument to the interpolation and restriction routines for DOF
vectors (see Section 2.3.3).

2.2.14 The MESH data structure

All information about a triangulation is available via the MESH data structure:

typedef struct mesh MESH;

struct mesh
{
const char *name;
int n_vertices;
int n_edges;

#if DIM == 3
int n_faces;

#endif
int n_elements;
int n_hier_elements;

#if DIM == 3
int max_edge_neigh;

#endif

int n_macro_el;
MACRO_EL *first_macro_el;
REAL diam[DIM_OF_WORLD];

PARAMETRIC *parametric;

LEAF_DATA_INFO leaf_data_info[1];
U_CHAR preserve_coarse_dofs;

DOF_ADMIN **dof_admin;
int n_dof_admin;
int n_node_el;
int n_dof_el;
int n_dof[DIM+1];
int node[DIM+1];

};

The members yield following information:

name: string with a textual description for the mesh, or nil;

n vertices: number of vertices of the mesh;

n edges: number of edges of the mesh;

n faces: number of faces of the mesh (only 3d);

n elements: number of leaf elements of the mesh;

n hier elements: number of all elements of the mesh;

2.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 71

max edge neigh: maximal number of elements that share one edge; used to allocate mem-
ory to store pointers to the neighbour at the refinement/coarsening edge (only 3d);

n macro el: number of macro elements;

first macro el: pointer to the first macro element;

diam: diameter of the mesh in the DIM OF WORLD directions;

parametric: is pointer to nil if mesh contains no parametric elements else pointer to a
PARAMETRIC structure containing coefficients of the parameterization and related informa-
tion;

leaf data info: a structure with information about data on the leaf elements;

preserve coarse dofs: if the value is non zero then preserve all DOFs on all levels (can
be used for multigrid, e.g.); otherwise all DOFs on the parent that are not handed over to
a child are removed during refinement and added again on the parent during coarsening.

The last entries are used for the administration of DOFs and are explained in Section 2.3 in
detail.

dof admin: vector of dof admins;

n dof admin: number of dof admins;

n node el: number of nodes on a single element where DOFs are located; needed for the
(de-) allocation of the dof-vector on the element;

n dof el: number of all DOFs on a single element;

n dof: number of DOFs at the different positions VERTEX, EDGE, (FACE,) CENTER on an
element:

n dof[VERTEX]: number of DOFs at a vertex (≥ 1);

n dof[EDGE]: number of DOFs at an edge; if no DOFs are associated to edges, then
this value is 0;

n dof[FACE]: number of DOFs at a face; if no DOFs are associated to faces, then this
value is 0 (only 3d);

n dof[CENTER]: number of DOFs at the barycenter; if no DOFs are associated to the
barycenter, then this value is 0;

node: gives the index of the first node at vertex, edge, face (only 3d), and barycenter:

node[VERTEX]: has always value 0; dof[0],...,dof[N VERTICES-1] are always DOFs
at the vertices;

node[EDGE]: dof[node[EDGE]],..., dof[node[EDGE]+N EDGES-1] are the DOFs at
the N EDGES edges, if DOFs are located at edges;

node[FACE]: dof[node[FACE]],..., dof[node[FACE]+N FACES-1] are the DOFs at
the N FACES faces, if DOFs are located at faces (only 3d);

node[CENTER]: dof[node[CENTER]] are the DOFs at the barycenter, if DOFs are lo-
cated at the barycenter;

72 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

2.2.15 Initialization of meshes

It is possible to handle more than one mesh at the same time. A mesh must be accessed by
one of the following functions or macro

MESH *get_mesh(const char *name, void (*init_dof_admins)(MESH *),
void (*init_leaf_data)(LEAF_DATA_INFO *));

MESH *check_and_get_mesh(int dim, int dow, int neigh, int index,
const char *version, const char *name,
void (*init_dof_admins)(MESH *),
void (*init_leaf_data)(LEAF_DATA_INFO *));

MESH *GET_MESH(const char *name, void (*init_dof_admins)(MESH *),
void (*init_leaf_data)(LEAF_DATA_INFO *))

Description:

get mesh(name, init dof admin, init leaf data): returns a pointer to a filled mesh
structure; name is a string holding a textual description of mesh and is duplicated at the
member name of the mesh;

init dof admin is a pointer to a user defined function for the initialization of the required
DOFs on the mesh (see Section 2.6.2 for an example of such a function); if this argument
is a nil pointer a warning is given and a DOF ADMIN structure for DOFs at the vertices
of the mesh is generated. This is also done if none of the users DOF ADMINs uses DOFs
at vertices (as mentioned above, DOFs at vertices have to be present for the geometric
description of the mesh);

init leaf data is a pointer to a function for the initialization of the leaf data info
structure, i.e. the size of leaf data can be set and pointers to transformation functions for
leaf data can be adjusted. If this argument is a nil pointer, the member leaf data info
structure is initialized with zero.

The return value of the function is a pointer to the filled mesh data structure. The user
must not change any entry in this structure aside from the max edge neigh, n macro el,
first macro el, diam, and parametric entries.

At the moment there exists no function to add further DOFs after the call of get mesh().
Such a function would have to perform something like a so called p-refinement, which is
not implemented yet.

There is no other possibility to define new meshes inside ALBERT.

check and get mesh(d, dow, n, i, v, name, ida, ild): returns also a pointer to a
filled mesh structure; the last three arguments are the same as of get mesh(); in ad-
dition several checks about the used ALBERT library are performed: d is DIM, dow is
DIM OF WORLD, n is NEIGH IN EL, i is EL INDEX, and v is VERSION in the user program;
these values are checked against the constants in the used library; if these values are iden-
tical, the mesh is accessed by get mesh(); otherwise an error message is produced and the
program stops.

GET MESH(name, ida, ild): returns also pointer to a filled mesh structure; this macro
calls check and get mesh() and automatically supplies this function with the first five
(missing) arguments; this macro should always be used for accessing a mesh.

After this initialization data for macro elements can be specified for example by reading it
from file (see Section 2.2.16).

A mesh that is not needed any more can be freed by a call of the function

void free_mesh(MESH *mesh);

2.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 73

2.2.16 Reading macro triangulations

Data for macro triangulations can easily be stored in an ASCII–file. For the macro triangula-
tion file we use a similar key–data format like the parameter initialization (see Section 2.1.4):

DIM: dim
DIM_OF_WORLD: dow

number of vertices: nv
number of elements: ne

vertex coordinates:
DIM_OF_WORLD coordinates of vertex[0]
...
DIM_OF_WORLD coordinates of vertex[nv-1]

element vertices:
N_VERTICES indices of vertices of simplex[0]
...
N_VERTICES indices of vertices of simplex[ne-1]

element boundaries:
N_NEIGH boundary descriptions of simplex[0]
...
N_NEIGH boundary descriptions of simplex[ne-1]

element type:
element type of simplex[0]
...
element type of simplex[ne-1]

All lines closed by the ‘:’ character are keys for following data (more or less self explain-
ing). Data for elements and vertices are read and stored in vectors for the macro triangulation.
Index information given in the file correspond to this vector oriented storage of data. Thus,
index information must be in the range 0,...,ne-1 for elements and 0,...,nv-1 for ver-
tices. Although a vertex may be a common vertex of several macro elements the coordinates
are only stored once.

An important point is that the refinement edges are determined by the local numbering
of the vertices on each element! This is always the edge in between the vertices with local
index 0 and 1. In 2d the local ordering of vertex indices must be in counterclockwise sense
for each triangle; in 3d by this numbering and by the element type the distribution of the
refinement edges for the children is determined.

Information about the element type must only be given in 3d and such information is
optional. Values must be in the range 0,1,2. If such information is not given in the file, all
elements are assumed to be of type 0.

There are only some restrictions on the ordering of data in the file:
On the first two lines DIM and DIM OF WORLD have to be specified (in an arbitrary order);

for the 2d version of ALBERT, DIM must equal 2 and DIM OF WORLD must be ≥2; for the 3d
version of ALBERT, DIM must equal 3 and DIM OF WORLD must be ≥3. By these values it is
checked whether data matches to the actual version of ALBERT.

The last two restrictions are that number of elements has to be specified before element
vertices, element boundaries, and element type (only 3d, optional). The number of
vertices has to specified before vertex coordinates and element vertices.

Besides these restrictions, ordering of data is left to the user.

74 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

Information about neighbours may be supplied in the file by

element neighbours:
N_NEIGH neighbour indices of simplex[0]
...
N_NEIGH neighbour indices of of simplex[ne-1]

where the index is -1 for a non existing neighbour at a boundary edge/face. If information
about neighbours is not present or not correctly specified in the file, it is, as the local indices
of opposite vertices, generated automatically.

Reading data of the macro grid from these files can be done by

void read_macro(MESH *mesh, const char *name,
const BOUNDARY *(*ibdry)(MESH *, int));

Description:

read macro(mesh, name, ibdry): reads data of the macro triangulation for mesh from
the ASCII–file name; adjustment of BOUNDARY structures can be done via the function
pointer ibdry; the mesh structure must have been initialized by a call of get mesh()
or check and get mesh(); this is important for setting the correct DOF pointers on the
macro triangulation.
Using index information from the file, all information concerning element vertices, neigh-
bour relations can be calculated directly.
In the macro file only information about boundary types of edges in 2d and faces in 3d is
given. Zero values correspond to an interior edge/face, positive values to an edge/face on
the Dirichlet boundary and negative values to an edge/face on the Neumann boundary.
In the macro file only boundary information for edges/faces is given. Thus information
for vertices in 2d, and for vertices and edges in 3d is computed by the routine; we use the
conventions that the Dirichlet boundary is a closed subset of the boundary. This leads to
the following assignments:

1. a vertex belongs to the Dirichlet boundary if it is a vertex of one edge/face belonging
to the Dirichlet boundary;

2. a vertex belongs to the Neumann boundary if it is a vertex of an edge/face belonging
to the Neumann boundary and it is not a vertex of any edge/face on the Dirichlet
boundary;

3. all other vertices belong to the interior.

The same holds accordingly for edges in 3d.
For boundary edges/faces we additionally have to fill a boundary structure; this is done
by the third argument ibdry which is a pointer to a user defined function; it returns a
pointer to a filled boundary structure, compare Section 2.2.5. The function is called for
each boundary edge/face

(*ibdry)(mesh, bound)

where mesh is the structure to be filled and bound the boundary value read from the file
for this edge/face; using this value, the user can choose inside ibdry the correct function
for projecting nodes that will be created in this edge/face; if ibdry is a nil pointer, it is
assumed that the domain is polygonal, no projection has to be done; the corresponding
boundary pointers are adjusted to two default structures

const BOUNDARY dirichlet_boundary = {nil, DIRICHLET};
const BOUNDARY neumann_boundary = {nil, NEUMANN};

2.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 75

for positive resp. negative values of bound.
In 3d we have to adjust a pointer to such a BOUNDARY structure also for edges. This is done
by setting this pointer to the BOUNDARY structure of one of the meeting faces at that edge;
if a BOUNDARY structure of a face supplies a function for the projection of a node onto a
curved boundary during refinement, this function must be able to project any point in the
closure of that face (because it may be used for any edge of that face); if the boundary
type of the edge is DIRICHLET, then at least one the boundary types of the meeting faces
is DIRICHLET also, and we will use the BOUNDARY structure of a DIRICHLET face.
During the initialization of the macro triangulation, other entries like n edges, n faces,
and max edge neigh in the mesh data structure are calculated.

2.2.1. Example (The standard triangulation of the unit square in R2).

DIM: 2
DIM_OF_WORLD: 2

number of elements: 2
number of vertices: 4

element vertices:
2 0 1
0 2 3

element boundaries:
1 1 0
1 1 0

vertex coordinates:
0.0 0.0
1.0 0.0
1.0 1.0
0.0 1.0 Macro triangulation of the unit square.

2.2.2. Example (The standard triangulation of the unit cube in R3).

DIM: 3
DIM_OF_WORLD: 3

number of vertices: 8
vertex coordinates:
-1.0 -1.0 -1.0
1.0 -1.0 -1.0

-1.0 -1.0 1.0
1.0 -1.0 1.0
1.0 1.0 -1.0
1.0 1.0 1.0

-1.0 1.0 -1.0
-1.0 1.0 1.0

number of elements: 6

element vertices:
0 5 4 1
0 5 3 1
0 5 3 2

76 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

0 5 4 6
0 5 7 6
0 5 7 2

element boundaries:
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0

2.2.3. Example (A triangulation of three quarters of the unit disc). Here, we have
now to deal with a curved boundary. Thus, we have to provide a function for the projection
during refinement in the boundary data structure. The actual projection is easy to implement,
since we only have normalize the coordinates for nodes belonging to the curved boundary.
A pointer to this function is accessible inside read mesh() by the the ibdry function. Fur-
thermore, we assume that the two straight edges belong to the Neumann boundary, and the
curved boundary is the Dirichlet boundary.

The macro triangulation file:

DIM: 2
DIM_OF_WORLD: 2

number of vertices: 5
number of elements: 3

vertex coordinates:
0.0 0.0
1.0 0.0
0.0 1.0

-1.0 0.0
0.0 -1.0

element vertices:
1 2 0
2 3 0
3 4 0

element boundaries:
0 -1 2
0 0 2

-1 0 2 Macro triangulation of a 3/4 disc.
and the functions ball proj() for the projection and ibdry() for the initialization:

static void ball_project(REAL_D p)
{
FUNCNAME("ball_project");
REAL norm;
int k;

TEST_EXIT(p)("p = nil\n");

norm = NORM_DOW(p);
norm = 1.0/MAX(1.0E-10, norm);

2.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 77

for (k = 0; k < DIM_OF_WORLD; k++)
p[k] *= norm;

return;
}

const BOUNDARY *ibdry(MESH *mesh, int bound)
{
FUNCNAME("ibdry");
static const BOUNDARY curved_dirichlet = {ball_project, DIRICHLET};
static const BOUNDARY straight_neumann = {nil, NEUMANN};

switch(bound)
{
case 2: return(&curved_dirichlet);
case -1: return(&straight_neumann);
default: ERROR_EXIT("no boundary %d\n", bound);
}

}

2.2.17 Writing macro triangulations

The counterpart of the function read macro() is the function

int write_macro(MESH *mesh, const char *filename);

Description:

write macro(mesh, name): writes all the leaf elements of mesh as a macro triangulation
to the file specified by name in the above described format; if the file could be written, the
return value is 1, otherwise an error message is produced and the return value is 0.

For writing meshes including the whole hierarchy, see Section 2.3.8

2.2.18 Mesh traversal routines

As described before, the mesh is organized in a binary tree, and most local information is
not stored at leaf element level, but is generated from hierarchical information and macro
element data. The generation of such local information is done during tree traversal routines.

When some work has to be done at each tree element or leaf element, such a tree traversal
is most easily done in a recursive way, calling some special subroutine at each (leaf) element
which implements the operation that currently has to be done. For some other applications, it
is necessary to operate on the (leaf) elements in another fashion, where a recursive traversal
is not possible. To provide access for both situations, there exist recursive and non-recursive
mesh traversal routines.

For both styles, selection criteria are available to indicate on which elements the operation
should take place. Following constants are defined:

CALL_EVERY_EL_PREORDER
CALL_EVERY_EL_INORDER
CALL_EVERY_EL_POSTORDER
CALL_LEAF_EL
CALL_LEAF_EL_LEVEL
CALL_EL_LEVEL
CALL_MG_LEVEL

78 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

CALL EVERY EL PREORDER, CALL EVERY EL INORDER, and CALL EVERY EL POSTORDER all three
operate on all hierarchical elements of the mesh. These three differ in the sequence of opera-
tion on elements: ... PREORDER operates first on a parent element before operating on both
children, ... POSTORDER operates first on both children before operating on their parent, and
... INORDER first operates on child[0], then on the parent element, and last on child[1].

CALL LEAF EL operates on all leaf elements of the tree, whereas CALL LEAF EL LEVEL
operates only on leaf elements which are exactly at a specified tree depth. CALL EL LEVEL
operates on all tree elements at a specified tree depth. The option CALL MG LEVEL is special
for multigrid operations. It provides the operation on all hierarchy elements on a specified
multigrid level (which is usually el->level / DIM).

Additional flags are defined that specify which local information in EL INFO has to be
generated during the hierarchical mesh traversal. A bitwise OR of some of these constants is
given as a parameter to the traversal routines. These flags are more or less self explaining:

FILL NOTHING: no information needed at all;

FILL COORDS: the vertex coordinates EL INFO.coord are filled;

FILL BOUND: the boundary descriptions EL INFO.bound, EL INFO.boundary, and (in 3d)
EL INFO.edge boundary are filled;

FILL NEIGH: neighbour element information EL INFO.neigh and EL INFO.opp vertex is
generated (when not NEIGH IN EL);

FILL OPP COORDS: neighbour element information and the opposite vertex coordinates
EL INFO.opp coords are filled;

FILL ORIENTATION: the element orientation info EL INFO.orientation is generated (3d
only).

During mesh traversal, such information is generated hierarchically using the two subrou-
tines

void fill_macro_info(MACRO_EL *mel, EL_INFO *elinfo);
void fill_elinfo(int ichild, EL_INFO *parent_info, EL_INFO *elinfo);

Description:

fill macro info(mel, elinfo): fills elinfo with macro element information of mel;

fill elinfo(ichild, parent info, elinfo): fills elinfo for the child ichild using
hierarchy information and parent data parent info.

Sequence of visited elements

The sequence of elements which are visited during the traversal is given by the following
rules:

• All elements in the binary mesh tree of one MACRO EL mel are visited prior to any
element in the tree of mel->next.

• For every EL el, all elements in the subtree el->child[0] are visited before any ele-
ment in the subtree el->child[1].

• The PREORDER, INORDER, and POSTORDER flags determine the traversal order of an ele-
ment and its two child trees, as defined above in Section 2.2.18.

Only during non-recursive traversal, this order may be changed by calling explicitly the
traverse neighbour() routine, see below.

2.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 79

Recursive mesh traversal routines

Recursive traversal of mesh elements is done by the routine

void mesh_traverse(MESH *mesh, int level, FLAGS fill_flag,
void (*el_fct)(const EL_INFO *));

Description:

mesh traverse(mesh, level, fill flag, el fct): traverses the mesh mesh; the argu-
ment level specifies the element level if CALL EL LEVEL or CALL LEAF EL LEVEL, or the
multigrid level if CALL MG LEVEL is set; otherwise this variable is ignored; by the argument
fill flag the elements to be traversed and data to be filled into EL INFO is selected,
using bitwise or of one CALL ... flag and several FILL ... flags; the argument el fct is
a pointer to a function which is called on every element selected by the CALL ... part of
fill flag.
It is possible to use the recursive mesh traversal recursively, by calling mesh traverse()
from el fct.

2.2.4. Example. An example of a mesh traversal where the volume of each leaf element
should be calculated is:

...
extern void el_volume(const EL_INFO *);

mesh_traverse(mesh, -1, CALL_LEAF_EL|FILL_COORDS, el_volume);

where el volume() is a function which calculates the volume of an element and thus needs
information of the elements vertex coordinates.

2.2.5. Example. We give an implementation of the CALL EVERY EL ... routines to show
the simple structure of all recursive traversal routines.

/* a TRAVERSE_INFO holds the traversal flag and a pointer to el_fct */

static void recursive_traverse(EL_INFO *elinfo, TRAVERSE_INFO *trinfo)
{
EL *el = elinfo->el;
EL_INFO elinfo_new;

if (el->child[0])
{
if (trinfo->flag & CALL_EVERY_EL_PREORDER) (trinfo->el_fct)(elinfo);

fill_elinfo(0, elinfo, &elinfo_new);
recursive_traverse(&elinfo_new, trinfo);

if (trinfo->flag & CALL_EVERY_EL_INORDER) (trinfo->el_fct)(elinfo);

fill_elinfo(1, elinfo, &elinfo_new);
recursive_traverse(&elinfo_new, trinfo);

if (trinfo->flag & CALL_EVERY_EL_POSTORDER) (trinfo->el_fct)(elinfo);
}
else

80 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

{
(trinfo->el_fct)(elinfo);

}

return;
}

static void mesh_traverse_every_el(MESH *mesh, FLAGS fill_flag,
void (*el_fct)(const EL_INFO *));

{
MACRO_EL *mel;
EL_INFO elinfo;
TRAVERSE_INFO traverse_info;

elinfo.fill_flag = (flag & FILL_ANY);

traverse_info.mesh = mesh;
traverse_info.el_fct = el_fct;
traverse_info.flag = flag;
elinfo.mesh = mesh;

for (mel = mesh->first_macro_el; mel; mel = mel->next)
{
fill_macro_info(mel, &elinfo);
recursive_traverse(&elinfo, &traverse_info);

}
}

Non–recursive mesh traversal routines

Mesh refinement and coarsening routines (in the case where NEIGH IN EL == 0, see Sections
2.4.1 and 2.4.2) and the GRAPE graphic interface (see Section 2.16.3) are examples of func-
tions which need a non–recursive access to the mesh elements.

The implementation of the non–recursive mesh traversal routines uses a stack to save the
tree path from a macro element to the current element. A data structure TRAVERSE STACK
holds such information. Before calling the non–recursive mesh traversal routines, such a stack
must be allocated (and passed to the traversal routines). The stack is initialized by each call
to traverse first().

typedef struct traverse_stack TRAVERSE_STACK;

By allocating a new stack, it is even possible to recursively call the non–recursive mesh
traversal during another mesh traversal without destroying the stack which is already in use.
Allocation and deallocation of traverse stacks is done by routines:

TRAVERSE_STACK *get_traverse_stack(void);
void free_traverse_stack(TRAVERSE_STACK *stack);

For non–recursive mesh traversal, the following routines are provided:

EL_INFO *traverse_first(TRAVERSE_STACK *stack, MESH *mesh,
int level, FLAGS fill_flag);

EL_INFO *traverse_next(TRAVERSE_STACK *stack, EL_INFO *);

Besides the stack, parameters are identical to those of mesh traverse(), but there is no
el fct() to call on elements, because all operations are done by the routines which call these

2.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 81

traversal functions. A traversal is initiated by calling traverse first(), giving the first ele-
ment of the mesh which fulfills the selection criterion specified by level and fill flag. After
doing all necessary operations on an element, a call to traverse next() delivers the next
element. After calling traverse next(), all EL INFO information about a previous element
is invalid, the structure may be overwritten with new data.

The GRAPE MESH/HMESH interface implementation (see Section 2.16.3) and the
gltools interface (see Section 2.16.2) uses the non–recursive mesh traversal.

2.2.6. Example. An application of the non–recursive mesh traversal routines is shown in
the following code segment:

TRAVERSE_STACK *stack;
EL_INFO *el_info;
FLAGS fill_flag = CALL_LEAF_EL | FILL_COORDS;
int level;

stack = get_traverse_stack();
for (el_info = traverse_first(stack, mesh, level, fill_flag);

el_info;
el_info = traverse_next(stack, el_info))

{
/* perform action on element given by el_info */

}
free_traverse_stack(stack);

Neighbour traversal

Some applications, like the recursive refinement algorithm, need the possibility to go from an
element to element using neighbour relations. Such a traversal can not be performed by the
recursive traversal routines and thus needs the non–recursive mesh traversal.

The traversal routine for going from element to a neighbour is

EL_INFO *traverse_neighbour(TRAVERSE_STACK *stack, EL_INFO *, int neighbour);

and can be called at any time during the non–recursive mesh traversal after initializing the
first element by traverse first(...).

traverse neighbour(stack, el info, neighbour) returns a pointer to an EL INFO
structure with information about the neighbour of el info->el across edge/face neighbour.
After a call to traverse neighbour(), all EL INFO information about a previous element is
invalid, and can be regenerated only by calling traverse neighbour() again with the old
OPP VERTEX value. If called at the boundary, when no adjacent element is available, then
the routine returns nil; nevertheless, information from the old EL INFO may be overwritten
and lost. To avoid such behavior, one should check for boundary edges/faces before calling
traverse neighbour().

Access to an element at world coordinates xy

Some applications need the access to elements at a special location in world coordinates.
Examples are characteristic methods for convection problems, or the implementation of a
special right hand side like point evaluations or curve integrals. For such purposes, a routine
is available which returns an element pointer and corresponding barycentric coordinates:

int find_el_at_pt(const MESH *mesh, const REAL_D xy, EL **elp, REAL bary[DIM+1],
const MACRO_EL *start_mel, const REAL_D xy0, REAL *sp)

The parameters are:

82 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

mesh: mesh to be traversed;

xy: world coordinates of point (should be in the domain occupied by mesh);

elp: return address for a pointer to the element at xy;

bary: returns barycentric coordinates of xy;

start mel: initial guess for the macro element containing xy, or nil;

xy0: start point from a characteristic method, see below, or nil;

sp: return address for relative distance to domain boundary in a characteristic method,
see below, or nil.

The return value is true if xy is inside the domain, or false otherwise.
For a characteristic method, where xy = xy0 − V τ , it may be convenient to know the

point on the domain’s boundary which lies on the line segment between the old point xy0 and
the new point xy, in case that xy is outside the domain. Such information is returned when
xy0 and a pointer sp6=nil are supplied: *sp is set to the value s such that xy0 +s (xy−xy0) ∈
∂Domain, and the element and local coordinates corresponding to that boundary point will
be returned via elp and bary.

The implementation of find el at pt() is based on the transformation from world to
local coordinates, available via the routine world to coord(), compare Section 2.7. At the
moment, find el at pt() works correctly only for domains with non–curved boundary. This
is due to the fact that the implementation first looks for the macro–element containing xy and
then finds its path through the corresponding element tree based on the macro barycentric
coordinates. For non–convex domains, it is possible that in some cases a point inside the
domain is considered as external.

2.3 Administration of degrees of freedom

Degrees of freedom (DOFs) give connection between local and global finite element functions,
compare Sections 1.4.2 and 1.3. We want to be able to have several finite element spaces and
corresponding sets of DOFs at the same time. One set of DOFs may be shared between
different finite element spaces, when appropriate.

During adaptive refinement and coarsening of a triangulation, not only elements of the
mesh are created and deleted, but also degrees of freedom together with them. The geometry
is handled dynamically in a hierarchical binary tree structure, using pointers from parent
elements to their children. For data corresponding to DOFs, which are usually involved with
matrix-vector operations, simpler storage and access methods are more efficient. For that
reason every DOF is realized just as an integer index, which can easily be used to access data
from a vector or to build matrices that operate on vectors of DOF data.

During coarsening of the mesh, when DOFs are deleted, all remaining DOFs have to be
kept the same. In general, the deleted DOFs are not the ones which correspond to the largest
integer index. Holes with unused indices appear in the total range of used indices. One of the
main aspects of the DOF administration is to keep track of all used and unused indices. One
possibility to remove holes form vectors is the compression of DOFs, i.e. the renumbering of all
DOFs such that all unused indices are shifted to the end of the index range, thus removing
holes of unused indices. While the global index corresponding to a DOF may change, the
relative order of DOF indices remains unchanged during compression.

During refinement of the mesh, new DOFs are added, and additional indices are needed.
If a deletion of DOFs created some unused indices before, some of these can be reused for
the new DOFs. Otherwise, the total range of used indices has to be enlarged, and the new
indices are taken from this new range. At the same time, all vectors and matrices which are

2.3. ADMINISTRATION OF DEGREES OF FREEDOM 83

supposed to use these DOF indices have to be adjusted in size, too. This is the next major
aspect of the DOF administration. To be able to do this, lists of vectors and matrices are
included in the DOF_ADMIN data structure. Entries are added to or removed from these lists
via special subroutines, see Section 2.3.2.

In ALBERT, every abstract DOF is realized as an integer index into vectors:

typedef signed int DOF;

These indices are administrated via the DOF_ADMIN data structure (see 2.3.1) and some sub-
routines. For each set of DOFs, one DOF_ADMIN structure is created. Degrees of freedom are
directly connected with the mesh. The MESH data structure contains a reference to all sets of
DOFs which are used on a mesh, compare Section 2.2.14. The FE SPACE structure describ-
ing a finite element space references the corresponding set of DOFs, compare Sections 1.4.2,
2.5.1. Several FE_SPACEs may share the same set of DOFs, thus reference the same DOF_ADMIN
structure. Usually, a DOF_ADMIN structure is created during definition of a finite element space
by get fe space(), see Section 2.6.2. For special applications, additional DOF sets, that are
not connected to any finite element space may also be defined (compare Section 2.6.2).

In Sections 2.3.5 and 2.3.6, we describe storage and access methods for global DOFs and
local DOFs on single mesh elements.

As already mentioned above, special data types for data vectors and matrices are defined,
see Sections 2.3.2 and 2.3.4. Several BLAS routines are available for such data, see Section
2.3.7.

2.3.1 The DOF ADMIN data structure

The following data structure holds all data about one set of DOFs. It includes information
about used and unused DOF indices, as well as linked lists of matrices and vectors of different
data types, that are automatically resized and resorted during mesh changes. Currently, only
an automatic enlargement of vectors is implemented, but no automatic shrinking. The actual
implementation of used and unused DOFs is not described here in detail — it uses only one
bit of storage for every integer index.

typedef struct dof_admin DOF_ADMIN;
typedef unsigned int DOF_FREE_UNIT;

struct dof_admin
{
MESH *mesh;
const char *name;

DOF_FREE_UNIT *dof_free; /* flag bit vector */
unsigned int dof_free_size;/* flag bit vector size */
unsigned int first_hole; /* index of first non-zero dof_free entry */

int size; /* allocated size of dof_list vector */
int used_count; /* number of used dof indices */
int hole_count; /* number of FREED dof indices (NOT size-used)*/
int size_used; /* > max. index of a used entry */

int n_dof[DIM+1]; /* dofs from THIS dof_admin */
int n0_dof[DIM+1]; /* dofs from previous dof_admins */

DOF_INT_VEC *dof_int_vec; /* linked list of int vectors */
DOF_INT_VEC *dof_dof_vec; /* linked list of dof vectors */
DOF_INT_VEC *int_dof_vec; /* linked list of dof vectors */

84 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

DOF_UCHAR_VEC *dof_uchar_vec; /* linked list of u_char vectors */
DOF_SCHAR_VEC *dof_schar_vec; /* linked list of s_char vectors */
DOF_REAL_VEC *dof_real_vec; /* linked list of real vectors */
DOF_REAL_D_VEC *dof_real_d_vec; /* linked list of real_d vectors */
DOF_MATRIX *dof_matrix; /* linked list of matrices */

};

The entries yield following information:

mesh: this is a dof admin on mesh;

name: a string holding a textual description of this dof admin;

dof free, dof free size, first hole: internally used variables for administration of
used and free DOF indices;

size: current size of vectors in dof_?_vec and dof_matrix lists;

used count: number of used dof indices;

hole count: number of freed dof indices (not size−used_count);

size used: ≥ largest used DOF index;

n dof: numbers of degrees of freedom defined by this dof_admin structure; n dof[VERTEX],
n_dof[EDGE], n_dof[FACE], and n_dof[CENTER] are the DOF counts at vertices, edges,
faces (only in 3d) and element interiors, compare Section 2.3.6. These values are usually
set by get_fe_space() as a copy from bas_fcts->n_dof (compare Section 2.5.1).

n0 dof: start indices n0_dof[VERTEX], ..., of the first dofs defined by this dof_admin
in the element’s dof[VERTEX], ..., vectors. These are the sums of degrees of freedom
defined by previous dof_admin structures that were already added to the same mesh;
n0_dof[VERTEX], n0_dof[EDGE], n0_dof[FACE], and n0_dof[CENTER] are all set auto-
matically by get_fe_space(). See Section 2.3.6 for details and usage;

dof ? vec, dof matrix: pointers to linked lists of DOF_?_VEC and DOF_MATRIX structures
which are associated with the DOFs administrated by this DOF_ADMIN and whose size is
automatically adjusted during mesh refinements, compare Section 2.3.2.

Deletion of DOFs occurs not only when the mesh is (locally) coarsened, but also during
refinement of a mesh with higher order elements. This is due to the fact, that during local
interpolation operations, both coarse–grid and fine–grid DOFs must be present, so deletion
of coarse–grid DOFs that are no longer used is done after allocation of new fine–grid DOFs.
Usually, all operations concerning DOFs are done automatically by routines doing mesh
adaption or handling finite element spaces. The removal of “holes” in the range of used DOF
indices is not done automatically. It is actually not needed to be done, but may speed up the
access in loops over global DOFs; When there are no holes, then a simple for–loop can be used
without checking for each index, whether it is currently in use or not. The FOR_ALL_DOFS()–
macro described in Section 2.3.5 checks this case. Hole removal is done for all DOF_ADMINs of
a mesh by the function

void dof_compress(MESH *mesh);

Description:

dof compress(mesh): remove all holes of unused DOF indices by compressing the used
range of indices (it does not resize the vectors). While the global index corresponding to a
DOF may change, the relative order of DOF indices remains unchanged during compres-
sion.
This routine is usually called after a mesh adaption involving higher order elements or
coarsening.

2.3. ADMINISTRATION OF DEGREES OF FREEDOM 85

2.3.1. Remark. In the moment, the use of DOF matrices which combine two different sets
of DOFs may produce errors during dof compress(). Such matrices should be cleared by
calling clear dof matrix() before a call to dof compress().

Usually, the range of DOF indices is enlarged in fixed increments given by the symbolic
constant SIZE_INCREMENT, defined in dof_admin.c. If an estimate of the finally needed num-
ber of DOFs is available, then a direct enlargement of the DOF range to that number can be
forced by calling:

void enlarge_dof_lists(DOF_ADMIN *admin, int minsize);

Description:

enlarge dof lists(admin, minsize): enlarges the range of the indices of admin to
minsize.

2.3.2 Vectors indexed by DOFs: The DOF VEC data structures

The DOFs described above are just integers that can be used as indices into vectors and
matrices. During refinement and coarsening of the mesh, the number of used DOFs, the
meaning of one integer index, and even the total range of DOFs change. To be able to handle
these changes automatically for all vectors, which are indexed by the DOFs, special data
structures are used which contain such vector data. Lists of these structures are kept in
the DOF_ADMIN structure, so that all vectors in the lists can be resized together with the
range of DOFs. During refinement and coarsening of elements, values can be interpolated
automatically to new DOFs, and restricted from old DOFs, see Section 2.3.3.

ALBERT includes data types for vectors of type REAL, REAL_D, S_CHAR, U_CHAR, and
int. Below, the DOF_REAL_VEC structure is described in detail. Structures DOF_REAL_D_VEC,
DOF_SCHAR_VEC, DOF_UCHAR_VEC, and DOF_INT_VEC are declared similarly, the only difference
between them is the type of the structure entry vec.

Although the administration of such vectors is done completely by the DOF adminis-
tration which needs DOF_ADMIN data, the following data structures include a reference to a
FE_SPACE, which includes additionally the MESH and BAS_FCTS. In this way, complete infor-
mation about a finite element function given by a REAL– and REAL_D–valued vector is directly
accessible.

typedef struct dof_real_vec DOF_REAL_VEC;

struct dof_real_vec
{
DOF_REAL_VEC *next;
const FE_SPACE *fe_space;

const char *name;
int size;
REAL *vec; /* different type in DOF_INT_VEC, ... */

void (*refine_interpol)(DOF_REAL_VEC *, RC_LIST_EL *, int n);
void (*coarse_restrict)(DOF_REAL_VEC *, RC_LIST_EL *, int n);

};

The members yield following information:

next: linked list of DOF_REAL_VEC structures in fe_space->admin;
fe space: FE SPACE structure with information about DOFs and basis functions;
name: string with a textual description of vector values, or nil;

86 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

size: current size of vec;

vec: pointer to REAL vector of size size;

refine interpol, coarse restrict: interpolation and restriction routines, see Section
2.3.3. For REAL and REAL_D vectors, these usually point to the corresponding routines
from fe_space->bas_fcts, compare Section 2.5.1. While we distinguish there between
restriction and interpolation during coarsening, only one such operation is appropriate for
a given vector, as it either represents a finite element function or values of a functional
applied to basis functions.

Usually, all DOF vectors linked in the corresponding dof_admin->dof_?_vec list are
automatically adjusted in size and reordered during mesh changes. Values are transformed
during local mesh changes, if the refine_interpol and/or coarse_restrict entries are not
nil, compare Section 2.3.3.

Integer DOF vectors can be used in several ways: They may either hold an int
value for each DOF, or reference a DOF value for each DOF. In both cases, the vectors
should be automatically resized and rearranged during mesh changes. Additionally, values
should be automatically changed in the second case. Such vectors are referenced in the
dof_admin->dof_int_vec and dof_admin->dof_dof_vec lists.

On the other hand, DOF_INT_VECs provide a way to implement for special applications a
vector of DOF values, which is not indexed by DOFs. For such vectors, only the values are
automatically changed during mesh changes, but not the size or order. The user program is
responsible for allocating memory for the vec vector. Such DOF vectors are referenced in the
dof_admin->int_dof_vec list.

A macro GET DOF VEC is defined to simplify the secure access to a DOF VEC’s data. It
assigns dof_vec->vec to ptr, if both dof_vec and dof_vec->vec are not nil, and generates
an error in other cases:

#define GET_DOF_VEC(ptr, dof_vec) TEST_EXIT((dof_vec)&&(ptr = (dof_vec)->vec))\
("%s == nil", (dof_vec) ? (dof_vec)->name : #dof_vec)

The following subroutines are provided to handle DOF vectors. Allocation of a new
DOF VEC and freeing of a DOF VEC (together with its vec) are done with:

DOF_REAL_VEC *get_dof_real_vec(const char *name, const FE_SPACE *fe_space);
DOF_REAL_D_VEC *get_dof_real_d_vec(const char *name, const FE_SPACE *fe_space);
DOF_INT_VEC *get_dof_int_vec(const char *name, const FE_SPACE *fe_space);
DOF_INT_VEC *get_dof_dof_vec(const char *name, const FE_SPACE *fe_space);
DOF_INT_VEC *get_int_dof_vec(const char *name, const FE_SPACE *fe_space);
DOF_SCHAR_VEC *get_dof_schar_vec(const char *name, const FE_SPACE *fe_space);
DOF_UCHAR_VEC *get_dof_uchar_vec(const char *name, const FE_SPACE *fe_space);
void free_dof_real_vec(DOF_REAL_VEC *vec);
void free_dof_real_d_vec(DOF_REAL_D_VEC *vec);
void free_dof_int_vec(DOF_INT_VEC *vec);
void free_dof_dof_vec(DOF_INT_VEC *vec);
void free_int_dof_vec(DOF_INT_VEC *vec);
void free_dof_schar_vec(DOF_SCHAR_VEC *vec);
void free_dof_uchar_vec(DOF_UCHAR_VEC *vec);

By specifying a finite element space for a DOF VEC, the corresponding set of DOFs is implic-
itly specified by fe_space->admin. The DOF VEC is linked into DOF_ADMIN’s appropriate
dof_?_vec list for automatic handling during mesh changes. The DOF VEC structure entries
next and admin are set during creation and must not be changed otherwise! The size of the
dof_vec->vec vector is automatically adjusted to the range of DOF indices controlled by
fe_space->admin.

2.3. ADMINISTRATION OF DEGREES OF FREEDOM 87

There is a special list for each type of DOF vectors in the DOF_ADMIN structure. All
DOF_REAL_VECs, DOF_REAL_D_VECs, DOF_UCHAR_VECs, and DOF_SCHAR_VECs are added to the
respective lists, whereas a DOF_INT_VEC may be added to one of three lists in DOF_ADMIN:
dof_int_vec, dof_dof_vec, and int_dof_vec. The difference between these three lists is
their handling during a resize or compress of the DOF range. In contrast to all other cases,
for a vector in admin’s int_dof_vec list, the size is NOT changed with admin->size. But
the values vec[i], i = 1, . . . , size are adjusted when admin is compressed, for example. For
vectors in the dof_dof_vec list, both adjustments in size and adjustment of values is done.

The get_?_vec() routines automatically allocate enough memory for the data vector
vec as indicated by fe_space->admin->size. Pointers to the routines refine_interpol and
coarse_restrict are set to nil. They must be set explicitly after the call to get_?_vec()
for an interpolation during refinement and/or interpolation/restriction during coarsening.
The free_?_vec() routines remove the vector from a vec->fe_space->admin->dof_?_vec
list and free the memory used by vec->vec and *vec.

A printed output of the vector entries together with its name (mainly for test purposes)
is produced by the routines:

void print_dof_int_vec(const DOF_INT_VEC *div);
void print_dof_real_vec(const DOF_REAL_VEC *drv);
void print_dof_real_d_vec(const DOF_REAL_D_VEC *drdv);
void print_dof_schar_vec(const DOF_SCHAR_VEC *dsv);
void print_dof_uchar_vec(const DOF_UCHAR_VEC *duv);

2.3.3 Interpolation and restriction of DOF vectors during mesh refinement
and coarsening

During mesh refinement and coarsening, new DOFs are produced, or old ones are deleted.
In many cases, information stored in DOF_VECs has to be adjusted to the new distribution of
DOFs. To do this automatically during the refinement and coarsening process, each DOF_VEC
can provide pointers to subroutines refine_interpol and coarse_restrict, that imple-
ments these operations on data. During refinement and coarsening of a mesh, these routines
are called for all DOF_VECs with non-nil pointers in all DOF_ADMINs in mesh->dof_admin.

Before doing the mesh operations, it is checked whether any automatic interpolations
or restrictions during refinement or coarsening are requested. If yes, then the corresponding
operations will be performed during local mesh changes.

As described in Sections 2.4.1 and 2.4.2, interpolation resp. restriction of values is done
during the mesh refinement and coarsening locally on every refined resp. coarsened patch
of elements. Which of the local DOFs are created new, and which ones are kept from par-
ent/children elements, is described in these other sections, too. All necessary interpolations
or restrictions are done by looping through all DOF_ADMINs in mesh and calling the DOF_VEC’s
routines

struct dof_real_vec
{
...

void (*refine_interpol)(DOF_REAL_VEC *, RC_LIST_EL *, int);
void (*coarse_restrict)(DOF_REAL_VEC *, RC_LIST_EL *, int);

}

Those implement interpolation and restriction on one patch for this DOF_VEC. Only these have
to know about the actual meaning of the DOFs. Here, RC_LIST_EL is a vector holding pointers
to all n parent elements which build the patch (and thus have a common refinement edge).

88 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

Usually, the interpolation and restriction routines for REAL or REAL D vectors are defined in
the corresponding dof_vec->fe_space->bas_fcts structures. Interpolation or restriction of
non–real values (int or CHAR) is usually application dependent and is not provided in the
BAS FCTS structure.

Examples of these routines are shown in Section 2.5.2.

2.3.4 The DOF MATRIX data structure

Not only vectors indexed by DOFs are available in ALBERT, but also matrices which operate
on these DOF_VECs. For finite element calculations, these matrices are usually sparse, and
should be stored in a way that reflects this sparseness. We use a storage method which is
similar to the one used in [31]. Every row of a matrix is realized as a linked list of MATRIX_ROW
structures, each holding a maximum of ROW_LENGTH matrix entries from that row. Each
entry consists of a column DOF index and the corresponding REAL matrix entry. Unused
entries in a MATRIX_ROW are marked with a negative column index. The ROW_LENGTH is a
symbolic preprocessor constant defined in albert.h. For DIM=2 meshes built from triangles,
the refinement by bisection generates usually at most eight elements meeting at a common
vertex, more elements may meet only at macro vertices. Thus, for piecewise linear (Lagrange)
elements on triangles, up to nine entries are non–zero in most rows of a mass or stiffness
matrix. This motivates the choice ROW_LENGTH = 9. For higher order elements or tetrahedra,
there are much more non–zero entries in each row. Thus, a split of rows into short MATRIX_ROW
parts should not produce too much overhead.

typedef struct matrix_row MATRIX_ROW;

struct matrix_row
{

MATRIX_ROW *next;
int col[ROW_LENGTH];
REAL entry[ROW_LENGTH];

};

#define ENTRY_USED(col) (col >= 0)
#define ENTRY_NOT_USED(col) (col < 0)
#define UNUSED_ENTRY -1
#define NO_MORE_ENTRIES -2

Such a DOF_MATRIX structure is usually filled by local operations on single elements, using
the update_matrix() routine, compare Section 2.12.1, which automatically generates space
for new matrix entries by adding new MATRIX_ROWs, if needed.

Similar to DOF vectors, the DOF_MATRIX structure contains pointers to routines for in-
terpolation and restriction during mesh refinement and coarsening. Providing such routines,
an existing DOF_MATRIX can be updated by local operations, and a complete recalculation is
not necessary. For DOF vectors describing finite element functions, such an interpolation can
be necessary even from a mathematical point of view. For matrices, this is more mandatory.
For implicit discretizations, where a (non–) linear system involving the DOF_MATRIX has to be
solved, this solution is usually much more expensive than a complete new matrix recalcula-
tion. Thus, local matrix updates will not save much time. But for explicit discretizations or for
expensive matrices, such a local matrix update may save a noticeable amount of computing
time.

A DOF_MATRIX may also be used to combine two different sets of DOFs, compare
Section 2.12.1. In the moment, the use of such matrices may produce errors during
dof compress(). Such a matrix should be cleared by calling clear dof matrix() before

2.3. ADMINISTRATION OF DEGREES OF FREEDOM 89

a call to dof compress().

typedef struct dof_matrix DOF_MATRIX;

struct dof_matrix
{
DOF_MATRIX *next;
const FE_SPACE *fe_space;
const char *name;

MATRIX_ROW **matrix_row;
DOF size;

void (*refine_interpol)(DOF_MATRIX *, RC_LIST_EL *, int n);
void (*coarse_restrict)(DOF_MATRIX *, RC_LIST_EL *, int n);

};

The entries yield following information:

next: linked list of DOF_MATRIX structures in fe_space->admin;

fe space: FE_SPACE structure with information about corresponding row DOFs and basis
functions;

name: a textual description for the matrix, or nil;

matrix row: vector of pointers to MATRIX_ROWs, one for each row;

size: current size of the matrix_row vector;

refine interpol, coarse restrict: interpolation and restriction routines, see Section
2.3.3.

Allocation and freeing of DOF–matrices is done via routines

DOF_MATRIX *get_dof_matrix(const char *name, const FE_SPACE *fe_space);
void free_dof_matrix(DOF_MATRIX *matrix);

As described above for DOF vectors, get_dof_matrix() does automatically link the
new matrix into the fe_space->admin->dof_matrix list. A matrix_row vector of length
fe_space->admin->size is allocated and all entries are set to nil. The free_dof_matrix()
routine frees first all MATRIX_ROWs in matrix->matrix_row, then matrix->matrix_row, and
finally the structure *matrix.

Subroutines

void clear_dof_matrix(DOF_MATRIX *matrix);
void print_dof_matrix(const DOF_MATRIX *matrix);

are available to clear a matrix or (mainly for test purposes) to print its contents.
clear_dof_matrix() does not reset all entries of a matrix to zero: it removes all entries
from the matrix. This is done by freeing all MATRIX_ROWs in matrix->matrix_row and set-
ting all entries in matrix->matrix_row to nil.

2.3.5 Access to global DOFs: Macros for iterations using DOF indices

For loops over all used (or free) DOFs, the following macros are defined:

FOR_ALL_DOFS(admin, todo);
FOR_ALL_FREE_DOFS(admin, todo);

90 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

Here, ADMIN *admin is the pointer to an admin structure, and todo is a list of C-statements
which are to be executed on every used resp. unused DOF index. During todo, the local
variable int dof holds the current index of an used resp. unused entry. It must not be
altered by todo.

Two examples illustrate the usage of these macros.

2.3.2. Example (Initialization of vectors). This BLAS–1 routine dset() initializes all
elements of a vector with a given value; for DOF REAL VECs we have to set this value for all
used DOFs. All used entries of the DOF REAL VEC *drv are set to a value α by:

FOR_ALL_DOFS(drv->fe_space->admin, drv->vec[dof] = alpha);

The BLAS–1 routine dof set() is written this way, compare Section 2.3.7.

2.3.3. Example (Matrix–vector multiplication). As a more complex example we give
an implementation of the matrix–vector product in dof mv(), compare Sections 2.3.4 and
2.3.7:

FOR_ALL_DOFS(admin,
sum = 0.0;
for (row = a->matrix_row[dof]; row; row = row->next) {
for (j=0; j<ROW_LENGTH; j++) {
jcol = row->col[j];
if (ENTRY_USED(jcol)) {
sum += row->entry[j] * xvec[jcol];

}
else {
if (jcol == NO_MORE_ENTRIES)
break;

}
}

}
yvec[dof] = sum;

);

2.3.6 Access to local DOFs on elements

As shown by the examples in Figure 1.17, the DOF administration is able to handle different
sets of DOFs, defined by different DOF_ADMIN structures, at the same time. All operations
with finite element functions, like evaluation or integration, are done locally on the level of
single elements. Thus, access on element level to DOFs from a single DOF_ADMIN has to be
provided in a way that is independent from all other finite element spaces which might be
defined on the mesh.

As described in Section 2.2.8, the EL data structure holds a vector of pointers to DOF
vectors, that holds data for all DOFs on the element from all DOF_ADMINs:

struct el
{
...
DOF **dof;
...

};

During initialization of a mesh, the lengths of these vectors is computed by collecting data
from all DOF_ADMINs associated with the mesh; details are given below. Information about all
DOFs associated with a mesh is collected and accessible in the MESH data structure (compare
Section 2.2.14):

2.3. ADMINISTRATION OF DEGREES OF FREEDOM 91

struct mesh
{
...

DOF_ADMIN **dof_admin;
int n_dof_admin;

int n_dof_el;
int n_dof[DIM+1];
int n_node_el;
int node[DIM+1];

};

The meaning of these variables is:

dof admin: a vector of pointers to all DOF_ADMIN structures for the mesh;

n dof admin: number of all DOF_ADMIN structures for the mesh;

n dof el: total number of DOFs on one element from all DOF_ADMIN structures;

n dof: total number of VERTEX, EDGE, FACE, and CENTER DOFs from all DOF_ADMIN struc-
tures;

n node el: number of used nodes on each element (vertices, edges, faces, and center), this
gives the dimension of el->dof;

node: The entry node[i], i ∈ {VERTEX, EDGE, FACE, CENTER} gives the index of the first
i-node in el->dof.

All these variables must not be changed by a user routine — they are set during the
init_dof_admins() routine given as a parameter to GET_MESH(), compare Section 2.2.15.
Actually, only a subroutine get_fe_space() is allowed to change such information (compare
Section 2.6.2).

We denote the different locations of DOFs on an element by nodes. As there are DOFs
connected with different–dimensional (sub–) simplices, there are vertex, edge, face, and center
nodes. Using the symbolic constants from Section 2.2.2, there may be N_VERTICES vertex
nodes, N_EDGES edge nodes, N_FACES face nodes (in 3d), and one center node. Depending on
the finite element spaces in use, not all possible nodes must be associated with DOFs, but
some nodes may be associated with DOFs from several different finite element spaces (and
several DOF_ADMINs). In order to minimize the memory usage for pointers and DOF vectors,
the elements store data only for such nodes where DOFs are used. Thus, the number of nodes
on an element is determined during mesh initialization, when all finite element spaces and
DOFs are defined. The total number of nodes is stored in mesh->n_node_el, which will be
the length of the el->dof vector for all elements.

In order to access the DOFs for one node, mesh->node[l] contains the index of the first
l–node in el->dof, where l is either VERTEX, EDGE, FACE, or CENTER (compare Figure 2.2).
So, a pointer to DOFs from the i–th edge node is stored at el->dof[mesh->node[EDGE]+i]
(0 ≤ i < N EDGES), and these DOFs (and the vector holding them) are shared by all elements
meeting at this edge.

The total number of DOFs at an l–node is available in mesh->n_dof[l]. This number
is larger than zero, iff the node is in use. All DOFs from different DOF_ADMINs are stored
together in one vector. In order to access DOFs from a given finite element space (and its
associated DOF_ADMIN), the start index for DOFs from this DOF_ADMIN must be known. This
start index is generated during mesh initialization and stored in admin->n0_dof[l]. The
number of DOFs from this DOF_ADMIN is given in admin->n_dof[l]. Thus, a loop over all
DOFs associated with the i–th edge node can be done by:

92 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

Figure 2.2: DOF vector indices in el->dof for DOFs at vertices, vertices and edges, vertices,
edges and center, and vertices and center (in 2d). Corresponding mesh->node values are
{0,0,0}, {0,3,0}, {0,3,6}, and {0,0,3}.

DOF *dof_ptr = el->dof[mesh->node[EDGE]+i] + admin->n0_dof[EDGE];
for (j = 0 ; j < admin->n_dof[EDGE]; j++)
{
dof = dof_ptr[j];
...

}

In order to simplify the access of DOFs for a finite element space on an element, the
BAS FCTS structure must provide a routine

const DOF *(*get_dof_indices)(const EL *,const DOF_ADMIN *,int *);

which returns a vector containing all global DOFs associated with basis functions, in the
correct order: the k–th DOF is associated with the k–th local basis function (compare Section
2.5.1).

2.3.7 BLAS routines for DOF vectors and matrices

Several basic linear algebra subroutines (BLAS [27, 12]) are implemented for DOF vectors
and DOF matrices, see Table 2.1. Some non–standard routines are added: dof_xpay() is a
variant of dof_axpy(), dof_min() and dof_max() calculate minimum and maximum values,
and dof_mv() is a simplified version of the general dof_gemv() matrix-vector multiplica-
tion routine. The BLAS–2 routines dof_gemv() and dof_mv() use a MatrixTranspose flag:
transpose= 0 indicates the original matrix, while transpose= 1 indicates the transposed
matrix.

Similar routines are provided for DOF_REAL_D vectors, see Table 2.2.

2.3.8 Reading and writing of meshes and vectors

Section 2.2.16 described the input and output of ASCII files for macro triangulations. Locally
refined triangulations including the mesh hierarchy and corresponding DOFs are saved in
binary formats. Finite element data is saved (and restored) in binary format, too, in order
to keep the full data precision. As the binary data and file format does usually depend on
hardware and operating system, the interchange of data between different platforms needs
a machine independent format. The XDR (External Data Representation) library provides
a widely used interface for such a format. The _xdr routines should be used whenever data
must be transfered between different computer platforms.

int write_mesh(MESH *mesh, const char *file, REAL time);

MESH *read_mesh(const char *file, REAL *timeptr,

2.3. ADMINISTRATION OF DEGREES OF FREEDOM 93

REAL dof_nrm2(const DOF_REAL_VEC *x) nrm2 = (
∑
X2
i)1/2

REAL dof_asum(const DOF_REAL_VEC *x) asum =
∑
|Xi|

REAL dof_min(const DOF_REAL_VEC *x) min = minXi

REAL dof_max(const DOF_REAL_VEC *x) max = maxXi

void dof_set(REAL alpha, DOF_REAL_VEC *x) X = (α, . . . , α)
void dof_scal(REAL alpha, DOF_REAL_VEC *x) X = α ∗X
REAL dof_dot(const DOF_REAL_VEC *x, const DOF_REAL_VEC *y) dot =

∑
XiYi

void dof_copy(const DOF_REAL_VEC *x, DOF_REAL_VEC *y) Y = X

void dof_axpy(REAL alpha, Y = α ∗X + Y

const DOF_REAL_VEC *x, DOF_REAL_VEC *y)

void dof_xpay(REAL alpha, Y = X + α ∗ Y
const DOF_REAL_VEC *x, DOF_REAL_VEC *y)

void dof_gemv(MatrixTranspose transpose, REAL alpha, Y = α ∗A ∗X + β ∗ Y
const DOF_MATRIX *a, const DOF_REAL_VEC *x, or
REAL beta, DOF_REAL_VEC *y) Y = α ∗At ∗X + β ∗ Y

void dof_mv(MatrixTranspose transpose, Y = A ∗X
const DOF_MATRIX *a, or
const DOF_REAL_VEC *x, DOF_REAL_VEC *y) Y = At ∗X

Table 2.1: Implemented BLAS routines for DOF vectors and matrices

REAL dof_nrm2_d(const DOF_REAL_D_VEC *x) nrm2 = (
∑
|Xi|2)1/2

void dof_set_d(REAL alpha, DOF_REAL_D_VEC *x) X = ((α, . . . , α), . . .)
void dof_scal_d(REAL alpha, DOF_REAL_D_VEC *x) X = α ∗X
REAL dof_dot_d(const DOF_REAL_D_VEC *x, dot =

∑
(Xi, Yi)

const DOF_REAL_D_VEC *y)

void dof_copy_d(const DOF_REAL_D_VEC *x, DOF_REAL_D_VEC *y) Y = X

void dof_axpy_d(REAL alpha, Y = α ∗X + Y

const DOF_REAL_D_VEC *x, DOF_REAL_D_VEC *y)

void dof_xpay_d(REAL alpha, Y = X + α ∗ Y
const DOF_REAL_D_VEC *x, DOF_REAL_D_VEC *y)

void dof_mv_d(MatrixTranspose transpose, Y = A ∗X
const DOF_MATRIX *a, or
const DOF_REAL_D_VEC *x, DOF_REAL_D_VEC *y) Y = At ∗X

Table 2.2: Implemented BLAS routines for DOF REAL D vectors

94 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

void (*init_leaf_data)(LEAF_DATA_INFO *),
const BOUNDARY *init_boundary(MESH *mesh, int ibdry));

The routine write_mesh stores information about the mesh in a file named file. Written
data includes the corresponding time (only important for time dependent problems), macro
elements, mesh elements including the parent/child hierarchy information, DOF administra-
tion and element DOFs. The return value is 1 if an error occurs, otherwise 0.

Routine read_mesh reads a complete mesh from file file, which was created by
write_mesh. The corresponding time, if any, is stored at *timeptr. The arguments
init_leaf_data and init_boundary are used in the same way as in read_macro, compare
Section 2.2.16.

For input and output of finite element data, the following routines are provided which
read of write files containing binary DOF vectors.

int write_dof_int_vec(const DOF_INT_VEC *div, const char *file);
int write_dof_real_vec(const DOF_REAL_VEC *drv, const char *file);
int write_dof_real_d_vec(const DOF_REAL_D_VEC *drdv, const char *file);
int write_dof_schar_vec(const DOF_SCHAR_VEC *dsv, const char *file);
int write_dof_uchar_vec(const DOF_UCHAR_VEC *duv, const char *file);

DOF_INT_VEC *read_dof_int_vec(const char *file, MESH *, FE_SPACE*);
DOF_REAL_VEC *read_dof_real_vec(const char *file, MESH *, FE_SPACE *);
DOF_REAL_D_VEC *read_dof_real_d_vec(const char *file, MESH *, FE_SPACE *);
DOF_SCHAR_VEC *read_dof_schar_vec(const char *file, MESH *, FE_SPACE *);
DOF_UCHAR_VEC *read_dof_uchar_vec(const char *file, MESH *, FE_SPACE *);

For the output and input of machine independent data files, similar routines are provided.
The XDR library is used, and thus all routine names end with _xdr:

int write_mesh_xdr(MESH *mesh, const char *file, REAL time);

MESH *read_mesh_xdr(const char *file, REAL *timeptr,
void (*init_leaf_data)(LEAF_DATA_INFO *),
const BOUNDARY *init_boundary(MESH *mesh, int ibdry));

int write_dof_int_vec_xdr(const DOF_INT_VEC *div, const char *file);
int write_dof_real_vec_xdr(const DOF_REAL_VEC *drv, const char *file);
int write_dof_real_d_vec_xdr(const DOF_REAL_D_VEC *drdv, const char *file);
int write_dof_schar_vec_xdr(const DOF_SCHAR_VEC *dsv, const char *file);
int write_dof_uchar_vec_xdr(const DOF_UCHAR_VEC *duv, const char *file);

DOF_INT_VEC *read_dof_int_vec_xdr(const char *file, MESH *, FE_SPACE*);
DOF_REAL_VEC *read_dof_real_vec_xdr(const char *file, MESH *, FE_SPACE *);
DOF_REAL_D_VEC *read_dof_real_d_vec_xdr(const char *file, MESH *, FE_SPACE *);
DOF_SCHAR_VEC *read_dof_schar_vec_xdr(const char *file, MESH *, FE_SPACE *);
DOF_UCHAR_VEC *read_dof_uchar_vec_xdr(const char *file, MESH *, FE_SPACE *);

2.3.4. Remark. In the moment, the read_mesh(_xdr)() and write_mesh(_xdr)() are
only available if NEIGH_IN_EL==0.

2.4. THE REFINEMENT AND COARSENING IMPLEMENTATION 95

2.4 The refinement and coarsening implementation

2.4.1 The refinement routines

The refinement of a mesh is done by the function

U_CHAR refine(MESH *mesh);

Description:
refine(mesh): refines all leaf element with a positive element marker mark times (this

mark is usually set by some adaptive procedure); the routine loops over all leaf elements
and refines the elements with a positive marker until there is no element left with a positive
marker; the return value is MESH REFINED, if an element was refined, and 0 otherwise. Every
refinement has to be done via this routine. The basic steps of this routine are described
below.

A second function for refinement is

U_CHAR global_refine(MESH *mesh, int mark);

Description:
global refine(mesh, mark): sets all element markers for leaf elements of mesh to mark;

the mesh is then refined by refine() which results in a mark global refinement of the
mesh; the return value is MESH REFINED, if mark is positive, and 0 otherwise.

Basic steps of the refinement algorithm

The refinement of a mesh is principally done in two steps. In the first step no coordinate
information is available on the elements. In the case that neighbour information is stored at
the elements such coordinate information can not be produced when going from one neighbour
to another by the neighbour pointers. Thus, only a topological refinement is performed. If
new nodes are created on the boundary these can be projected onto a curved boundary in
the second step when coordinate information is available.

Thus, the algorithm looks as follows:
1. The whole mesh is refined only topologically. This part consists out of

• the collection of a compatible refinement patch; this includes the recursive refinement
of adjacent elements with an incompatible refinement edge;
• the topological bisection of the patch elements;
• the transformation of leaf data from parent to child, if such a function is available in

the leaf data info structure;
• allocation of new DOFs;
• handing on of DOFs from parent to the children;
• interpolation of DOF vectors and matrices from the coarse grid to the fine one on the

whole refinement patch, if the function refine interpol() is available for these DOF
vectors (compare Section 2.3.3); these routines must not use coordinate information;
• a deallocation of DOFs on the parent when preserve coarse dofs == 0.

This process is described in detail below.
2. New nodes which belong to the curved part of the boundary are now projected onto

the curved boundary via the param bound() function in the BOUNDARY structure of the
refinement edge. The coordinates of the projected node are stored in a REAL D–vector
and the pointers el->new coord of all parents el which belong to the refinement patch
are set to this vector. Figure 2.3 shows some refinements of a triangle with one edge on

96 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

the curved boundary. The projections of refinement edge midpoints (small circles) to the
curved boundary are shown by the black dots.

Figure 2.3: Refinement at curved boundary: refinement edge midpoints ◦ are projected by
param bound() to the curved boundary •

The topological refinement is done by the recursive refinement Algorithm 1.1.5. First, all
all elements at the refinement edge of an marked element are collected. If a neighbour with an
incompatible refinement edge is found, this neighbour is refined first by a recursive call of the
refinement function. Thus, after looping around the refinement edge, the patch of simplices
at this edge is always a compatible divisible refinement patch. The elements of this patch are
stored in a vector ref list with elements of type RC LIST EL, compare Section 2.2.13. This
vector is an argument for the functions for interpolation of DOF vectors/matrices during
refinement, compare Section 2.3.3.

In 2d the vector has length 2 and only the el entry of the components is set and used.
If the refinement edge is an interior edge the number of elements at the edge is 2, otherwise
only the element itself has to be refined.

In 3d this vector is allocated with length mesh->max edge neigh. As mentioned in Section
2.2.13 we can define an orientation of the edge and by this orientation we can define the right
and left neighbours (inside the patch) of an element at this edge.

Then the patch is bisected by first inserting a new vertex at the midpoint of the refinement
edge. Then all elements of the refinement patch are bisected. This includes the allocation of
new DOFs, the adjustment of DOF pointers, and the memory allocation for leaf data (if the
leaf data size is positive) and transformation of leaf data from parent to child (if a pointer
to a function refine leaf data() is provided by the user in the leaf data info structure).
Then memory for parents’ leaf data is freed and stored information is definitely lost.

In the case of higher order elements we also have to add new DOFs on the patch and if we
do not need information about the higher order DOFs on coarser levels they are removed from
the parents. There are some basic rules for adding and removing DOFs which are important
for the prolongation and restriction of data (see Section 2.3.3):
1. Only DOFs of the same kind (i.e. VERTEX, EDGE, or FACE) and whose nodes have the same

geometrical position on parent and child are handed on to this child from the parent;
2. DOFs at a vertex, an edge or a face belong to all elements sharing this vertex, edge,

face, respectively;
3. DOFs on the parent are only removed if the entry preserve coarse dofs in the mesh

data structure is false; in that case only DOFs which are not handed on to a child are

2.4. THE REFINEMENT AND COARSENING IMPLEMENTATION 97

removed on the parent.
A direct consequence of 1. is that only DOFs inside the patch are added or removed;

DOFs on the patch boundary stay untouched. CENTER DOFs can not be handed from parent
to child since the centers of the parent and the children are always at different positions.

Using standard Lagrange finite elements, only DOFs that are not handed from parent to
child have to be set while interpolating a finite element function to the finer grid; all values
of the other DOFs stay the same (the same holds during coarsening and interpolating to the
coarser grid).

Due to 2. it is clear that DOFs shared by more than one element have to be allocated
only once and pointers to these DOFs are set correctly for all elements sharing it.

Now, we take a closer look at DOFs that are handed on by the parents and those that
have to be allocated: In 2d we have

child[0]->dof[0] = el->dof[2];
child[0]->dof[1] = el->dof[0];
child[1]->dof[0] = el->dof[1];
child[1]->dof[1] = el->dof[2];

and in 3d for child[0] we always have

child[0]->dof[0] = el->dof[0];
child[0]->dof[1] = el->dof[2];
child[0]->dof[2] = el->dof[3];

For child[1] this passing of DOFs depends on the type of the parent. For a parent of type
0 we have

child[1]->dof[0] = el->dof[1];
child[1]->dof[1] = el->dof[3];
child[1]->dof[2] = el->dof[2];

and for a parent of type 1 or 2

child[1]->dof[0] = el->dof[1];
child[1]->dof[1] = el->dof[2];
child[1]->dof[2] = el->dof[3];

For both dimensions

child[0]->dof[DIM] = child[1]->dof[DIM]

is the newly allocated DOF at the midpoint of the refinement edge (compare Figures 1.4 and
1.5).

In the case that we have DOFs at the midpoint of edges the following DOFs are passed
on (let enode = mesh->node[EDGE] be the offset for DOFs at edges): for 2d

child[0]->dof[enode+2] = el->dof[enode+1];
child[1]->dof[enode+2] = el->dof[enode+0];

and for 3d

child[0]->dof[enode+0] = el->dof[enode+1];
child[0]->dof[enode+1] = el->dof[enode+2];
child[0]->dof[enode+3] = el->dof[enode+5];

for child[0] a for child[1] of a parent of type 0

child[1]->dof[enode+0] = el->dof[enode+4];
child[1]->dof[enode+1] = el->dof[enode+3];
child[1]->dof[enode+3] = el->dof[enode+5];

and finally for child[1] of a parent of type 1 or 2

98 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

child[1]->dof[enode+0] = el->dof[enode+3];
child[1]->dof[enode+1] = el->dof[enode+4];
child[1]->dof[enode+3] = el->dof[enode+5];

Figure 2.4: Edge DOFs that are freed •, passed on ◦, and newly allocated 2

We also have to create new DOFs (compare Figure 2.4). Two additional DOFs are created
in the refinement edge which are shared by all patch elements. Pointers to these DOFs are
adjusted for

child[0]->dof[enode+0],
child[1]->dof[enode+1]

in 2d and

child[0]->dof[enode+2],
child[1]->dof[enode+2]

in 3d for all patch elements.
In 3d for each interior face of the refinement patch there is a new edge where we have to

add a new DOF vector. These DOFs are shared by two children in the case of a boundary
face; otherwise it is shared by four children and pointers of

child[0]->dof[enode+4] = child[1]->dof[enode+{5,4,4}],
child[0]->dof[enode+5] = child[1]->dof[enode+{4,4,5}]

are adjusted for those elements.
In 3d there may be also DOFs at faces; the face DOFs in the boundary of the patch are

passed on (let fnode = mesh->node[FACE] be the offset for DOFs at faces):

child[0]->dof[fnode+3] = el->dof[fnode+1];
child[1]->dof[fnode+3] = el->dof[fnode+0];

For the common face of child[0] and child[1] we have to allocate a new face DOF vector
which is located at

child[0]->dof[fnode+0] = child[1]->dof[fnode+0]

and finally for each interior face of the patch two new face DOF vectors are created and
pointers for adjacent children are adjusted:

child[0]->dof[fnode+1],
child[0]->dof[fnode+2],
child[1]->dof[fnode+1],
child[1]->dof[fnode+2]

Each of these DOF vectors may be shared with another child of a patch element.
If DOFs are located at the barycenter they have to be allocated for both children in 2d

and 3d (let cnode = mesh->node[CENTER] be the offset for DOFs at the center)

child[0]->dof[cnode],
child[1]->dof[cnode].

2.4. THE REFINEMENT AND COARSENING IMPLEMENTATION 99

After adding and passing on of DOFs on the patch we can interpolate data from the
coarse to the fine grid on the whole patch. This is an operation on the whole patch since new
DOFs can be shared by more than one patch element and usually the value(s) of such an
DOF should only be calculated once.

All DOF vectors where a pointer to a function refine interpol() in the corresponding
DOF * VEC data structure is provided are interpolated to the fine grid. Such a function does
essentially depend on the described passing on and new allocation of DOFs. An abstract
description of such functions can be found in Section 1.4.4 and a more detailed one for
Lagrange elements in Section 2.5.2.

After such an interpolation, DOFs of higher degree on parent elements may be no
longer of interest (if we do not use a multigrid method e.g.) In such a case the entry
preserve coarse dofs in the mesh data structure has to be 0 and all DOFs on the par-
ent that are not handed over to the children will be removed. Following DOFs are removed
on the parent for all patch elements (some DOFs are shared by several elements):

el->dof[mesh->node[EDGE]+2],
el->dof[mesh->node[CENTER]]

in 2d and

el->dof[mesh->node[EDGE]+0],
el->dof[mesh->node[FACE]+2],
el->dof[mesh->node[FACE]+3],
el->dof[mesh->node[CENTER]]

in 3d. All pointers to DOFs at edges, faces and centers are set to nil. No information about
these DOFs is available on interior tree elements in this case. Again we want to point out
that for the geometrical description of the mesh we do not free vertex DOFs and all pointers
to vertex DOFs stay untouched on the parent elements.

This setting of DOF pointers, pointers to children and adjustment of adjacency relations
when NEIGH IN EL == 1 is the main part of the refinement module.

If neighbour information is produced by the traversal routines, then it is valid for all tree
elements. If it is stored explicitly, then neighbour information is valid for all leaf elements
with all neighbours; but it is only valid for interior elements of the tree with those neighbours
that belong to the common refinement patch!

2.4.2 The coarsening routines

The coarsening of a mesh is done by the function

U_CHAR coarsen(MESH *mesh);

Description:

coarsen(mesh): tries to coarsen all leaf element with a negative element marker -mark
times (again, this mark is usually set by an adaptive procedure); the return value is
MESH COARSENED, if any element was coarsened, and 0 otherwise.

A second function for coarsening is

U_CHAR global_coarsen(MESH *mesh, int mark);

Description:

global coarsen(mesh, mark): sets all element markers for leaf elements of mesh to
-mark; the mesh is then coarsened by coarsen(); depending on the actual distribution of
coarsening edges on the mesh, this may not result in a mark global coarsening; the return
value is coarsen(mesh) if mark is positive, and 0 otherwise.

100 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

The function coarsen() implements Algorithm 1.1.10. For a marked element, the coars-
ening patch is collected first. This is done in the same manner as in the refinement procedure.
If such a patch can definitely not be coarsened (if one element of the patch may not be coars-
ened, e.g.) all coarsening markers for all patch elements are reseted. If we can not coarsen
the patch immediately, because one of the elements has not a common coarsening edge but
is allowed to be coarsened more than once, then nothing is done in the moment and we try
to coarsen this patch later on (compare Remark 1.1.11).

The coarsening of a patch is the “inverse” of the refinement of a compatible patch. If
DOFs of the parents were removed during refinement, these are now added on the parents.
Pointers to those that have been passed on to the children are now adjusted back on the
parents (see Section 2.4.1 which DOFs of children are now assigned to the parent, just swap
the left and right hand sides of the assignments). DOFs that have been freed have to be newly
allocated.

If user leaf data is stored at the pointer of child[1], then memory for parent’s leaf data
is allocated and the children’s leaf data is freed. If a function coarsen leaf data is provided
in the leaf data info structure then leaf data is transformed from children to parent before
freeing the children’s leaf data.

Like the interpolation of data during refinement, we now can restrict/interpolate data
from children to parent. This is done by the coarse restrict() functions for all those DOF
vectors where such a function is available in the corresponding DOF * VEC data structure.
Since it does not make sense to both interpolate and restrict data, coarse restrict() may
be a pointer to a function either for interpolation or restriction. An abstract description of
those functions can be found in Section 1.4.4 and a more detailed one for Lagrange elements
in Section 2.5.2.

After these preliminaries the main part of the coarsening can be performed. DOFs that
have been created in the refinement step are now freed again, and the children of all patch
elements are freed and the pointer to the first child is set to nil and the pointer to the
second child is adjusted to the leaf data of the parent, or also set to nil. Thus, all fine grid
information is lost at that moment and it is clear that a restriction of data has to be done in
advance.

2.5 Implementation of basis functions

In order to build up a finite element space, we have to specify a set of local basis functions.
Together with the corresponding DOF administration and the underlying mesh, the finite
element space is given. In the following section we describe the basic data structures for
storing basis function information.

In ALBERT Lagrange finite elements up to order four are implemented; they are presented
in the subsequent sections.

2.5.1 Data structures for basis functions

For the handling of local basis functions, i.e. a basis of the function space P̄ (compare Section
1.4.2) we use the following data structures:

typedef REAL BAS_FCT(const REAL[DIM+1]);
typedef const REAL *GRD_BAS_FCT(const REAL[DIM+1]);
typedef const REAL (*D2_BAS_FCT(const REAL[DIM+1]))[DIM+1];

Description:

2.5. IMPLEMENTATION OF BASIS FUNCTIONS 101

BAS FCT: the data type for a local finite element function, i.e. a function ϕ̄ ∈ P̄, evaluated
at barycentric coordinates λ ∈ RDIM+1 and its return value ϕ̄(λ) is of type REAL;

GRD BAS FCT: the data type for the gradient (with respect to λ) of a local finite element
function, i.e. a function returning a pointer to ∇λϕ̄ for some function ϕ̄ ∈ P̄:

∇λϕ̄(λ) =
(
∂ϕ̄(λ)
∂λ0

, . . . ,
∂ϕ̄(λ)
∂λDIM

)
;

the argument of such a function are barycentric coordinates and the return value is a
pointer to a const REAL vector of length [DIM+1] storing∇λϕ̄(λ); this vector is overwritten
by the next call of the function.

D2 BAS FCT: the data type for the second derivatives (with respect to λ) of a local finite
element function, i.e. a function returning a pointer to the matrix D2

λϕ̄ for some function
ϕ̄ ∈ P̄:

D2
λϕ̄ =


∂2ϕ̄(λ)
∂λ0∂λ0

· · · ∂2ϕ̄(λ)
∂λ0∂λDIM

...
...

∂2ϕ̄(λ)
∂λDIM∂λ0

· · · ∂2ϕ̄(λ)
∂λDIM∂λDIM

 ;

The argument of such a function are barycentric coordinates and the return value is a
pointer to a (DIM + 1)× (DIM + 1) matrix storing D2

λϕ̄; this matrix is overwritten during
the next call of the function.
For the implementation of a finite element space, we need a basis of the function space

P̄. For such a basis we need the connection of local and global DOFs on each element (com-
pare Section 1.4.3), information about the interpolation of a given function on an element,
and information about interpolation/restriction of finite element functions during refine-
ment/coarsening (compare Section 1.4.4). Such information is stored in the BAS FCTS data
structure:

typedef struct bas_fcts BAS_FCTS;

struct bas_fcts
{
char *name; /* textual description */
int n_bas_fcts; /* number of basis functions on one el */
int degree; /* maximal degree of the basis functions */
int n_dof[DIM+1];/* dofs from these bas_fcts */

void (*init_element)(const EL_INFO *, const FE_SPACE *, U_CHAR);
BAS_FCT **phi;
GRD_BAS_FCT **grd_phi;
D2_BAS_FCT **D2_phi;

const DOF *(*get_dof_indices)(const EL *,const DOF_ADMIN *,int *);
const S_CHAR *(*get_bound)(const EL_INFO *, S_CHAR *);

/*************** entries must be set for interpolation ********************/

const REAL *(*interpol)(const EL_INFO *, int, const int *,
REAL (*)(const REAL_D), REAL *);

const REAL_D *(*interpol_d)(const EL_INFO *, int, const int *b_no,
const REAL *(*)(const REAL_D, REAL_D), REAL_D *);

102 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

/******************** optional entries ***********************************/

const int *(*get_int_vec)(const EL *, const DOF_INT_VEC *, int *);
const REAL *(*get_real_vec)(const EL *, const DOF_REAL_VEC *, REAL *);
const REAL_D *(*get_real_d_vec)(const EL *, const DOF_REAL_D_VEC *, REAL_D *);
const U_CHAR *(*get_uchar_vec)(const EL *, const DOF_UCHAR_VEC *, U_CHAR *);
const S_CHAR *(*get_schar_vec)(const EL *, const DOF_SCHAR_VEC *, S_CHAR *);

void (*real_refine_inter)(DOF_REAL_VEC *, RC_LIST_EL *, int);
void (*real_coarse_inter)(DOF_REAL_VEC *, RC_LIST_EL *, int);
void (*real_coarse_restr)(DOF_REAL_VEC *, RC_LIST_EL *, int);

void (*real_d_refine_inter)(DOF_REAL_D_VEC *, RC_LIST_EL *, int);
void (*real_d_coarse_inter)(DOF_REAL_D_VEC *, RC_LIST_EL *, int);
void (*real_d_coarse_restr)(DOF_REAL_D_VEC *, RC_LIST_EL *, int);

};

The entries yield following information:

name: string containing a textual description or nil;

n bas fcts: number of local basis functions;

degree: maximal polynomial degree of the basis functions; this entry is only used by
routines using numerical quadrature where no QUAD structure is provided; in such a case
via degree some default numerical quadrature is chosen (see Section 2.8.1); additionally,
degree is used by some graphics routines (see Section 2.16.1);

n dof: vector with the count of DOFs for this set of basis functions;

n dof[VERTEX,EDGE(,FACE),CENTER] count of DOFs at the vertices, edges, faces (only
3d), and the center of an element; the corresponding DOF administration of the finite
element space uses such information;

init element: is used for the initialization of element dependent local finite element
spaces; is not supported by ALBERT in this version;

phi: vector of function pointers for the evaluation of local basis functions in barycentric
coordinates;

(*phi[i])(lambda) returns the value ϕ̄i(λ) of the i–th basis function at lambda for
0 ≤ i < n bas fcts;

grd phi: vector of function pointers for the evaluation of gradients of the basis functions
in barycentric coordinates;

(*grd phi[i])(lambda) returns a pointer to a vector of length DIM+1 containing all first
derivatives (with respect to the barycentric coordinates) of the i–th basis function at
lambda, i.e. (*grd phi[i])(lambda)[k]= ϕ̄i

,λk
(λ) for 0 ≤ k ≤ DIM, 0 ≤ i < n bas fcts;

this vector is overwritten on the next call of (*grd phi[i])();

D2 phi: vector of function pointers for the evaluation of second derivatives of the basis
functions in barycentric coordinates;

(*D2 phi[i])(lambda) returns a pointer to a (DIM+1) × (DIM+1) matrix containing
all second derivatives (with respect to the barycentric coordinates) of the i–th basis
function at lambda, i.e. (*D2 phi[i])(lambda)[k][l]= ϕ̄i

,λkλl
(λ) 0 ≤ k, l ≤ DIM,

0 ≤ i < n bas fcts; this matrix is overwritten on the next call of (*D2 phi[i])();

2.5. IMPLEMENTATION OF BASIS FUNCTIONS 103

get dof indices: pointer to a function which connects the set of local basis functions
with its global DOFs (an implementation of the function jS in Section 1.4.3);
get dof indices(el, admin, dof) returns a pointer to a const DOF vector of length
n bas fcts where the i–th entry is the index of the DOF associated to the i–th basis
function; arguments are the actual element el and the DOF admin admin of the corre-
sponding finite element space fe space (these indices depend on all defined DOF admins
and thus on the corresponding admin); if the last argument dof is nil, get dof indices()
has to provide memory for storing this vector, which is overwritten on the next call of
get dof indices(); if dof is not nil, dof is a pointer to a vector which has to be filled;

get bound: pointer to a function which fills a vector with the boundary types of the basis
functions;
get bound(el info, bound) returns a pointer to this vector of length n bas fcts where
the i–th entry is the boundary type of the i–th basis function; bound may be a pointer
to a vector which has to be filled (compare the dof argument of get dof indices());
such a function needs boundary information; thus, all routines using this function on the
elements need the FILL BOUND flag during mesh traversal;

When using ALBERT routines for the interpolation of REAL(D) valued functions the
interpol(d) function pointer must be set (for example the calculation of Dirichlet boundary
values by dirichlet bound() described in Section 2.12.5):

interpol(d): pointer to a function which performs the local interpolation of a REAL(D)
valued function on an element;
interpol(d)(el info, n, indices, f, coeff) returns a pointer to a const REAL(D)
vector with interpolation coefficients of the REAL(D) valued function f; if indices is a
pointer to nil, the coefficient for all basis functions are calculated and the i–th entry in
the vector is the coefficient of the i–th basis function; if indices is non nil, only the
coefficients for a subset of the local basis functions has to be calculated; n is the number
of those basis functions, indices[0], . . . , indices[n-1] are the local indices of the basis
functions where the coefficients have to be calculated, and the i–th entry in the return
vector is then the coefficient of the indices[i]–th basis function; coeff may be a pointer
to a vector which has to be filled (compare the dof argument of get dof indices());
such a function usually needs vertex coordinate information; thus, all routines using this
function on the elements need the FILL COORDS flag during mesh traversal.

Optional entries:

get * vec: pointer to a function which fills a local vector with values of a DOF * VEC at
the DOFs of the basis functions;
get * vec(el, dof * vec, * values) returns a pointer to a const * vector where the
i–th entry is the value of dof * vec at the DOF of the i–th basis function on element el;
values may be a pointer to a vector which has to be filled (compare the dof argument of
get dof indices());

Since the interpolation of finite element functions during refinement and coarsening, and the
restriction of functionals during coarsening strongly depend on the basis functions and its
DOFs (compare Section 1.4.4), pointers for functions which perform those operations can be
stored at the following entries:

real(d) refine inter: pointer to a function for interpolating a REAL(D) valued function
during refinement;
real(d) refine inter(vec, refine list, n) interpolates the DOF REAL(D) VEC vec-
tor vec on the refinement patch onto the finer grid; information about all parents of the
refinement patch is accessible in the vector refine list of length n;

104 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

real(d) coarse inter: pointer to a function for interpolating a REAL(D) valued function
during coarsening;
real(d) coarse inter(vec, refine list, n) interpolates the DOF REAL(D) VEC vec-
tor vec on the coarsening patch onto the coarser grid; information about all parents of
the refinement patch is accessible in the vector refine list of length n;

real(d) coarse restr: pointer to a function for restriction of REAL(D) valued linear
functionals during coarsening;
real(d) coarse restrict(vec, refine list, n) restricts the DOF REAL(D) VEC vec-
tor vec on the coarsening patch onto the coarser grid; information about all parents of
the refinement patch is accessible in the vector refine list of length n;

In Section 2.5.3 and 2.5.4 examples for the implementation of those functions are given.

2.5.1. Remark. The access of local element vectors via the get * vec() routines can also
be done in a standard way by using the get dof indices() function which must be supplied;
if some of the get * vec() are pointer to nil, ALBERT fills in pointers to some standard
functions using get dof indices(). But a specialized function may be faster. An example
of such a standard routine is:

static const int *get_int_vec(const EL *el, const DOF_INT_VEC *vec, int *ivec)
{
FUNCNAME("get_int_vec");
int i, n_bas_fcts;
const DOF *index;
int *v = nil, *rvec;
const FE_SPACE *fe_space = vec->fe_space;
static int *local_vec = nil;
static int max_size = 0;

GET_DOF_VEC(v, vec);
n_bas_fcts = fe_space->bas_fcts->n_bas_fcts;
if (ivec)
{
rvec = ivec;

}
else
{
if (max_size < n_bas_fcts)
{

local_vec = MEM_REALLOC(local_vec, max_size, n_bas_fcts, int);
max_size = n_bas_fcts;

}
rvec = local_vec;

}
index = fe_space->bas_fcts->get_dof_indices(el, fe_space->admin, nil);

for (i = 0; i < n_bas_fcts; i++)
rvec[i] = v[index[i]];

return((const int *) rvec);
}

A specialized implementation for linear finite elements e.g. is more efficient:

const int *get_int_vec(const EL *el, const DOF_INT_VEC *vec, int *ivec)
{
FUNCNAME("get_int_vec");

2.5. IMPLEMENTATION OF BASIS FUNCTIONS 105

int i, n0;
static int local_vec[N_VERTICES];
int *v = vec->vec, *rvec = ivec ? ivec : local_vec;
DOF **dof = el->dof;

n0 = vec->fe_space->admin->n0_dof[VERTEX];

for (i = 0; i < N_VERTICES; i++)
rvec[i] = v[dof[i][n0]];

return((const int *) rvec);
}

Any kind of basis functions can be implemented by filling the above described structure
for basis functions. All non optional entries have to be defined. Since in the functions for
reading and writing of meshes, the basis functions are identified by their names, all used
basis functions have to be registered before using these functions (compare Section 2.3.8). All
Lagrange finite elements described below are already registered, with names "lagrange1" to
"lagrange4"; newly defined basis functions must use different names.

int new_bas_fcts(const BAS_FCTS * bas_fcts);

Description:

new bas fcts(bas fcts): puts the new set of basis functions bas fcts to an internal list
of all used basis functions; different sets of basis functions are identified by their name; thus,
the member name of bas fcts must be a string with positive length holding a description;
if an existing set of basis functions with the same name is found, the program stops with
an error; if the entries phi, grd phi, get dof indices, and get bound are not set, this
also result in an error and program stops.

Basis functions can be accessed from that list by

const BAS_FCTS *get_bas_fcts(const char *name)

Description:

get bas fcts(name): looks for a set of basis functions with name name in the internal list
of all registered basis functions; if such a set is found, the return value is a pointer to the
corresponding BAS FCTS structure, otherwise the return value is nil.

Lagrange elements can be accessed more efficiently by a call of get lagrange(), see Section
2.5.7.

2.5.2 Lagrange finite elements

ALBERT supports Lagrange finite elements up to order four which are described in the
following sections. Lagrange finite elements are given by P̄ = Pp(S̄) (polynomials of degree
p ∈ N on S̄) and they are globally continuous. They are uniquely determined by the values
at the associated Lagrange nodes

{
xi
}

. The Lagrange basis functions
{
φi
}

satisfy

φi(xj) = δij for i, j = 1, . . . , N = dim Xh.

Now, consider the basis functions {ϕ̄i}mi=1 of P̄ with the associated Lagrange nodes {λi}mi=1

given in barycentric coordinates:

ϕ̄i(λj) = δij for i, j = 1, . . . ,m.

106 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

Basis functions are located at the vertices, edges, (faces,) or at the center of an element.
The corresponding DOF is a vertex, edge, (face,) or center DOF, respectively. The boundary
type of a basis function is the boundary type of the associated vertex or edge (or face).
Basis functions at the center are always INTERIOR. Such boundary information is filled by
the get bound() function in the BAS FCTS structure and is straight forward.

The interpolation coefficient for a function f for basis function ϕ̄i on element S is the value
of f at the Lagrange node: f(x(λi)). These coefficients are calculated by the interpol(d)()
function in the BAS FCTS structure. Examples for both functions are given below for linear
finite elements.

2.5.3 Linear finite elements

Linear finite elements are uniquely defined by their values at the vertices of the triangulation.
On each element we have N VERTICES basis functions which are the barycentric coordinates
of the element. Thus, in 2d we have three and in 3d four basis functions for Lagrange ele-
ments of first order; the basis functions and the corresponding Lagrange nodes in barycentric
coordinates are shown in Table 2.3 and Table 2.4. The calculation of derivatives is straight
forward. The global DOF index of the i–th basis functions on element el is stored for linear

function position Lagrange node
ϕ̄0(λ) = λ0 vertex 0 λ0 = (1, 0, 0)
ϕ̄1(λ) = λ1 vertex 1 λ1 = (0, 1, 0)
ϕ̄2(λ) = λ2 vertex 2 λ2 = (0, 0, 1)

Table 2.3: Local basis functions for linear finite elements in 2d.

function position Lagrange node
ϕ̄0(λ) = λ0 vertex 0 λ0 = (1, 0, 0, 0)
ϕ̄1(λ) = λ1 vertex 1 λ1 = (0, 1, 0, 0)
ϕ̄2(λ) = λ2 vertex 2 λ2 = (0, 0, 1, 0)
ϕ̄3(λ) = λ3 vertex 3 λ3 = (0, 0, 0, 1)

Table 2.4: Local basis functions for linear finite elements in 3d.

finite elements at

el->dof[i][admin->n0_dof[VERTEX]]

Setting nv = admin->n0 dof[VERTEX] the associated DOFs are shown in Figure 2.5.
For linear finite elements we want to give examples for the implementation of some routines

in the corresponding BAS FCTS structure.

2.5.2. Example. The implementation of get dof indices() can be done in the following
way (compare Figure 2.5):

const DOF *get_dof_indices(const EL *el, const DOF_ADMIN *admin, DOF *idof)
{
FUNCNAME("get_dof_indices");
static DOF index_vec[N_VERTICES];
DOF *rvec = idof ? idof : index_vec;
int i, n0 = admin->n0_dof[VERTEX];
DOF **dof = el->dof;

for (i = 0; i < N_VERTICES; i++)
rvec[i] = dof[i][n0];

2.5. IMPLEMENTATION OF BASIS FUNCTIONS 107

return((const DOF *) rvec);
}

Figure 2.5: DOFs and local numbering of the basis functions for linear elements.

2.5.3. Example (Accessing boundary types for linear f.e.). The get bound() func-
tion fills the bound vector with the boundary type of the vertices:

const S_CHAR *get_bound(const EL_INFO *el_info, S_CHAR *bound)
{
FUNCNAME("get_bound");
static S_CHAR bound_vec[N_VERTICES];
S_CHAR *rvec = bound ? bound : bound_vec;
int i;

TEST_FLAG(FILL_BOUND, el_info);

for (i = 0; i < N_VERTICES; i++)
rvec[i] = el_info->bound[i];

return((const S_CHAR *) rvec);
}

2.5.4. Example (Interpolation for linear f.e.). For the interpolation interpol() rou-
tine we have to evaluate the given function at the vertices. Thus, interpolation can be imple-
mented as follows:

const REAL *interpol(const EL_INFO *el_info, int n, const int *indices,
REAL (*f)(const REAL_D), REAL *vec)

{
FUNCNAME("interpol");
static REAL inter[N_VERTICES];
REAL *rvec = vec ? vec : inter;
int i;

TEST_FLAG(FILL_COORDS, el_info);

if (indices)
{
if (n <= 0 || n > N_VERTICES)
{

108 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

MSG("something is wrong, doing nothing\n");
rvec[0] = 0.0;
return((const REAL *) rvec);

}
for (i = 0; i < n; i++)
rvec[i] = f(el_info->coord[indices[i]]);

}
else
{
for (i = 0; i < N_VERTICES; i++)
rvec[i] = f(el_info->coord[i]);

}
return((const REAL *) rvec);

}

An example of the optional get * vec() functions is shown above for get int vec() in
Section 2.5.1.

2.5.5. Example. The implementation of functions for interpolation during refinement and
restriction of linear functionals during coarsening is very simple for linear elements; we do not
have to loop over the refinement patch since only the vertices at the refinement/coarsening
edge and the new DOF at the midpoint are involved in this process. No interpolation during
coarsening has to be done since all values at the remaining vertices stay the same; no function
has to be defined.

void real_refine_inter(DOF_REAL_VEC *drv, RC_LIST_EL *list, int n)
{
FUNCNAME("real_refine_inter");
EL *el;
REAL *vec = nil;
DOF dof_new, dof0, dof1;
int n0;

if (n < 1) return;
GET_DOF_VEC(vec, drv);
n0 = drv->fe_space->admin->n0_dof[VERTEX];
el = list->el;
dof0 = el->dof[0][n0]; /* 1st endpoint of refinement edge */
dof1 = el->dof[1][n0]; /* 2nd endpoint of refinement edge */
dof_new = el->child[0]->dof[DIM][n0]; /* newest vertex is DIM */
vec[dof_new] = 0.5*(vec[dof0] + vec[dof1]);

return;
}

void real_coarse_restr(DOF_REAL_VEC *drv, RC_LIST_EL *list, int n)
{
FUNCNAME("real_coarse_restr");
EL *el;
REAL *vec = nil;
DOF dof_new, dof0, dof1;
int n0;

if (n < 1) return;
GET_DOF_VEC(vec, drv);

2.5. IMPLEMENTATION OF BASIS FUNCTIONS 109

n0 = drv->fe_space->admin->n0_dof[VERTEX];
el = list->el;
dof0 = el->dof[0][n0]; /* 1st endpoint of refinement edge */
dof1 = el->dof[1][n0]; /* 2nd endpoint of refinement edge */
dof_new = el->child[0]->dof[DIM][n0]; /* newest vertex is DIM */
vec[dof0] += 0.5*vec[dof_new];
vec[dof1] += 0.5*vec[dof_new];

return;
}

2.5.4 Quadratic finite elements

Quadratic finite elements are uniquely defined by their values at the vertices and the edges’
midpoints of the triangulation. In 2d we have six and in 3d we have ten basis functions for
Lagrange elements of second order; the basis functions and the corresponding Lagrange nodes
in barycentric coordinates are shown in Table 2.5 and Table 2.6.

function position Lagrange node
ϕ̄0(λ) = λ0(2λ0 − 1) vertex 0 λ0 = (1, 0, 0)
ϕ̄1(λ) = λ1(2λ1 − 1) vertex 1 λ1 = (0, 1, 0)
ϕ̄2(λ) = λ2(2λ2 − 1) vertex 2 λ2 = (0, 0, 1)
ϕ̄3(λ) = 4λ1 λ2 edge 0 λ3 = (0, 1

2 ,
1
2)

ϕ̄4(λ) = 4λ2 λ0 edge 1 λ4 = (1
2 , 0,

1
2)

ϕ̄5(λ) = 4λ0 λ1 edge 2 λ5 = (1
2 ,

1
2 , 0)

Table 2.5: Local basis functions for quadratic finite elements in 2d.

function position Lagrange node
ϕ̄0(λ) = λ0(2λ0 − 1) vertex 0 λ0 = (1, 0, 0, 0)
ϕ̄1(λ) = λ1(2λ1 − 1) vertex 1 λ1 = (0, 1, 0, 0)
ϕ̄2(λ) = λ2(2λ2 − 1) vertex 2 λ2 = (0, 0, 1, 0)
ϕ̄3(λ) = λ3(2λ3 − 1) vertex 3 λ3 = (0, 0, 0, 1)
ϕ̄4(λ) = 4λ0 λ1 edge 0 λ4 = (1

2 ,
1
2 , 0, 0)

ϕ̄5(λ) = 4λ0 λ2 edge 1 λ5 = (1
2 , 0,

1
2 , 0)

ϕ̄6(λ) = 4λ0 λ3 edge 2 λ6 = (1
2 , 0, 0,

1
2)

ϕ̄7(λ) = 4λ1 λ2 edge 3 λ7 = (0, 1
2 ,

1
2 , 0)

ϕ̄8(λ) = 4λ1 λ3 edge 4 λ8 = (0, 1
2 , 0,

1
2)

ϕ̄9(λ) = 4λ2 λ3 edge 5 λ9 = (0, 0, 1
2 ,

1
2)

Table 2.6: Local basis functions for quadratic finite elements in 3d.

The associated DOFs for basis functions at vertices/edges are located at the vertices/edges
of the element; the entry in the vector of DOF indices at the vertices/edges is determined by
the vertex/edge offset in the corresponding admin of the finite element space: the DOF index
of the i–th basis functions on element el is

el->dof[i][admin->n0_dof[VERTEX]]

for i = 0, . . . ,N VERTICES-1 and

el->dof[i][admin->n0_dof[EDGE]]

110 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

for i = N VERTICES, . . . ,N VERTICES+N EDGES-1. Here we used the fact, that for quadratic
elements DOFs are located at the vertices and the edges on the mesh. Thus, regardless of
any other set of DOFs, the offset mesh->node[VERTEX] is zero and mesh->node[EDGE] is
N VERTICES.

Setting nv = admin->n0 dof[VERTEX] and ne = admin->n0 dof[EDGE], the associated
DOFs are shown in Figure 2.6.

Figure 2.6: DOFs and local numbering of the basis functions for quadratic elements.

2.5.6. Example. The function get dof indices() for quadratic finite elements can be im-
plemented by (compare Figure 2.6):

const DOF *get_dof_indices(const EL *el, const DOF_ADMIN *admin, DOF *idof)
{
FUNCNAME("get_dof_indices");
static DOF index_vec[N_VERTICES+N_EDGES];
int i, n0;
DOF *rvec = idof ? idof : index_vec;
DOF **dof = el->dof;

n0 = admin->n0_dof[VERTEX];
for (i = 0; i < N_VERTICES; i++)
rvec[i] = dof[i][n0];

n0 = admin->n0_dof[EDGE];
for (i = N_VERTICES; i < N_VERTICES+N_EDGES; i++)
rvec[i] = dof[i][n0];

return((const DOF *) rvec);
}

The boundary type of a basis functions at a vertex is the the boundary type of the vertex,
and the boundary type of a basis function at an edge is the boundary type of the edge. The i–
th interpolation coefficient of a function f on element S is just f(x(λi)). The implementation
is similar to that for linear finite elements and is not shown here.

The implementation of functions for interpolation during refinement and coarsening and
the restriction during coarsening becomes more complicated and differs between the dimen-
sions. Here we have to set values for all elements of the refinement patch. The interpolation
during coarsening in not trivial anymore. As an example of such implementations we present
the interpolation during refinement for 2d and 3d.

2.5.7. Example. In 2d we have to set values for the new vertex in the refinement edge, and
for the two midpoints of the bisected edge. Then we have to set the value for the midpoint

2.5. IMPLEMENTATION OF BASIS FUNCTIONS 111

of the common edge of the two children of the bisected triangle and we have to set the
corresponding value on the neighbor in the case that the refinement edge is not a boundary
edge:

void real_refine_inter(DOF_REAL_VEC *drv, RC_LIST_EL *list, int n)
{
FUNCNAME("real_refine_inter");
EL *el;
REAL *vec = nil;
int node, n0;
DOF cdof;
const DOF *pdof;
const DOF *(*get_dof_indices)(const EL *, const DOF_ADMIN *, DOF *);
const DOF_ADMIN *admin;

if (n < 1) return;
el = list->el;
GET_DOF_VEC(vec, drv);
if (!drv->fe_space)
{
ERROR("no fe_space in dof_real_vec %s\n", NAME(drv));
return;

}
else if (!drv->fe_space->bas_fcts)
{
ERROR("no basis functions in fe_space %s\n", NAME(drv->fe_space));
return;

}
get_dof_indices = drv->fe_space->bas_fcts->get_dof_indices;
admin = drv->fe_space->admin;

pdof = get_dof_indices(el, admin, nil);
node = drv->fe_space->mesh->node[VERTEX];
n0 = admin->n0_dof[VERTEX];

/**/
/* newest vertex of child[0] and child[1] */
/**/
cdof = el->child[0]->dof[node+DIM][n0]; /* newest vertex is DIM */
vec[cdof] = vec[pdof[5]];

node = drv->fe_space->mesh->node[EDGE];
n0 = admin->n0_dof[EDGE];

/**/
/* midpoint of edge on child[0] at the refinement edge */
/**/
cdof = el->child[0]->dof[node][n0];
vec[cdof] = 0.375*vec[pdof[0]] - 0.125*vec[pdof[1]] + 0.75*vec[pdof[5]];

/**/
/* node in the common edge of child[0] and child[1] */
/**/
cdof = el->child[0]->dof[node+1][n0];
vec[cdof] = -0.125*(vec[pdof[0]] + vec[pdof[1]]) + 0.25*vec[pdof[5]]

+ 0.5*(vec[pdof[3]] + vec[pdof[4]]);
/**/
/* midpoint of edge on child[1] at the refinement edge */
/**/
cdof = el->child[1]->dof[node+1][n0];

112 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

vec[cdof] = -0.125*vec[pdof[0]] + 0.375*vec[pdof[1]] + 0.75*vec[pdof[5]];

if (n > 1)
{

/**/
/* adjust the value at the midpoint of the common edge of neigh’s children */
/**/

el = list[1].el;
pdof = get_dof_indices(el, admin, nil);
cdof = el->child[0]->dof[node+1][n0];
vec[cdof] = -0.125*(vec[pdof[0]] + vec[pdof[1]]) + 0.25*vec[pdof[5]]

+ 0.5*(vec[pdof[3]] + vec[pdof[4]]);
}
return;

}

2.5.8. Example. In 3d we first have to set values for all DOFs that belong to the first
element of the refinement patch. Then we have to loop over the refinement patch and set all
DOFs that have not previously been set on another patch element. In order to set values only
once, by the variable lr set we check, if a common DOFs with a left or right neighbor is
set by the neighbor. Such values are already set if the neighbor is a prior element in the list.
Since all values are set on the first element for all subsequent elements there must be DOFs
which have been set by another element.

void real_refine_inter(DOF_REAL_VEC *drv, RC_LIST_EL *list, int n)
{
FUNCNAME("real_refine_inter");
EL *el;
REAL *v = nil;
const DOF *cdof;
DOF pdof[10], cdofi;
int i, lr_set;
int node0, n0;
const DOF *(*get_dof_indices)(const EL *, const DOF_ADMIN *, DOF *);
const DOF_ADMIN *admin;

if (n < 1) return;
el = list->el;

GET_DOF_VEC(v, drv);
if (!drv->fe_space)
{
ERROR("no fe_space in dof_real_vec %s\n", NAME(drv));
return;

}
else if (!drv->fe_space->bas_fcts)
{
ERROR("no basis functions in fe_space %s\n", NAME(drv->fe_space));
return;

}
get_dof_indices = drv->fe_space->bas_fcts->get_dof_indices;
admin = drv->fe_space->admin;

get_dof_indices(el, admin, pdof);
node0 = drv->fe_space->mesh->node[EDGE];
n0 = admin->n0_dof[EDGE];

2.5. IMPLEMENTATION OF BASIS FUNCTIONS 113

/**/
/* values on child[0] */
/**/
cdof = get_dof_indices(el->child[0], admin, nil);
v[cdof[3]] = (v[pdof[4]]);
v[cdof[6]] = (0.375*v[pdof[0]] - 0.125*v[pdof[1]] + 0.75*v[pdof[4]]);
v[cdof[8]] = (0.125*(-v[pdof[0]] - v[pdof[1]]) + 0.25*v[pdof[4]]

+ 0.5*(v[pdof[5]] + v[pdof[7]]));
v[cdof[9]] = (0.125*(-v[pdof[0]] - v[pdof[1]]) + 0.25*v[pdof[4]]

+ 0.5*(v[pdof[6]] + v[pdof[8]]));
/**/
/* values on child[1] */
/**/
cdofi = el->child[1]->dof[node0+2][n0];
v[cdofi] = (-0.125*v[pdof[0]] + 0.375*v[pdof[1]]

+ 0.75*v[pdof[4]]);
/**/
/* adjust neighbour values */
/**/
for (i = 1; i < n; i++)
{
el = list[i].el;
get_dof_indices(el, admin, pdof);

lr_set = 0;
if (list[i].neigh[0] && list[i].neigh[0]->no < i) lr_set = 1;
if (list[i].neigh[1] && list[i].neigh[1]->no < i) lr_set += 2;
TEST_EXIT(lr_set)("no values set on both neighbours\n");

/**/
/* values on child[0] */
/**/

switch (lr_set)
{
case 1:
cdofi = el->child[0]->dof[node0+4][n0];
v[cdofi] = (0.125*(-v[pdof[0]] - v[pdof[1]]) + 0.25*v[pdof[4]]

+ 0.5*(v[pdof[5]] + v[pdof[7]]));
break;

case 2:
cdofi = el->child[0]->dof[node0+5][n0];
v[cdofi] = (0.125*(-v[pdof[0]] - v[pdof[1]]) + 0.25*v[pdof[4]]

+ 0.5*(v[pdof[6]] + v[pdof[8]]));
}

}
return;

}

2.5.5 Cubic finite elements

For Lagrange elements of third order we have ten basis functions in 2d and 20 in 3d; the
basis functions and the corresponding Lagrange nodes in barycentric coordinates are shown
in Table 2.7 and Table 2.8.

For cubic elements we have to face a further difficulty. At each edge two basis functions
are located. The two DOFs of the i–th edge are subsequent entries in the vector el->dof[i].
For two neighboring triangles the common edge has a different orientation with respect to the

114 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

function position Lagrange node
ϕ̄0(λ) = 1

2 (3λ0 − 1)(3λ0 − 2)λ0 vertex 0 λ0 = (1, 0, 0)
ϕ̄1(λ) = 1

2 (3λ1 − 1)(3λ1 − 2)λ1 vertex 1 λ1 = (0, 1, 0)
ϕ̄2(λ) = 1

2 (3λ2 − 1)(3λ2 − 2)λ2 vertex 2 λ2 = (0, 0, 1)
ϕ̄3(λ) = 9

2 (3λ1 − 1)λ1λ2 edge 0 λ3 = (0, 2
3 ,

1
3)

ϕ̄4(λ) = 9
2 (3λ2 − 1)λ2λ1 edge 0 λ4 = (0, 1

3 ,
2
3)

ϕ̄5(λ) = 9
2 (3λ2 − 1)λ2λ0 edge 1 λ5 = (1

3 , 0,
2
3)

ϕ̄6(λ) = 9
2 (3λ0 − 1)λ0λ2 edge 1 λ6 = (2

3 , 0,
1
3)

ϕ̄7(λ) = 9
2 (3λ0 − 1)λ0λ1 edge 2 λ7 = (2

3 ,
1
3 , 0)

ϕ̄8(λ) = 9
2 (3λ1 − 1)λ1λ0 edge 2 λ8 = (1

3 ,
2
3 , 0)

ϕ̄9(λ) = 27λ0λ1λ2 center λ9 = (1
3 ,

1
3 ,

1
3)

Table 2.7: Local basis functions for cubic finite elements in 2d.

function position Lagrange node
ϕ̄0(λ) = 1

2 (3λ0 − 1)(3λ0 − 2)λ0 vertex 0 λ0 = (1, 0, 0, 0)
ϕ̄1(λ) = 1

2 (3λ1 − 1)(3λ1 − 2)λ1 vertex 1 λ1 = (0, 1, 0, 0)
ϕ̄2(λ) = 1

2 (3λ2 − 1)(3λ2 − 2)λ2 vertex 2 λ2 = (0, 0, 1, 0)
ϕ̄3(λ) = 1

2 (3λ3 − 1)(3λ3 − 2)λ3 vertex 3 λ3 = (0, 0, 0, 1)
ϕ̄4(λ) = 9

2 (3λ0 − 1)λ0λ1 edge 0 λ4 = (2
3 ,

1
3 , 0, 0)

ϕ̄5(λ) = 9
2 (3λ1 − 1)λ1λ0 edge 0 λ5 = (1

3 ,
2
3 , 0, 0)

ϕ̄6(λ) = 9
2 (3λ0 − 1)λ0λ2 edge 1 λ6 = (2

3 , 0,
1
3 , 0)

ϕ̄7(λ) = 9
2 (3λ2 − 1)λ2λ0 edge 1 λ7 = (1

3 , 0,
2
3 , 0)

ϕ̄8(λ) = 9
2 (3λ0 − 1)λ0λ3 edge 2 λ8 = (2

3 , 0, 0,
1
3)

ϕ̄9(λ) = 9
2 (3λ3 − 1)λ3λ0 edge 2 λ9 = (1

3 , 0, 0,
2
3)

ϕ̄10(λ) = 9
2 (3λ1 − 1)λ1λ2 edge 3 λ10 = (0, 2

3 ,
1
3 , 0)

ϕ̄11(λ) = 9
2 (3λ2 − 1)λ2λ1 edge 3 λ11 = (0, 1

3 ,
2
3 , 0)

ϕ̄12(λ) = 9
2 (3λ1 − 1)λ1λ3 edge 4 λ12 = (0, 2

3 , 0,
1
3)

ϕ̄13(λ) = 9
2 (3λ3 − 1)λ3λ1 edge 4 λ13 = (0, 1

3 , 0,
2
3)

ϕ̄14(λ) = 9
2 (3λ2 − 1)λ2λ3 edge 5 λ14 = (0, 0, 2

3 ,
1
3)

ϕ̄15(λ) = 9
2 (3λ3 − 1)λ3λ2 edge 5 λ15 = (0, 0, 1

3 ,
2
3)

ϕ̄16(λ) = 27λ1λ2λ3 face 0 λ16 = (0, 1
3 ,

1
3 ,

1
3)

ϕ̄17(λ) = 27λ2λ3λ0 face 1 λ17 = (1
3 , 0,

1
3 ,

1
3)

ϕ̄18(λ) = 27λ3λ0λ1 face 2 λ18 = (1
3 ,

1
3 , 0,

1
3)

ϕ̄19(λ) = 27λ0λ1λ2 face 3 λ19 = (1
3 ,

1
3 ,

1
3 , 0)

Table 2.8: Local basis functions for cubic finite elements in 3d.

2.5. IMPLEMENTATION OF BASIS FUNCTIONS 115

local numbering of vertices on the two triangles. In Figure 2.7 the 3rd local basis function on
the left and the 4th on the right triangle built up the global basis function, e.g.; thus, both
local basis function must have access to the same global DOF.

In order to combine the global DOF with the local basis function in the implementation
of the get dof indices() function, we have to give every edge a global orientation, i.e, every
edge has a unique beginning and end point. Using the orientation of an edge we are able
to order the DOFs stored at this edge. Let for example the common edge in Figure 2.7 be
oriented from bottom to top. The global DOF corresponding to 3rd local DOF on the left
and the 4th local DOF on the right is then

el->dof[N_VERTICES+0][admin->n0_dof[EDGE]]

and for the 4th local DOF on the left and 3rd local DOF on the right

el->dof[N_VERTICES+0][admin->n0_dof[EDGE]+1]

The global orientation gives a unique access of local DOFs from global ones.

Figure 2.7: Cubic DOFs on a patch of two triangles.

2.5.9. Example. For the implementation for cubics, we use in 2d as well as in 3d an orien-
tation defined by the DOF indices at the edges’ vertices. The vertex with the smaller (global)
DOF index is the beginning point, the vertex with the higher index the end point. For cubics
the implementation differs between 2d and 3d. In 2d we have one degree of freedom at the
center and in 3d on degree of freedom at each face and no one at the center.

We only show the implementation for 2d; the implementation for 3d is similar. Accessing
the DOFs at an edge, we order them according to the orientation of the edge.

const DOF *get_dof_indices(const EL *el, const DOF_ADMIN *admin, DOF *idof)
{
FUNCNAME("get_dof_indices");
static DOF index_vec[N_VERTICES+2*N_EDGES+1];
DOF *rvec = idof ? idof : index_vec;
int i, j, n0;
DOF **dof = el->dof;

n0 = admin->n0_dof[VERTEX];
for (i = 0; i < N_VERTICES; i++)
rvec[i] = dof[i][n0];

n0 = admin->n0_dof[EDGE];
for (i = 0, j = N_VERTICES; i < N_EDGES; i++)
{
if (dof[vertex_of_edge[i][0]][0] < dof[vertex_of_edge[i][1]][0])
{
rvec[j++] = dof[N_VERTICES+i][n0];

116 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

rvec[j++] = dof[N_VERTICES+i][n0+1];
}
else
{
rvec[j++] = dof[N_VERTICES+i][n0+1];
rvec[j++] = dof[N_VERTICES+i][n0];

}
}
n0 = admin->n0_dof[CENTER];
rvec[9] = dof[6][n0];

return((const DOF *) rvec);
}

2.5.6 Quartic finite elements

For Lagrange elements of fourth order we have 15 basis functions in 2d and 35 in 3d; the
basis functions and the corresponding Lagrange nodes in barycentric coordinates are shown
in Table 2.9 and Table 2.10.

function position Lagrange node
ϕ̄0(λ) = 1

3 (4λ0 − 1)(2λ0 − 1)(4λ0 − 3)λ0 vertex 0 λ0 = (1, 0, 0)
ϕ̄1(λ) = 1

3 (4λ1 − 1)(2λ1 − 1)(4λ1 − 3)λ1 vertex 1 λ1 = (0, 1, 0)
ϕ̄2(λ) = 1

3 (4λ2 − 1)(2λ2 − 1)(4λ2 − 3)λ2 vertex 2 λ2 = (0, 0, 1)
ϕ̄3(λ) = 16

3 (4λ1 − 1)(2λ1 − 1)λ1λ2 edge 0 λ3 = (0, 3
4 ,

1
4)

ϕ̄4(λ) = 4(4λ1 − 1)(4λ2 − 1)λ1λ2 edge 0 λ4 = (0, 1
2 ,

1
2)

ϕ̄5(λ) = 16
3 (4λ2 − 1)(2λ2 − 1)λ1λ2 edge 0 λ5 = (0, 1

4 ,
3
4)

ϕ̄6(λ) = 16
3 (4λ2 − 1)(2λ2 − 1)λ0λ2 edge 1 λ6 = (1

4 , 0,
3
4)

ϕ̄7(λ) = 4(4λ2 − 1)(4λ0 − 1)λ0λ2 edge 1 λ7 = (1
2 , 0,

1
2)

ϕ̄8(λ) = 16
3 (4λ0 − 1)(2λ0 − 1)λ0λ2 edge 1 λ8 = (3

4 , 0,
1
4)

ϕ̄9(λ) = 16
3 (4λ0 − 1)(2λ0 − 1)λ0λ1 edge 2 λ9 = (3

4 ,
1
4 , 0)

ϕ̄10(λ) = 4(4λ0 − 1)(4λ1 − 1)λ0λ1 edge 2 λ10 = (1
2 ,

1
2 , 0)

ϕ̄11(λ) = 16
3 (4λ1 − 1)(2λ1 − 1)λ0λ1 edge 2 λ11 = (1

4 ,
3
4 , 0)

ϕ̄12(λ) = 32(4λ0 − 1)λ0λ1λ2 center λ12 = (1
2 ,

1
4 ,

1
4)

ϕ̄13(λ) = 32(4λ1 − 1)λ0λ1λ2 center λ13 = (1
4 ,

1
2 ,

1
4)

ϕ̄14(λ) = 32(4λ2 − 1)λ0λ1λ2 center λ14 = (1
4 ,

1
4 ,

1
2)

Table 2.9: Local basis functions for quartic finite elements in 2d.

For the implementation of get dof indices() for quartics, we again need a global ori-
entation of the edges on the mesh. At every edge three DOFs are located, which then can
be ordered with respect to the orientation of the corresponding edge. In 3d, we also need a
global orientation of faces for a one to one mapping of global DOFs located at a face to local
DOFs on an element at that face. Such an orientation can again be defined by DOF indices
at the face’s vertices.

2.5.7 Access to Lagrange elements

The Lagrange elements described above are already implemented in ALBERT; a filled
BAS FCTS structure for Lagrange elements of order degree can be accessed by a call of

const BAS_FCTS *get_lagrange(int degree);

2.5. IMPLEMENTATION OF BASIS FUNCTIONS 117

function position Lagrange node
ϕ̄0(λ) = 1

3 (4λ0 − 1)(2λ0 − 1)(4λ0 − 3)λ0 vertex 0 λ0 = (1, 0, 0, 0)
ϕ̄1(λ) = 1

3 (4λ1 − 1)(2λ1 − 1)(4λ1 − 3)λ1 vertex 1 λ1 = (0, 1, 0, 0)
ϕ̄2(λ) = 1

3 (4λ2 − 1)(2λ2 − 1)(4λ2 − 3)λ2 vertex 2 λ2 = (0, 0, 1, 0)
ϕ̄3(λ) = 1

3 (4λ3 − 1)(2λ3 − 1)(4λ3 − 3)λ3 vertex 3 λ3 = (0, 0, 0, 1)
ϕ̄4(λ) = 16

3 (4λ0 − 1)(2λ0 − 1)λ0λ1 edge 0 λ4 = (3
4 ,

1
4 , 0, 0)

ϕ̄5(λ) = 4(4λ0 − 1)(4λ1 − 1)λ0λ1 edge 0 λ5 = (1
2 ,

1
2 , 0, 0)

ϕ̄6(λ) = 16
3 (4λ1 − 1)(2λ1 − 1)λ0λ1 edge 0 λ6 = (1

4 ,
3
4 , 0, 0)

ϕ̄7(λ) = 16
3 (4λ0 − 1)(2λ0 − 1)λ0λ2 edge 1 λ7 = (3

4 , 0,
1
4 , 0)

ϕ̄8(λ) = 4(4λ0 − 1)(4λ2 − 1)λ0λ2 edge 1 λ8 = (1
2 , 0,

1
2 , 0)

ϕ̄9(λ) = 16
3 (4λ2 − 1)(2λ2 − 1)λ0λ2 edge 1 λ9 = (1

4 , 0,
3
4 , 0)

ϕ̄10(λ) = 16
3 (4λ0 − 1)(2λ0 − 1)λ0λ3 edge 2 λ10 = (3

4 , 0, 0,
1
4)

ϕ̄11(λ) = 4(4λ0 − 1)(4λ3 − 1)λ0λ3 edge 2 λ11 = (1
2 , 0, 0,

1
2)

ϕ̄12(λ) = 16
3 (4λ3 − 1)(2λ3 − 1)λ0λ3 edge 2 λ12 = (1

4 , 0, 0,
3
4)

ϕ̄13(λ) = 16
3 (4λ1 − 1)(2λ1 − 1)λ1λ2 edge 3 λ13 = (0, 3

4 ,
1
4 , 0)

ϕ̄14(λ) = 4(4λ1 − 1)(4λ2 − 1)λ1λ2 edge 3 λ14 = (0, 1
2 ,

1
2 , 0)

ϕ̄15(λ) = 16
3 (4λ2 − 1)(2λ2 − 1)λ1λ2 edge 3 λ15 = (0, 1

4 ,
3
4 , 0)

ϕ̄16(λ) = 16
3 (4λ1 − 1)(2λ1 − 1)λ1λ3 edge 4 λ16 = (0, 3

4 , 0,
1
4)

ϕ̄17(λ) = 4(4λ1 − 1)(4λ3 − 1)λ1λ3 edge 4 λ17 = (0, 1
2 , 0,

1
2)

ϕ̄18(λ) = 16
3 (4λ3 − 1)(2λ3 − 1)λ1λ3 edge 4 λ18 = (0, 1

4 , 0,
3
4)

ϕ̄19(λ) = 16
3 (4λ2 − 1)(2λ2 − 1)λ2λ3 edge 5 λ19 = (0, 0, 3

4 ,
1
4)

ϕ̄20(λ) = 4(4λ2 − 1)(4λ3 − 1)λ2λ3 edge 5 λ20 = (0, 0, 1
2 ,

1
2)

ϕ̄21(λ) = 16
3 (4λ3 − 1)(2λ3 − 1)λ2λ3 edge 5 λ21 = (0, 0, 1

4 ,
3
4)

ϕ̄22(λ) = 32(4λ1 − 1)λ1λ2λ3 face 0 λ22 = (0, 1
2 ,

1
4 ,

1
4)

ϕ̄23(λ) = 32(4λ2 − 1)λ1λ2λ3 face 0 λ23 = (0, 1
4 ,

1
2 ,

1
4)

ϕ̄24(λ) = 32(4λ3 − 1)λ1λ2λ3 face 0 λ24 = (0, 1
4 ,

1
4 ,

1
2)

ϕ̄25(λ) = 32(4λ0 − 1)λ0λ2λ3 face 1 λ25 = (1
2 , 0,

1
4 ,

1
4)

ϕ̄26(λ) = 32(4λ2 − 1)λ0λ2λ3 face 1 λ26 = (1
4 , 0,

1
2 ,

1
4)

ϕ̄27(λ) = 32(4λ3 − 1)λ0λ2λ3 face 1 λ27 = (1
4 , 0,

1
4 ,

1
2)

ϕ̄28(λ) = 32(4λ0 − 1)λ0λ1λ3 face 2 λ28 = (1
2 ,

1
4 , 0,

1
4)

ϕ̄29(λ) = 32(4λ1 − 1)λ0λ1λ3 face 2 λ29 = (1
4 ,

1
2 , 0,

1
4)

ϕ̄30(λ) = 32(4λ3 − 1)λ0λ1λ3 face 2 λ30 = (1
4 ,

1
4 , 0,

1
2)

ϕ̄31(λ) = 32(4λ0 − 1)λ0λ1λ2 face 3 λ31 = (1
2 ,

1
4 ,

1
4 , 0)

ϕ̄32(λ) = 32(4λ1 − 1)λ0λ1λ2 face 3 λ32 = (1
4 ,

1
2 ,

1
4 , 0)

ϕ̄33(λ) = 32(4λ2 − 1)λ0λ1λ2 face 3 λ33 = (1
4 ,

1
4 ,

1
2 , 0)

ϕ̄34(λ) = 256λ0λ1λ2λ3 center λ34 = (1
4 ,

1
4 ,

1
4 ,

1
4)

Table 2.10: Local basis functions for quartic finite elements in 3d.

118 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

No call of new bas fcts() is needed.

2.6 Implementation of finite element spaces

2.6.1 The finite element space data structure

All information about the underlying mesh, the local basis functions, and the DOFs are
collected in the following data structure which defines one single finite element space:

typedef struct fe_space FE_SPACE;

struct fe_space
{
const char *name;
const DOF_ADMIN *admin;
const BAS_FCTS *bas_fcts;
MESH *mesh;

};

Description:

name: holds a textual description of the finite element space;

admin: pointer to the DOF administration for the DOFs of this finite element space, see
Section 2.3.1;

bas fcts: pointer to the local basis functions, see Section 2.5.1;

mesh: pointer to the underlying mesh, see Section 2.2.14.

Several finite element spaces can be handled on the same mesh. Different finite element
spaces can use the same DOF administration, if they share exactly the same DOFs.

2.6.2 Access to finite element spaces

A finite element space can only be accessed by the function

const FE_SPACE *get_fe_space(MESH *mesh, const char *name, const int ndof[DIM+1],
const BAS_FCTS *bas_fcts);

Description:

get fe space(mesh, name, ndof, bas fcts): defines a new finite element space on
mesh; if bas fcts is not nil, the function looks for an existing dof admin administering
the DOFs of bas fcts, the argument ndof is ignored; otherwise it looks for an existing
dof admin which manages DOFs uniquely defined by ndof (compare Section 2.3.1); if
such a dof admin is not found, a new dof admin is created; a new FE SPACE structure is
created, the name is duplicated, and all members of the structure are correctly adjusted;
the return value is the initialized structure.

The selection of finite element spaces fixes the DOFs that must be present on the mesh
elements. For each finite element space there must be a corresponding DOF administration,
having information about the used DOFs. For the access of a mesh, via the GET MESH()
routine, all used DOFs, i.e. all DOF administrations, have to be specified in advance. After
the access of a mesh, no further DOF ADMIN can be defined (this would be correspond to a
so called p–refinement of the mesh, which is not implemented). The specification of the used
DOFs is done via a user defined routine

void init_dof_admin(MESH *mesh);

2.6. IMPLEMENTATION OF FINITE ELEMENT SPACES 119

which is the second argument of the GET MESH() routine and the function is called during the
initialization of the mesh. Inside the function init dof admin(), the finite element spaces
are accessed, which thereby fixes the used DOFs. Since a mesh gives only access to the
DOF ADMINs defined on it, the user has to store pointers to the FE SPACE structures in some
global variable; no access to FE SPACEs is possible via the underlying mesh.

2.6.1. Example. Now, as an example we look at a user defined function init dof admin().
In the example we want to define two finite element spaces on the mesh, for a mixed finite
element formulation of the Navier–Stokes equations with the Taylor–Hood element, e.g. We
want to use Lagrange finite elements of order degree (for the velocity) and degree− 1 (for
the pressure). Pointers to the corresponding FE SPACE structures are stored in the global
variables u fe and p fe.

static FE_SPACE *u_fe, *p_fe;
static int degree;

void init_dof_admin(MESH *mesh)
{
FUNCNAME("init_dof_admin");
const BAS_FCTS *lagrange;

TEST_EXIT(mesh)("no MESH\n");
TEST_EXIT(degree > 1)("degree must be greater than 1\n");

lagrange = get_lagrange(degree);
u_fe = get_fe_space(mesh, lagrange->name, nil, lagrange);

lagrange = get_lagrange(degree-1);
p_fe = get_fe_space(mesh, lagrange->name, nil, lagrange);

return;
}

An initialization of a mesh with this init dof admin() function, will provide all DOFs for
the two finite element spaces on the elements and the corresponding DOF ADMINs will have
information about the access of local DOFs for both finite element spaces.

It is also possible to define only one or even more finite element spaces; the use of special
user defined basis functions is possible too. These should be added to the list of all used basis
functions by a call of new bas fcts() inside init dof admin().

2.6.2. Remark. For special applications, additional DOF sets, that are not connected to
any finite element space may also be defined get fe space(mesh, name, n dof, nil). Here,
n dof is a vector storing the number of DOFs at a VERTEX, EDGE, (FACE,) and CENTER that
should be present. An additional DOF set with 1 DOF at each edge in 2d and face in 3d can
be defined in the following way inside the init dof admin() function:

#if DIM == 2
int n_dof[DIM+1] = {0,1,0};

#else
int n_dof[DIM+1] = {0,0,1,0};

#endif
...

face_dof = get_fe_space(mesh, "face dofs", n_dof, nil);

...

120 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

2.7 Routines for barycentric coordinates

Operations on single elements are performed using barycentric coordinates. In many appli-
cations, the world coordinates x of the local barycentric coordinates λ have to be calculated
(see Section 2.12, e.g.). Some other applications will need the calculation of barycentric co-
ordinates for given world coordinates (see Section 2.2.18, e.g.). Finally, derivatives of finite
element functions on elements involve the Jacobian of the barycentric coordinates (see Section
2.9, e.g.).

These operations strongly depend on the element parameterization and no general routines
can be supplied. For (non–parametric) simplices, ALBERT supplies functions to perform these
basic tasks. Available are

const REAL *coord_to_world(const EL_INFO *, const REAL *, REAL_D);
const REAL *world_to_coord(const EL_INFO *, const REAL *, REAL [DIM+1]);
REAL el_grd_lambda(const EL_INFO *, REAL [DIM+1][DIM_OF_WORLD]);
REAL el_det(const EL_INFO *);
REAL el_volume(const EL_INFO *);

Description:

coord to world(el info, lambda, world): returns a pointer to a vector, which contains
the world coordinates of a point in barycentric coordinates lambda with respect to the
element el info->el;

if world is not nil the world coordinates are stored in this vector; otherwise the function
itself provides memory for this vector; in this case the vector is overwritten during the
next call of coord to world();

world to coord(el info, world, lambda): returns a pointer to a vector, which contains
the barycentric coordinates with respect to the element el info->el of a point with world
coordinates world;

if lambda is not nil the barycentric coordinates are stored in this vector; otherwise the
function itself provides memory for this vector; in this case this vector is overwritten during
the next call of world to coord();

el grd lambda(el info, Lambda): calculates the Jacobian of the barycentric coordinates
on el info->el and stores the matrix in Lambda; the return value of the function is the
absolute value of the determinant of the affine linear parameterization’s Jacobian;

el det(el info): returns the the absolute value of the determinant of the affine linear
parameterization’s Jacobian;

el volume(el info): returns the the volume of the simplex.

All functions need vertex coordinate information of the element. Thus, it must only be called
on elements during a mesh traversal with the FILL COORDS fill flag.

2.8 Data structures for numerical quadrature

For the numerical integration of general integrals∫
S
f(x) dx

we use quadrature formulas described in 1.4.6. ALBERT supports numerical integration in
one, two, and three dimensions on the standard simplex Ŝ in barycentric coordinates.

2.8. DATA STRUCTURES FOR NUMERICAL QUADRATURE 121

2.8.1 The QUAD data structure

A quadrature formula is described by the following structure:

typedef struct quad QUAD;

struct quad
{
char *name;
int degree;

int dim;
int n_points;
const double **lambda;
const double *w;

};

Description:

name: textual description of the quadrature;

degree: quadrature is exact of degree degree;

dim: quadrature for dimension dim;

n points: number of quadrature points;

lambda: vector lambda[0], . . . , lambda[n points-1] of quadrature points given in bary-
centric coordinates (thus having DIM+1 components);

w: vector w[0], . . . , w[n points-1] of quadrature weights.

Numerical quadrature formulas exact up to order 19 in one (Gauss formulas), up to order 17
in two, up to order 7 in three dimensions are implemented. We only use stable formulas; this
results in more quadrature points for some formulas (for example in 3d the formula which is
exact of degree 3). A compilation of quadrature formulas on triangles and tetrahedra is given
in [10] The implemented quadrature formulas are taken from [17, 22, 24, 37].

Functions for numerical quadrature are

const QUAD *get_quadrature(int dim, int degree);
REAL integrate_std_simp(const QUAD *quad, REAL (*f)(const REAL *));

Description:

get quadrature(dim, degree): returns a pointer to a QUAD structure for numerical
integration in dim dimensions which is exact of degree min(19, degree) for dim==1,
min(17, degree) for dim==2, and min(7, degree) for dim==3;

integrate std simp(quad, f): approximates an integral by the numerical quadrature
described by quad;
f is a pointer to a function to be integrated, evaluated in barycentric coordinates; the
return value is

quad->n points-1∑
k = 0

quad->w[k] * (*f)(quad->lambda[k]);

for the approximation of
∫
S f we have to multiply this value with d!|S| for a sim-

plex S; for a parametric simplex f should be a pointer to a function which calculates
f(λ)|detDFS(x̂(λ))|.
The following functions initializes values and gradients of functions at the quadrature

nodes:

122 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

const REAL *f_at_qp(const QUAD *, REAL (*)(const REAL [DIM+1]), REAL *);
const REAL_D *grd_f_at_qp(const QUAD *, const REAL *(*)(const REAL [DIM+1]),

REAL_D *vec);
const REAL_D *f_d_at_qp(const QUAD *, const REAL *(*)(const REAL[DIM+1]),

REAL_D *);
const REAL_DD *grd_f_d_at_qp(const QUAD *,

const REAL_D *(*)(const REAL [DIM+1]), REAL_DD *);

Description:

f at qp(quad, f, vec): returns a pointer ptr to a vector quad->n points storing the
values of a REAL valued function at all quadrature points of quad; f is a pointer to that
function, evaluated in barycentric coordinates; if vec is not nil, the values are stored in
this vector, otherwise the values are stored in some static local vector, which is overwritten
on the next call;

ptr[i]=(*f)(quad->lambda[i]) for 0 ≤ i < quad->n points;

grd f at qp(quad, grd f, vec): returns a pointer ptr to a vector quad->n points stor-
ing the gradient (with respect to world coordinates) of a REAL valued function at all
quadrature points of quad;

grd f is a pointer to a function, evaluated in barycentric coordinates and returning a
pointer to a vector of length DIM OF WORLD storing the gradient;

if vec is not nil, the values are stored in this vector, otherwise the values are stored in
some local static vector, which is overwritten on the next call;

ptr[i][j]=(*grd f)(quad->lambda[i])[j], for 0 ≤ j < DIM OF WORLD and 0 ≤ i <
quad->n points,

f d at qp(quad, fd, vec): returns a pointer ptr to a vector quad->n points storing the
values of a REAL D valued function at all quadrature points of quad;

fd is a pointer to that function, evaluated in barycentric coordinates and returning a
pointer to a vector of length DIM OF WORLD storing all components; if the second argument
val of (*fd)(lambda, val) is not nil, the values have to be stored at val, otherwise fd
has to provide memory for the vector which may be overwritten on the next call;

if vec is not nil, the values are stored in this vector, otherwise the values are stored in
some static local vector, which is overwritten on the next call;

ptr[i][j]=(*fd)(quad->lambda[i],val)[j], for 0 ≤ j < DIM OF WORLD and 0 ≤ i <
quad->n points;

grd f d at qp(quad, grd fd, vec): returns a pointer ptr to a vector quad->n points
storing the Jacobian (with respect to world coordinates) of a REAL D valued function at
all quadrature points of quad;

grd fd is a pointer to a function, evaluated in barycentric coordinates and returning a
pointer to a matrix of size DIM OF WORLD×DIM OF WORLD storing the Jacobian; if the second
argument val of (*grd fd)(x, val) is not nil, the Jacobian has to be stored at val,
otherwise grd fd has to provide memory for the matrix which may be overwritten on the
next call

if vec is not nil, the values are stored in this vector, otherwise the values are stored in
some static local vector, which is overwritten on the next call;

ptr[i][j][k]=(*grd fd)(quad->lambda[i],val)[j][k], for 0 ≤ j, k < DIM OF WORLD
and 0 ≤ i < quad->n points,

2.8. DATA STRUCTURES FOR NUMERICAL QUADRATURE 123

2.8.2 The QUAD FAST data structure

Often numerical integration involves basis functions, such as the assembling of the system
matrix and right hand side, or the integration of finite element functions. Since numerical
quadrature involves only the values at the quadrature points and the values of basis functions
and its derivatives are the same at these points for all elements of the grid, such routines
can be much more efficient, if they can use pre–computed values of the basis functions at
the quadrature points. In this case the basis functions do not have to be evaluated for each
quadrature point on every element newly.

Information that should be pre–computed can be specified by the following symbolic
constants:

INIT_PHI
INIT_GRD_PHI
INIT_D2_PHI

Description:

INIT PHI: pre–compute the values of all basis functions at all quadrature nodes;
INIT GRD PHI: pre–compute the gradients (with respect to the barycentric coordinates) of

all basis functions at all quadrature nodes;
INIT D2 PHI: pre–compute all 2nd derivatives (with respect to the barycentric coordinates)

of all basis functions at all quadrature nodes;

In order to store such information for one set of basis functions we define the data structure

typedef struct quad_fast QUAD_FAST;

struct quad_fast
{
const QUAD *quad;
const BAS_FCTS *bas_fcts;

int n_points;
int n_bas_fcts;
const double *w;

U_CHAR init_flag;

REAL **phi;
REAL (**grd_phi)[DIM+1];
REAL (**D2_phi)[DIM+1][DIM+1];

};

Description:

quad: values stored for numerical quadrature quad;
bas fcts: values stored for basis functions bas fcts;
n points: number of quadrature points; equals quad->n points;
n bas fcts: number of basis functions; equals bas fcts->n bas fcts;
w: vector of quadrature weights; w = quad->w;
init flag: indicates which information is initialized; may be one of, or a bitwise or of

several of INIT PHI, INIT GRD PHI, INIT D2 PHI;
phi: matrix storing function values if the flag INIT PHI is set;
phi[i][j] stores the value bas fcts->phi[j](quad->lambda[i]), 0 ≤ j < n bas fcts
and 0 ≤ i < n points;

124 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

grd phi: matrix storing all gradients (with respect to the barycentric coordinates) if the
flag INIT GRD PHI is set;
grd phi[i][j][k] stores the value bas fcts->grd phi[j](quad->lambda[i])[k] for
0 ≤ j < n bas fcts, 0 ≤ i < . . . , n points, and 0 ≤ k < DIM;

D2 phi: matrix storing all second derivatives (with respect to the barycentric coordinates)
if the flag INIT D2 PHI is set;
D2 phi[i][j][k][l] stores the value bas fcts->D2 phi[j](quad->lambda[i])[k][l]
for 0 ≤ j < n bas fcts, 0 ≤ i < n points, and 0 ≤ k,l < DIM;
A filled structure can be accessed by a call of

const QUAD_FAST *get_quad_fast(const BAS_FCTS *bas_fcts, const QUAD *quad,
U_CHAR init_flag);

Description:
get quad fast(bas fcts, quad, init flag): bas fcts is a pointer to a filled BAS FCTS

structure, quad a pointer to some quadrature (accessed by get quadrature(), e.g.) and
init flag indicates which information should be filled into the QUAD FAST structure; it
may be one of, or a bitwise or of several of INIT PHI, INIT GRD PHI, INIT D2 PHI; the
function returns a pointer to a filled QUAD FAST structure where all demanded information
is computed and stored.
All used QUAD FAST structures are stored in a linked list and are identified uniquely by
the members quad and bas fcts; first, get quad fast() looks for a matching structure
in the linked list; if no structure is found, a new structure is generated and linked to the
list; thus for one combination bas fcts and quad only one QUAD FAST structure is created.
Then get quad fast() allocates memory for all information demanded by init flag and
which is not yet initialized for this structure; only such information is then computed and
stored; on the first call for bas fcts and quad, all information demanded init flag is
generated, on a subsequent call only missing information is generated.
get quad fast() will return a nil pointer, if INIT PHI flag is set and bas fcts->phi is
nil, INIT GRD PHI flag is set and bas fcts->grd phi is nil, and INIT D2 PHI flag is set
and bas fcts->D2 phi is nil.
There may be several QUAD FAST structures in the list for the same set of basis functions for
different quadratures, and there may be several QUAD FAST structures for one quadrature
for different sets of basis functions.
The function get quad fast() should not be called an each element during mesh traversal,
because it has to look in a list for an existing entry for a set of basis functions and a
quadrature; a pointer to the QUAD FAST structure should be accessed before mesh traversal
and stored in some global variable.
Many functions using the QUAD FAST structure, need vectors for storing values at all

quadrature points; for these functions it can be of interest to get the count of the maximal
number of quadrature nodes used by the all initialized quad fast structures in order to avoid
several memory reallocations. This count can be accessed by the function

int max_quad_points(void);

Description:
max quad points(): returns the maximal number of quadrature points for all yet initial-

ized quad fast structures; this value may change after a new initialization of a quad fast
structures;
this count is not the maximal number of quadrature points of all used QUAD structures,
since new quadratures can be used at any time without an initialization.

2.9. FUNCTIONS FOR THE EVALUATION OF FINITE ELEMENTS 125

2.9 Functions for the evaluation of finite elements

Finite element functions are evaluated locally on single elements using barycentric coordi-
nates (compare Section 1.4.3). ALBERT supplies several functions for calculating values and
first and second derivatives of finite element functions on single elements. Functions for the
calculation of derivatives are at the moment only implemented for (non–parametric) simplices.

Recalling (1.17) we obtain for the value of a finite element function uh on an element S

uh(x(λ)) =
m∑
i=1

uiS ϕ̄
i(λ) for all λ ∈ S̄,

where
(
ϕ̄1, . . . , ϕ̄m

)
is a basis of P̄ and

(
u1
S , . . . , u

m
S

)
the local local coefficient vector of uh on

S. On S derivatives are evaluated by

∇uh(x(λ)) = Λt
m∑
i=1

uiS ∇λϕ̄i(λ), λ ∈ S̄

and

D2uh(x(λ)) = Λt
m∑
i=1

uiS D
2
λϕ̄

i(λ)Λ, λ ∈ S̄,

where Λ is the Jacobian of the barycentric coordinates (compare (1.22) and (1.24)).
These formulas are used for all evaluation routines. Information about values of basis

functions and its derivatives can be calculated via function pointers in the BAS FCTS structure.
Additionally, the local coefficient vector and the Jacobian of the barycentric coordinates are
needed (for the calculation of derivatives).

Following routines calculate values of a finite element function at a single point, given in
barycentric coordinates:

REAL eval_uh(const REAL [DIM+1], const REAL *, const BAS_FCTS *);
const REAL *eval_grd_uh(const REAL [DIM+1], const REAL_D [DIM+1], const REAL *,

const BAS_FCTS *, REAL_D);
const REAL_D *eval_D2_uh(const REAL [DIM+1], const REAL_D [DIM+1], const REAL *,

const BAS_FCTS *, REAL_DD);
const REAL *eval_uh_d(const REAL [DIM+1], const REAL_D *, const BAS_FCTS *,

REAL_D);
const REAL_D *eval_grd_uh_d(const REAL [DIM+1], const REAL_D [DIM+1],

const REAL_D *, const BAS_FCTS *, REAL_DD);
REAL eval_div_uh_d(const REAL [DIM+1], const REAL_D [DIM+1], const REAL_D *,

const BAS_FCTS *);
const REAL_DD *eval_D2_uh_d(const REAL [DIM+1], const REAL_D [DIM+1],

const REAL_D *, const BAS_FCTS *, REAL_DD *);

Description:
In the following lambda = λ are the barycentric coordinates at which the function is

evaluated, Lambda = Λ is the Jacobian of the barycentric coordinates, uh the local coefficient
vector

(
u0
S , . . . , u

m−1
S

)
(where uiS is a REAL or a REAL D), and bas fcts is a pointer to a

BAS FCTS structure, storing information about the set of local basis functions
(
ϕ̄0, . . . , ϕ̄m−1

)
.

All functions returning a pointer to a vector or matrix, provide memory for the vector
or matrix in a static local variable. This area is overwritten during the next call. If the last
argument of such a function is non nil, memory is provided by the calling function, where
values must be stored (optional memory pointer). These values are not overwritten. The
memory area must be of correct size, no check is performed.

126 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

eval uh(lambda, uh, bas fcts): the function returns uh(λ);
eval grd uh(lambda, Lambda, uh, bas fcts, grd): the function returns a pointer ptr

to a vector of length DIM OF WORLD storing ∇uh(λ), i.e.

ptr[i] = uh,xi(λ), i = 0, . . . , DIM OF WORLD− 1;

grd is an optional memory pointer;
eval D2 uh(lambda, Lambda, uh, bas fcts, D2): the function returns a pointer ptr to

a matrix of size (DIM OF WORLD× DIM OF WORLD) storing D2uh(λ), i.e.

ptr[i][j] = uh,xixj(λ), i, j = 0, . . . , DIM OF WORLD− 1;

D2 is an optional memory pointer;
eval uh d(lambda, uh, bas fcts, val): the function returns a pointer ptr to a vector

of length DIM OF WORLD storing uh(λ), i.e.

ptr[k] = uhk(λ), k = 0, . . . , DIM OF WORLD− 1;

val is an optional memory pointer;
eval grd uh d(lambda, Lambda, uh, bas fcts, grd): the function returns a pointer
ptr to a vector of DIM OF WORLD vectors of length DIM OF WORLD storing ∇uh(λ), i.e.

ptr[k][i] = uhk,xi(λ), k, i = 0, . . . , DIM OF WORLD− 1;

grd is an optional memory pointer;
eval div uh d(lambda, Lambda, uh, bas fcts): the function returns div uh(λ);
eval D2 uh(lambda, Lambda, uh, bas fcts, D2): the function returns a pointer ptr

to a vector of (DIM OF WORLD × DIM OF WORLD) matrices of length DIM OF WORLD storing
D2uh(λ), i.e.

ptr[k][i][j] = uhk,xixj(λ), k, i, j = 0, . . . , DIM OF WORLD− 1;

D2 is an optional memory pointer;

Using pre–computed values of basis functions at the evaluation point, these routines can
be implemented more efficiently.

REAL eval_uh_fast(const REAL *, const REAL *, int);
const REAL *eval_grd_uh_fast(const REAL_D [DIM+1], const REAL *,

const REAL (*)[DIM+1], int , REAL_D);
const REAL_D *eval_D2_uh_fast(const REAL_D [DIM+1], const REAL *,

const REAL (*)[DIM+1][DIM+1], int , REAL_DD);
const REAL *eval_uh_d_fast(const REAL_D *, const REAL *, int, REAL_D);
const REAL_D *eval_grd_uh_d_fast(const REAL_D [DIM+1], const REAL_D *,

const REAL (*)[DIM+1], int, REAL_DD);
REAL eval_div_uh_d_fast(const REAL_D [DIM+1], const REAL_D *,

const REAL (*grd_phi)[DIM+1], int);
const REAL_DD *eval_D2_uh_d_fast(const REAL_D [DIM+1], const REAL_D *,

const REAL (*)[DIM+1][DIM+1], int,REAL_DD *);

Description:
In the following Lambda = Λ denotes the Jacobian of the barycentric coordinates, uh the

local coefficient vector
(
u0
S , . . . , u

m−1
S

)
(where uiS is a REAL or a REAL D), and m the number of

local basis functions on an element.

2.9. FUNCTIONS FOR THE EVALUATION OF FINITE ELEMENTS 127

eval uh fast(uh, phi, m): the function returns uh(λ);
phi is a vector storing the values ϕ̄0(λ), . . . , ϕ̄m−1(λ);

eval grd uh fast(Lambda, uh, grd phi, m, grd): the function returns a pointer ptr
to a vector of length DIM OF WORLD storing ∇uh(λ), i.e.

ptr[i] = uh,xi(λ), i = 0, . . . , DIM OF WORLD− 1;

grd phi is a vector of (DIM + 1) vectors storing ∇λϕ̄0(λ), . . . ,∇λϕ̄m−1(λ);
grd is an optional memory pointer;

eval D2 uh fast(Lambda, uh, D2 phi, m, D2): the function returns a pointer ptr to a
matrix of size (DIM OF WORLD× DIM OF WORLD) storing D2uh(λ), i.e.

ptr[i][j] = uh,xixj(λ), i, j = 0, . . . , DIM OF WORLD− 1;

D2 phi is a vector of (DIM + 1× DIM+1) matrices storing D2
λϕ̄

0(λ), . . . , D2λϕ̄m−1(λ);
D2 is an optional memory pointer;

eval uh d fast(uh, phi, m, val): the function returns a pointer ptr to a vector of
DIM OF WORLD vectors of length DIM OF WORLD storing ∇uh(λ), i.e.

ptr[k][i] = uhk,xi(λ), k, i = 0, . . . , DIM OF WORLD− 1;

phi is a vector storing the values ϕ̄0(λ), . . . , ϕ̄m−1(λ);
val is an optional memory pointer;

eval grd uh d fast(Lambda, uh, grd phi, m, grd): the function returns a pointer ptr
to a vector of DIM OF WORLD vectors of length DIM OF WORLD storing ∇uh(λ), i.e.

ptr[k][i] = uhk,xi(λ), k, i = 0, . . . , DIM OF WORLD− 1;

grd phi is a vector of (DIM + 1) vectors storing ∇λϕ̄0(λ), . . . ,∇λϕ̄m−1(λ);
grd is an optional memory pointer;

eval div uh d fast(Lambda, uh, grd phi, m): the function returns div uh(λ);
grd phi is a vector of (DIM + 1) vectors storing ∇λϕ̄0(λ), . . . ,∇λϕ̄m−1(λ);

eval D2 uh d fast(Lambda, uh, D2 phi, m, D2): the function returns a pointer ptr
to a vector of (DIM OF WORLD × DIM OF WORLD) matrices of length DIM OF WORLD storing
D2uh(λ), i.e.

ptr[k][i][j] = uhk,xixj(λ), k, i, j = 0, . . . , DIM OF WORLD− 1;

D2 phi is a vector of (DIM + 1× DIM+1) matrices storing D2
λϕ̄

0(λ), . . . , D2λϕ̄m−1(λ);
D2 is an optional memory pointer.
One important task is the evaluation of finite element functions at all quadrature nodes

for a given quadrature formula. Using the QUAD FAST data structures, the values of the basis
functions are known at the quadrature nodes which results in an efficient calculation of values
and derivatives of finite element functions at the quadrature points.

const REAL *uh_at_qp(const QUAD_FAST *, const REAL *, REAL *);
const REAL_D *grd_uh_at_qp(const QUAD_FAST *, const REAL_D [DIM+1],

const REAL *, REAL_D *);
const REAL_DD *D2_uh_at_qp(const QUAD_FAST *, const REAL_D [DIM+1],

const REAL *, REAL_DD *);
const REAL_D *uh_d_at_qp(const QUAD_FAST *, const REAL_D *, REAL_D *);
const REAL_DD *grd_uh_d_at_qp(const QUAD_FAST *, const REAL_D [DIM+1],

128 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

const REAL_D *, REAL_DD *);
const REAL *div_uh_d_at_qp(const QUAD_FAST *, const REAL_D [DIM+1],

const REAL_D *, REAL *);
const REAL_DD (*D2_uh_d_at_qp(const QUAD_FAST *, const REAL_D [DIM+1],

const REAL_D *, REAL_DD (*)[DIM_OF_WORLD]))[DIM_OF_WORLD];

Description: In the following uh denotes the local coefficient vector
(
u0
S , . . . , u

m−1
S

)
(where uiS

is a REAL or a REAL D) on an element.
uh at qp(qfast, uh, val): the function returns a pointer ptr to a vector of length
qfast->n points storing the values of uh at all quadrature points of qfast->quad, i.e.

ptr[l] = uh(qfast->quad->lambda[l])

where l = 0, . . . , qfast->quad->n points− 1;
the INIT PHI flag must be set in qfast->init flag;
val is an optional memory pointer;

grd uh at qp(qfast, Lambda, uh, grd): the function returns a pointer ptr to a vector
of length qfast->n points of DIM OF WORLD vectors storing ∇uh at all quadrature points
of qfast->quad, i.e.

ptr[l][i] = uh,xi(qfast->quad->lambda[l])

where l = 0, . . . , qfast->quad->n points− 1, and i = 0, . . . , DIM OF WORLD− 1;
the INIT GRD PHI flag must be set in qfast->init flag;
grd is an optional memory pointer;

D2 uh at qp(qfast, Lambda, uh, D2): the function returns a pointer ptr to a vector of
length qfast->n points of (DIM OF WORLD× DIM OF WORLD) matrices storing D2uh at all
quadrature points of qfast->quad, i.e.

ptr[l][i][j] = uh,xixj(qfast->quad->lambda[l])

where l = 0, . . . , qfast->quad->n points− 1, and i, j = 0, . . . , DIM OF WORLD− 1;
the INIT D2 PHI flag must be set in qfast->init flag;
D2 is an optional memory pointer;

uh d at qp(qfast, uh, val): the function returns a pointer ptr to a vector of length
qfast->n points of DIM OF WORLD vectors storing the values of uh at all quadrature points
of qfast->quad, i.e.

ptr[l][k] = uhk(qfast->quad->lambda[l])

where l = 0, . . . , qfast->quad->n points− 1, and k = 0, . . . , DIM OF WORLD− 1;
the INIT PHI flag must be set in qfast->init flag;
val is an optional memory pointer;

grd uh d at qp(qfast, Lambda, uh, grd): the function returns a pointer ptr to a vec-
tor of length qfast->n points of (DIM OF WORLD × DIM OF WORLD) matrices storing ∇uh
at all quadrature points of qfast->quad, i.e.

ptr[l][k][i] = uhk,xi(qfast->quad->lambda[l])

where l = 0, . . . , qfast->quad->n points− 1, and k, i = 0, . . . , DIM OF WORLD− 1;
the INIT GRD PHI flag must be set in qfast->init flag;
grd is an optional memory pointer;

2.10. CALCULATION OF NORMS FOR FINITE ELEMENT FUNCTIONS 129

D2 uh d at qp(qfast, Lambda, uh, D2): the function returns a pointer ptr to a vector
of length qfast->n points of (DIM OF WORLD × DIM OF WORLD × DIM OF WORLD) tensors
storing D2uh at all quadrature points qfast->quad, i.e.

ptr[l][k][i][j] = uhk,xixj(qfast->quad->lambda[l])

where l = 0, . . . , qfast->quad->n points− 1, and k, i, j = 0, . . . , DIM OF WORLD− 1;
the INIT D2 PHI flag must be set in qfast->init flag;
D2 is an optional memory pointer;

2.10 Calculation of norms for finite element functions

ALBERT supplies functions for the calculation of the L2 norm and H1 semi–norm of a given
scalar or vector valued finite element function on a non–parametric mesh.

REAL H1_norm_uh(const QUAD *, const DOF_REAL_VEC *);
REAL L2_norm_uh(const QUAD *, const DOF_REAL_VEC *);
REAL H1_norm_uh_d(const QUAD *, const DOF_REAL_D_VEC *);
REAL L2_norm_uh_d(const QUAD *, const DOF_REAL_D_VEC *);

Description:
H1 norm uh(quad, uh): returns an approximation to the H1 semi norm of a finite el-

ement function; the coefficient vector of the vector is stored in uh; the domain is
given by uh->fe space->mesh; the element integrals are approximated by the numeri-
cal quadrature quad, if quad is not nil; otherwise a quadrature which is exact of degree
2*uh->fe space->bas fcts->degree-2 is used;

L2 norm uh(quad, uh): returns an approximation to the L2 norm of a finite element
function; the coefficient vector of the vector is stored in uh; the domain is given
by uh->fe space->mesh; the element integrals are approximated by the numerical
quadrature quad, if quad is not nil; otherwise a quadrature which is exact of degree
2*uh->fe space->bas fcts->degree is used;

H1 norm uh d(quad, uh d): returns an approximation to the H1 semi norm of a finite
element function; the coefficient vector of the vector is stored in uh d; the domain is
given by uh d->fe space->mesh; the element integrals are approximated by the numerical
quadrature quad, if quad is not nil; otherwise a quadrature which is exact of degree
2*uh d->fe space->bas fcts->degree-2 is used;

L2 norm uh d(quad, uh d): returns an approximation to the L2 norm of a finite ele-
ment function; the coefficient vector of the vector is stored in uh d; the domain is given
by uh d->fe space->mesh; the element integrals are approximated by the numerical
quadrature quad, if quad is not nil; otherwise a quadrature which is exact of degree
2*uh d->fe space->bas fcts->degree is used;

2.11 Calculation of errors of finite element approximations

For test purposes it is convenient to calculate the exact error between a finite element approx-
imation and the exact solution. ALBERT supplies functions to calculate the error in several
norms.

REAL max_err_at_qp(REAL (*)(const REAL_D), const DOF_REAL_VEC *, const QUAD *);
REAL H1_err(const REAL *(*)(const REAL_D), const DOF_REAL_VEC *,

const QUAD *, int, REAL *(*)(EL *), REAL *);
REAL L2_err(REAL (*)(const REAL_D), const DOF_REAL_VEC *,

130 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

const QUAD *, int, REAL *(*)(EL *), REAL *);
REAL max_err_d_at_qp(const REAL *(*)(const REAL_D, REAL_D),

const DOF_REAL_D_VEC *, const QUAD *);
REAL H1_err_d(const REAL_D *(*)(const REAL_D, REAL_DD),

const DOF_REAL_D_VEC *, const QUAD *, int , REAL *(*)(EL *),
REAL *);

REAL L2_err_d(const REAL *(*)(const REAL_D, REAL_D),
const DOF_REAL_D_VEC *, const QUAD *, int, REAL *(*)(EL *),
REAL *);

Description:
max err at qp(u, uh, quad): the function returns the maximal error between the true

solution and the approximation at all quadrature nodes on all elements of a mesh; u is a
pointer to a function for the evaluation of the true solution, uh stores the coefficients of the
approximation, uh->fe space->mesh is the underlying mesh, and quad is the quadrature
which gives the quadrature nodes; if quad is nil, a quadrature which is exact of degree
2*uh->fe space->bas fcts->degree-2 is used;

H1 err(grd u, uh, quad, rel err, rw el err, max): the function returns an approx-
imation to the error between the true solution and the approximation in the H1 semi
norm; grd u is a pointer to a function for the evaluation of the gradient of the true solu-
tion returning a DIM OF WORLD vector storing this gradient, uh stores the coefficients of the
approximation, uh->fe space->mesh is the underlying mesh, and quad is the quadrature
for the approximation of the element integrals; if quad is nil, a quadrature which is exact
of degree 2*uh->fe space->bas fcts->degree-2 is used;

L2 err(u, uh, quad, rel err, rw el err, max): the function returns an approxima-
tion to the error between the true solution and the approximation in the L2 norm; u is a
pointer to a function for the evaluation of the true solution, uh stores the coefficients of the
approximation, uh->fe space->mesh is the underlying mesh, and quad is the quadrature
for the approximation of the element integrals; if quad is nil, a quadrature which is exact
of degree 2*uh->fe space->bas fcts->degree-2 is used;

max err at qp d(u d, uh d, quad): the function returns the maximal error between the
true solution and the approximation at all quadrature nodes on all elements of a mesh; u d
is a pointer to a function for the evaluation of the true solution returning a DIM OF WORLD
vector storing the value of the function, uh d stores the coefficients of the approxima-
tion, uh d->fe space->mesh is the underlying mesh, and quad is the quadrature which
gives the quadrature nodes; if quad is nil, a quadrature which is exact of degree
2*uh d->fe space->bas fcts->degree-2 is used;

H1 err2 d(grd u d, uh d, quad, rel err, rw el err, max): the function returns an
approximation to the error between the true solution and the approximation in theH1 semi
norm; grd u d is a pointer to a function for the evaluation of the Jacobian of the true so-
lution returning a DIM OF WORLD×DIM OF WORLD matrix storing this Jacobian, uh d stores
the coefficients of the approximation, uh d->fe space->mesh is the underlying mesh, and
quad is the quadrature for the approximation of the element integrals; if quad is nil, a
quadrature which is exact of degree 2*uh d->fe space->bas fcts->degree-2 is used;

L2 err2 d(u d, uh d, quad, rel err, rw el err, max): the function returns an ap-
proximation to the error between the true solution and the approximation in the L2

norm; u d is a pointer to a function for the evaluation of the true solution returning a
DIM OF WORLD vector storing the value of the function, uh stores the coefficients of the ap-
proximation, uh d->fe space->mesh is the underlying mesh, and quad is the quadrature
for the approximation of the element integrals; if quad is nil, a quadrature which is exact
of degree 2*uh d->fe space->bas fcts->degree-2 is used;

2.12. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 131

2.12 Tools for the assemblage of linear systems

This section describes data structures and subroutines for matrix and vector assembly. Section
2.12.1 presents basic routines for the update of global matrices and vectors by adding con-
tributions from one single element. Data structures and routines for global matrix assembly
are described in Section 2.12.2. This includes library routines for the efficient implementation
of a general second order linear elliptic operator. Section 2.12.3 presents data structures and
routines for the handling of pre–computed integrals, which are used to speed up calculations
in the case of problems with constant coefficients. The assembly of (right hand side) vec-
tors is described in Section 2.12.4. The incorporation of Dirichlet boundary values into the
right hand side is presented in Section 2.12.5. Finally, routines for generation of interpolation
coefficients are described in Section 2.12.6.

2.12.1 Updating of matrices and right hand sides

The usual way to assemble the system matrix and the load vector is to loop over all (leaf)
elements, calculate the local element contributions and add these to the global system matrix
and the global load vector. The updating of the load vector is rather easy. The contribution of
a local degree of freedom is added to the value of the corresponding global degree of freedom.
Here we have to use the function jS defined in (1.14) of Section 1.4.3 on each element S,
which combines uniquely the local DOFs with the global ones. The basis functions provide
in the BAS FCTS structure the entry get dof indices() which is an implementation of jS ,
see Section 2.5.1.

The updating of the system matrix is not that easy. As mentioned in Section 1.4.7, the
system matrix is usually sparse and we use special data structures for storing these matrices,
compare Section 2.3.4. For sparse matrices we do not have for each DOF a matrix row
storing values for all other DOFs; only the values for pairs of DOFs are stored, where the
corresponding global basis functions have a common support. Usually, this number of entries
in one row of a sparse matrix is not know a priori and can change during grid modifications.

Thus, we use the following concept: A call of clear matrix() will not set all matrix
entries to zero, but will remove all matrix rows from the matrix, compare the description of
this function on Page 89. During the updating of a matrix for the value of a pair of local
DOFs (i, j), we look in the jS(i)th row of the matrix for a column jS(j) (the col member of
matrix row); if such an entry exists, we add the current contribution; if this entry does not
yet exist we will create a new entry, set the current value and column number. This creation
may include an enlargement of the row, by linking a new matrix row to the list of matrix
rows, if no space for a new entry is left. After the assemblage we then have a sparse matrix,
storing all values for pairs of global basis functions with common support.

The function which we describe now allows also to handle matrices where the DOFs in-
dexing the rows can differ from the DOFs indexing the columns; this makes the combination
of DOFs from different finite element spaces possible. But, in the moment, only one refer-
ence to a FE SPACE structure is included in the DOF MATRIX structure. Thus, the handling
of two different DOF sets is not fully implemented, especially the handling of matrices dur-
ing dof compress() may produce wrong results. Such matrices should be cleared by calling
clear dof matrix() before a call to dof compress().

The following functions can be used on elements for updating matrices and vectors.

void add_element_matrix(DOF_MATRIX *, REAL, int row, int col, const DOF *,
const DOF *, const REAL **, const S_CHAR *);

void add_element_vec(DOF_REAL_VEC *, REAL, int, const DOF *, const REAL *,
const S_CHAR *);

void add_element_d_vec(DOF_REAL_D_VEC *, REAL, int, const DOF *, const REAL_D *,

132 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

const S_CHAR *);

Description:

add element matrix(mat, fac, n row, n col, row dof, col dof, el mat, bound):

updates the DOF MATRIX mat by adding element contributions;

fac is a multiplier for the element contributions; usually fac is 1 or -1;

n row is the number of rows of the element matrix;

n col is the number of columns of the element matrix; n col may be less or equal zero if
the DOFs indexing the columns are the same as the DOFs indexing the rows; in this case
n col = n row is used;

row dof is a vector of length n row storing the global row indices;

col dof is a vector of length n col storing the global column indices, col dof may be a
nil pointer if the DOFs indexing the columns are the same as the DOFs indexing the
rows; in this case col dof = row dof is used;

el mat is a matrix of size n row× n col storing the element contributions;

bound is an optional S CHAR vector of length n row; bound must be a nil pointer if row
indices and column indices are not the same; if row indices and column indices are the
same and bound is not nil it holds the boundary type of the global DOFs; contributions
are not added in rows corresponding to a Dirichlet DOF; the diagonal matrix entry of a
Dirichlet DOF is set to 1.0.

If row indices and column indices differ or if bound is a nil pointer, then for all i the
values fac*el mat[i][j] are added to the entries (row dof[i],col dof[j]) in the global
matrix mat (0 ≤ i < n row, 0 ≤ j < n col); if such an entry exists in the row dof[i]th
row of the matrix the value is added; otherwise a new entry is created in the row, the value
is set and the column number is set to col dof[j]; this may include an enlargement of
the row by adding a new MATRIX ROW structure to the list of matrix rows.

If row DOFs and column DOFs are the same and bound is not nil these values are only
added for row indices i with bound[i] < DIRICHLET; for row indices i with bound[i] >=
DIRICHLET only the diagonal element is set to 1.0; the values in the ith row of el mat
are ignored.

If row indices and column indices are the same, the diagonal element is always the first
entry in a matrix row; this makes the access to the diagonal element easy for a diagonal
preconditioner, e.g.;

add element vec(drv, fac, n dof, dof, el vec, bound): updates the DOF REAL VEC
drv;

fac is a multiplier for the element contributions; usually fac is 1 or -1;

n dof is the number of local degrees of freedom;

dof is a vector of length n dof storing the global DOFs, i.e. dof[i] is the global DOF of
the ith contribution;

el vec is a REAL vector of length n dof storing the element contributions;

bound is an optional vector of length n dof; if bound is not nil it holds the boundary
type of the global DOFs; contributions are only added for non–Dirichlet DOFs.

For all i or, if bound is not nil, for all i with bound[i] < DIRICHLET (0 ≤ i < n dof) the
value fac*el vec[i] is added to drv->vec[dof[i]]; values in drv->vec stay untouched
for Dirichlet DOFs.

2.12. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 133

add element d vec(drdv, fac, n dof, dof, el vec, bound): performs the update of
the DOF REAL D VEC drdv;
fac is a multiplier for the element contributions; usually fac is 1 or -1;
n dof is the number of local degrees of freedom;
dof is a vector of length n dof storing the global DOFs, i.e. dof[i] is the global DOF of
the ith contribution;
el vec is a REAL D vector of length n dof storing the element contributions;
bound is an optional vector of length n dof; if bound is not nil it holds the boundary
type of the global DOFs; contributions are only added for non–Dirichlet DOFs.
For all i or, if bound is not nil, for all i with bound[i] < DIRICHLET (0 ≤ i < n dof)
the value fac*el vec[i] is added to drdv->vec[dof[i]]; values in the drdv->vec stay
untouched for Dirichlet DOFs.

2.12.2 Data structures and function for matrix assemblage

The following structure holds full information for the assembling of element matrices. This
structure is used by the function update matrix() described below.

typedef struct el_matrix_info EL_MATRIX_INFO;

struct el_matrix_info
{
int n_row;
const DOF_ADMIN *row_admin;
const DOF *(*get_row_dof)(const EL *,const DOF_ADMIN *, DOF *);

int n_col;
const DOF_ADMIN *col_admin;
const DOF *(*get_col_dof)(const EL *,const DOF_ADMIN *, DOF *);

const S_CHAR *(*get_bound)(const EL_INFO *, S_CHAR *);

REAL factor;

const REAL **(*el_matrix_fct)(const EL_INFO *, void *);
void *fill_info;

FLAGS fill_flag;
};

Description:
n row: number of rows of the element matrix;
row admin: pointer to a DOF ADMIN structure for the administration of DOFs indexing the

rows of the matrix;
get row dof: pointer to a function for the access of the global row DOFs on a single

element; get row dof(el, row admin, row dof) returns a pointer to a vector of length
n row storing the global DOFs indexing the rows of the matrix; if row dof is a nil pointer,
get row dof() has to provide memory for storing this vector, which may be overwritten
on the next call; otherwise the DOFs have to be stored at row dof; usually, get row dof()
is the get dof indices() function from a BAS FCTS structure (compare Section 2.5.1);

n col: number of columns of the element matrix; n col may be less or equal zero if the
DOFs indexing the columns are the same as the DOFs indexing the rows; in this case
n col = n row is used;

134 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

col admin: pointer to a DOF ADMIN structure for the administration of DOFs indexing the
columns of the matrix; col admin may be a nil pointer if the column DOFs are the same
as the row DOFs;

get col dof: pointer to a function for the access of the global row DOFs on a sin-
gle element; get col dof may be a nil pointer if the column DOFs are the same as
the row DOFs; if row and column DOFs differ then the column DOFs are accessed by
get col dof() otherwise the vector accessed by get row dof() is used for the columns
also; get col dof(el, col admin, col dof) returns a pointer to a vector of length n col
storing the global DOFs indexing the rows of the matrix; if col dof is a nil pointer,
get col dof() has to provide memory for storing this vector, which may be overwritten
on the next call; otherwise the DOFs have to be stored at col dof; usually, get col dof()
is the get dof indices() function from a BAS FCTS structure (compare Section 2.5.1);

get bound: is an optional pointer to a function providing information about the boundary
type of DOFs; get bound must be a nil pointer if row indices and column indices are not
the same; otherwise get bound(el info, bound) returns a pointer to a vector of length
n row storing the boundary type of the local DOFs; this pointer is the optional pointer to
a vector holding boundary information of the function add element matrix() described
above; if bound is a nil pointer, get bound() has to provide memory for storing this
vector, which may be overwritten on the next call; otherwise the DOFs have to be stored
at bound; usually, get bound() is the get bound() function from a BAS FCTS structure
(compare Section 2.5.1);

factor: is a multiplier for the element contributions; usually factor is 1 or -1;
el matrix fct: is a pointer to a function for the computation of the element matrix;
el matrix fct(el info, fill info) returns a pointer to a matrix of size n row× n col
storing the element matrix on element el info->el; fill info is a pointer to data needed
by el matrix fct(); the function has to provide memory for storing the element matrix,
which can be overwritten on the next call;

fill info: pointer to data needed by el matrix fct(); will be given as second argument
to this function;

fill flag: the flag for the mesh traversal for assembling the matrix.
The following function updates a matrix by assembling element contributions during mesh
traversal; information for computing the element matrices is provided in an EL MATRIX INFO
structure:

void update_matrix(DOF_MATRIX *matrix, const EL_MATRIX_INFO *);

Description:
update matrix(matrix, info): updates the matrix matrix by traversing the underlying

mesh and assembling the element contributions into the matrix; information about the
computation of element matrices and connection of local and global DOFs is stored in
info;
the flags for the mesh traversal of the mesh matrix->fe space->mesh are stored at
info->fill flags which specifies the elements to be visited and information that should
be present on the elements for the calculation of the element matrices and boundary
information (if info->get bound is not nil).
On the elements, information about the row DOFs is accessed by info->get row dof using
info->row admin; this vector is also used for the column DOFs if info->n col is less or
equal zero, or info->get col admin or info->get col dof is a nil pointer; if row and col-
umn DOFs are the same, the boundary type of the DOFs is accessed by info->get bound
if info->get bound is not a nil pointer; then the element matrix is computed by

2.12. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 135

info->el matrix fct(el info, info->fill info); these contributions, multiplied by
info->factor, are eventually added to matrix by a call of add element matrix() with
all information about row and column DOFs, the element matrix, and boundary types, if
available;

update matrix() only adds element contributions; this makes several calls for the assem-
blage of one matrix possible; before the first call, the matrix should be cleared by calling
clear dof matrix().

Now we want to describe some tools which enable an easy assemblage of the system
matrix. For this we have to provide a function for the calculation of the element matrix. For
a general elliptic problem the element matrix LS = (LijS)i,j=1,...,m is given by (recall (1.44) in
Section 1.4.5)

LijS =
∫
Ŝ
∇λϕ̄i(λ(x̂)) · Ā(λ(x̂))∇λϕ̄j(λ(x̂)) dx̂+

∫
Ŝ
ϕ̄i(λ(x̂)) b̄(λ(x̂)) · ∇λϕ̄j(λ(x̂)) dx̂

+
∫
Ŝ
c̄(λ(x̂)) ϕ̄i(λ(x̂)) ϕ̄j(λ(x̂)) dx̂,

where Ā, b̄, and c̄ are functions depending on given data and on the actual element, namely

Ā(λ) := (ākl(λ))k,l=0,... ,d := |detDFS(x̂(λ))|Λ(x(λ))A(x(λ)) Λt(x(λ)),

b̄(λ) :=
(
b̄l(λ)

)
l=0,... ,d

:= |detDFS(x̂(λ))|Λ(x(λ)) b(x(λ)), and

c̄(λ) := |detDFS(x̂(λ))| c(x(λ)).

Having access to functions for the evaluation of Ā, b̄, and c̄ at given quadrature nodes, the
above integrals can be computed by some general routine for any set of local basis functions
using quadrature. Additionally, if a coefficient is piecewise constant on the mesh, only an
integration of basis functions has to be done (compare (1.48)) for this term. Here we can use
pre–computed integrals of the basis functions on the standard element and transform them
to the actual element. Such a computation is usually much faster than using quadrature on
each single element. Data structures for storing such pre–computed values are described in
Section 2.12.3.

For the assemblage routines which we will describe now, we use the following slight gener-
alization: In the discretization of the first order term, sometimes integration by parts is used
too. For a divergence free vector field b and purely Dirichlet boundary values this leads for
example to

∫
Ω
ϕ(x) b(x) · ∇u(x) dx =

1
2

(∫
Ω
ϕ(x) b(x) · ∇u(x) dx−

∫
Ω
∇ϕ(x) · b(x)u(x) dx

)

yielding a modified first order term for the element matrix

∫
Ŝ
ϕ̄i(λ(x̂))

1
2
b̄(λ(x̂)) · ∇λϕ̄j(λ(x̂)) dx̂−

∫
Ŝ
∇λϕ̄i(λ(x̂)) · 1

2
b̄(λ(x̂)) ϕ̄j(λ(x̂)) dx̂.

Secondly, we allow that we have two finite element spaces with local basis functions {ψ̄i}i=1,...,n

and {ϕ̄i}i=1,...,m.

136 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

In general the following contributions of the element matrix LS = (LijS) i=1,...,n
j=1,...,m

have to

be computed:∫
Ŝ
∇λψ̄i(λ(x̂)) · Ā(λ(x̂))∇λϕ̄j(λ(x̂)) dx̂ second order term,∫
Ŝ
ψ̄i(λ(x̂)) b̄0(λ(x̂)) · ∇λϕ̄j(λ(x̂)) dx̂∫

Ŝ
∇λψ̄i(λ(x̂)) · b̄1(λ(x̂)) ϕ̄j(λ(x̂)) dx̂

first order terms,

∫
Ŝ
c̄(λ(x̂)) ψ̄i(λ(x̂)) ϕ̄j(λ(x̂)) dx̂ zero order term,

where for example b̄0 = b̄ and b̄1 = 0, or using integration by parts b̄0 = 1
2 b̄ and b̄1 = −1

2 b̄.
In order to store information about the finite element spaces, the problem dependent

functions Ā, b̄0, b̄1, c̄ and the quadrature that should be used for the numerical integration
of the element matrix, we define the following data structure:

typedef struct operator_info OPERATOR_INFO;

struct operator_info
{
const FE_SPACE *row_fe_space;
const FE_SPACE *col_fe_space;

const QUAD *quad[3];

void (*init_element)(const EL_INFO *, const QUAD *[3], void *);
const REAL (*(*LALt)(const EL_INFO *, const QUAD *, int, void *))[DIM+1];
int LALt_pw_const;
int LALt_symmetric;
const REAL *(*Lb0)(const EL_INFO *, const QUAD *, int, void *);
int Lb0_pw_const;
const REAL *(*Lb1)(const EL_INFO *, const QUAD *, int, void *);
int Lb1_pw_const;
int Lb0_Lb1_anti_symmetric;
REAL (*c)(const EL_INFO *, const QUAD *, int, void *);
int c_pw_const;

int use_get_bound;
void *user_data;
FLAGS fill_flag;

};

Description:
row fe space: pointer to a finite element space connected to the row DOFs of the resulting

matrix;
col fe space: pointer to a finite element space connected to the column DOFs of the

resulting matrix;
quad: vector with pointers to quadratures; quad[0] is used for the integration of the zero

order term, quad[1] for the first order term(s), and quad[2] for the second order term;
init element: pointer to a function for doing an initialization step on each element;
init element may be a nil pointer;
if init element is not nil, init element(el info, quad, user data) is the first state-
ment executed on each element el info->el and may initialize data which is used by the

2.12. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 137

functions LALt(), Lb0(), Lb1(), and/or c() (the Jacobian of the barycentric coordinates
in the 1st and 2nd order terms or the element volume for all order terms, e.g.); quad is a
pointer to a vector of quadratures which is actually used for the integration of the various
order terms and user data may hold a pointer to user data, filled by init element(),
e.g.;

LALt: is a pointer to a function for the evaluation of Ā at quadrature nodes on the element;
LALt may be a nil pointer, if no second order term has to be integrated;
if LALt is not nil, LALt(el info, quad, iq, user data) returns a pointer to a matrix
of size DIM+1×DIM+1 storing the value of Ā at quad->lambda[iq]; quad is the quadrature
for the second order term and user data is a pointer to user data;

LALt pw const: is not zero if Ā is piecewise constant on the mesh (constant matrix A
on a non–parametric mesh, e.g.); thus integration of the second order term can use pre–
computed integrals of the basis functions on the standard element; otherwise integration
is done by using quadrature on each element;

LALt symmetric: is not zero if Ā is a symmetric matrix; if the finite element spaces for rows
and columns are the same, only the diagonal and the upper part of the element matrix
for the second order term have to be computed; elements of the lower part can then be
set using the symmetry; otherwise the complete element matrix has to be calculated;

Lb0: is a pointer to a function for the evaluation of b̄0, at quadrature nodes on the element;
Lb0 may be a nil pointer, if this first order term has not to be integrated;
if Lb0 is not nil, Lb0(el info, quad, iq, user data) returns a pointer to a vector of
length DIM+1 storing the value of b̄0 at quad->lambda[iq]; quad is the quadrature for the
first order term and user data is a pointer to user data;

Lb0 pw const: is not zero if b̄0 is piecewise constant on the mesh (constant vector b on a
non–parametric mesh, e.g.); thus integration of the first order term can use pre–computed
integrals of the basis functions on the standard element; otherwise integration is done by
using quadrature on each element;

Lb1: is a pointer to a function for the evaluation of b̄1, at quadrature nodes on the element;
Lb1 may be a nil pointer, if this first order term has not to be integrated;
if Lb1 is not nil, Lb1(el info, quad, iq, user data) returns a pointer to a vector of
length DIM+1 storing the value of b̄1 at quad->lambda[iq]; quad is the quadrature for the
first order term and user data is a pointer to user data;

Lb1 pw const: is not zero if b̄1 is piecewise constant on the mesh (constant vector b on a
non–parametric mesh, e.g.); thus integration of the first order term can use pre–computed
integrals of the basis functions on the standard element; otherwise integration is done by
using quadrature on each element;

Lb0 Lb1 anti symmetric: is not zero if the contributions of the complete first order term
to the local element matrix are anti symmetric (only possible if both Lb0 and Lb1 are not
nil, b̄0 = −b̄1, e.g.); if the finite element spaces for rows and columns are the same then
only the upper part of the element matrix for the first order term has to be computed;
elements of the lower part can then be set using the anti symmetry; otherwise the complete
element matrix has to be calculated;

c: is a pointer to a function for the evaluation of c̄ at quadrature nodes on the element; c
may be a nil pointer, if no zero order term has to be integrated;
if c is not nil, c(el info, quad, iq, user data) returns the value of the function c̄ at
quad->lambda[iq]; quad is the quadrature for the zero order term and user data is a
pointer to user data;

138 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

c pw const: is not zero if the zero order term c̄ is piecewise constant on the mesh (constant
function c on a non–parametric mesh, e.g.); thus integration of the zero order term can
use pre–computed integrals of the basis functions on the standard element; otherwise
integration is done by using quadrature on each element;

use get bound: if non–zero, then the get bound entry in EL MATRIX INFO is set to
row fe space->bas fcts->get bound(), and Dirichlet boundary DOFs are handled ac-
cordingly; use get bound must be zero if two different finite element spaces are used;

user data: optional pointer to memory segment for user data used by init element(),
LALt(), Lb0(), Lb1(), and/or c() and is the last argument to these functions;

fill flag: the flag for the mesh traversal routine indicating which elements should be vis-
ited and which information should be present in the EL INFO structure for init element(),
LALt(), Lb0(), Lb1(), and/or c() on the visited elements.

Information stored in such a structure is used by the following function which returns a
pointer to a filled EL MATRIX INFO structure; this structure can be used as an argument to
the update matrix() function which will then assemble the discrete matrix corresponding
to the operator defined in the OPERATOR INFO:

const EL_MATRIX_INFO *fill_matrix_info(const OPERATOR_INFO *, EL_MATRIX_INFO *);

Description:

fill matrix info(op info, mat info): returns a pointer to a filled EL MATRIX INFO
structure for the assemblage of the system matrix for the operator defined in op info;
If the second argument mat info is a nil pointer, a new structure mat info is allocated
and filled; otherwise the structure mat info is filled; all members are newly assigned!
op info->row fe space and op info->col fe space are pointers to the finite element
spaces (and by this to the basis functions and DOFs) connected to the row DOFs and the
column DOFs of the matrix to be assembled; if both pointers are nil pointers, an error
message is given, and the program stops; if one of these pointers is nil, rows and column
DOFs are connected with the same finite element space (i.e. op info->row fe space =
op info->col fe space, or op info->col fe space = op info->row fe space is used).
The numbers of basis functions in both structures define the members mat info->n row
and mat info->n col, the corresponding dof admins the mat info->row admin and
mat info->col admin, and the get dof indices() of the basis functions are used for
mat info->get row dof and mat info->get col dof; the entries for the columns are
only set if the finite element spaces are not the same; if the spaces are the same and
the use get bound entry is not zero, then the get bound() function of the basis functions
is used for the member mat info->get bound().
The most important member in the structure, namely mat info->el matrix fct, is ad-
justed to some general routine for the integration of the element matrix for any set of
local basis functions; fill matrix info() tries to use the fastest function for the element
integration for the operator defined in op info;
Denote by row degree and col degree the degree of the basis functions connected to the
rows and columns; the following vector quad of quadratures is used for the element integra-
tion, if not specified by op info->quad using the following rule: pre–computed integrals
of basis functions should be evaluated exactly, and all terms calculated by quadrature on
the elements should use the same quadrature formula (this is more efficient than to use
different quadratures). To be more specific:
If the 2nd order term has to be integrated and op info->quad[2] is not nil, quad[2]
= op info->quad[2] is used, otherwise quad[2] is a quadrature which is exact of degree

2.12. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 139

row degree+col degree-2. If the 2nd order term is not integrated then quad[2] is set to
nil.

If the 1st order term has to be integrated and op info->quad[1] is not nil, quad[1]
= op info->quad[1] is used; otherwise: if op info->Lb pw const is zero and quad[2] is
not nil, quad[1] = quad[2] is used, otherwise quad[1] is a quadrature which is exact
of degree row degree+col degree-1. If the 1st order term is not integrated then quad[1]
is set to nil.

If the zero order term has to be integrated and op info->quad[0] is not nil, quad[0] =
op info->quad[0] is used; otherwise: if op info->c pw const is zero and quad[2] is not
nil, quad[0] = quad[2] is used, if quad[2] is nil and quad[1] is not nil, quad[0] =
quad[1] is used, or if both quadratures are nil, quad[0] is a quadrature which is exact
of degree row degree+col degree. If the zero order term is not integrated then quad[0]
is set to nil.

If op info->init element is not nil then a call of op info->init element(el info,
quad, op info->user data) is the first statement of mat info->el matrix fct() on
each element; el info is a pointer to the EL INFO structure of the actual element, quad
is the quadrature vector described above (now giving information about the actually used
quadratures), and a pointer to user data.

If op info->LALt is not nil, the 2nd order term is integrated using the quadra-
ture quad[2]; if op info->LALt pw const is not zero, the integrals of the product
of gradients of the basis functions on the standard simplex are initialized (using the
quadrature quad[2] for the integration) and used for the computation on the ele-
ments; op info->LALt() is only called once with arguments op info->LALt(el info,
quad[2], 0, op info->user data), i.e. the matrix of the 2nd order term is evalu-
ated only at the first quadrature node; otherwise the integrals are approximated by
quadrature and op info->LALt() is called for each quadrature node of quad[2]; if
op info->LALt symmetric is not zero, the symmetry of the element matrix is used, if
the finite element spaces are the same and this term is not integrated by the same quadra-
ture as the first order term.

If op info->Lb0 is not nil, this 1st order term is integrated using the quadrature
quad[1]; if op info->Lb0 pw const is not zero, the integrals of the product of basis
functions with gradients of basis functions on the standard simplex are initialized (us-
ing the quadrature quad[1] for the integration) and used for the computation on the
elements; op info->Lb0() is only called once with arguments op info->Lb0(el info,
quad[1], 0, op info->user data), i.e. the vector of this 1st order term is evaluated
only at the first quadrature node; otherwise the integrals are approximated by quadrature
and op info->Lb0() is called for each quadrature node of quad[1];

If op info->Lb1 is not nil, this 1st order term is integrated also using the quadrature
quad[1]; if op info->Lb1 pw const is not zero, the integrals of the product of gradi-
ents of basis functions with basis functions on the standard simplex are initialized (us-
ing the quadrature quad[1] for the integration) and used for the computation on the
elements; op info->Lb1() is only called once with arguments op info->Lb1(el info,
quad[1], 0, op info->user data), i.e. the vector of this 1st order term is evaluated
only at the first quadrature node; otherwise the integrals are approximated by quadrature
and op info->Lb1() is called for each quadrature node of quad[1].

If both function pointers op info->Lb0 and op info->Lb1 are not nil, the finite element
spaces for rows and columns are the same and Lb0 Lb1 anti symmetric is non–zero, then
the contributions of the 1st order term are computed using this anti symmetry property.

140 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

If op info->c is not nil, the zero order term is integrated using the quadrature quad[0];
if op info->c pw const is not zero, the integrals of the product of basis functions on
the standard simplex are initialized (using the quadrature quad[0] for the integration)
and used for the computation on the elements; op info->c() is only called once with ar-
guments op info->c(el info, quad[0], 0, op info->user data), i.e. the zero order
term is evaluated only at the first quadrature node; otherwise the integrals are approxi-
mated by quadrature and op info->c() is called for each quadrature node of quad[0].
The functions LALt(), Lb0(), Lb1(), and c(), can be called in any order on the elements,
if not nil (this depends on the type of integration, using pre–computed values, using
same/different quadrature for the second, first, and/or zero order term, e.g.) but these
functions are always initialized by op info->init element(), if this function pointer is
not nil.
Using all information about the operator and quadrature an “optimal” routine for the
assemblage is chosen. Information for this routine is stored at mat info which includes
the pointer to user data op info->user data (the last argument to init element(),
LALt(), Lb0(), Lb1(), and/or c()).
Finally, the flag for the mesh traversal used by the function update matrix() is set in
mat info->fill flag to op info->fill flag; it indicates which elements should be vis-
ited and which information should be present in the EL INFO structure for init element(),
LALt(), Lb0/1(), and/or c() on the visited elements. If the finite element spaces are the
same, and the entry op info->use get bound is set, then the FILL BOUND flag is added
to mat info->fill flag.

2.12.1. Example. The following source fragment gives an example of the implementation
for the operator −∆u and the access of a MATRIX INFO structure for the automatic assemblage
of the system matrix for this problem for any set of used basis functions.

Here we only have to implement a constant second order term. For passing information
about the gradient of the barycentric coordinates from init element() to the function LALt
we define the following structure

struct op_info
{
REAL_D Lambda[DIM+1]; /* the gradient of the barycentric coordinates */
REAL det; /* |det D F_S| */

};

The function init element() calculates the Jacobian Λ of the barycentric coordinates on
the simplex and stores these in the above defined structure:

static void init_element(const EL_INFO *el_info, const QUAD *quad[3], void *ud)
{
FUNCNAME("init_element");
struct op_info *info = ud;

info->det = el_grd_lambda(el_info, info->Lambda);
return;

}

The function LALt now has to calculate the scaled matrix product |detDFS |ΛΛt:

const REAL (*LALt(const EL_INFO *el_info, const QUAD *quad, int iq,
void *ud))[DIM+1]

{
FUNCNAME("LALt");
struct op_info *info = ud;

2.12. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 141

int i, j, k;
static REAL LALt[DIM+1][DIM+1];

for (i = 0; i <= DIM; i++)
{
for (j = i; j <= DIM; j++)
{

for (LALt[i][j] = k = 0; k < DIM_OF_WORLD; k++)
LALt[i][j] += info->Lambda[i][k]*info->Lambda[j][k];

LALt[i][j] *= info->det;
LALt[j][i] = LALt[i][j];

}
}
return((const REAL (*)[DIM+1]) LALt);

}

To access now a MATRIX INFO structure we additionally need the actually used finite element
space fe space:

const EL_MATRIX_INFO *matrix_info = nil;
OPERATOR_INFO o_info = {nil};

o_info.row_fe_space = o_info.col_fe_space = fe_space;
o_info.init_element = init_element;
o_info.LALt = LALt;
o_info.LALt_pw_const = true; /* pw const. assemblage is faster */
o_info.LALt_symmetric = true; /* symmetric assemblage is faster */
o_info.use_get_bound = true; /* Dirichlet boundary conditions! */
o_info.user_data = MEM_ALLOC(1, struct op_info); /* user data! */
o_info.fill_flag = CALL_LEAF_EL|FILL_COORDS;

matrix_info = fill_matrix_info(&o_info, nil);

The system matrix matrix can then be assembled by

clear_dof_matrix(matrix);
update_matrix(matrix, matrix_info);

2.12.3 Data structures for storing pre–computed integrals of basis func-
tions

Assume a non–parametric triangulation and constant coefficient functions A, b, and c. Since
the Jacobian of the barycentric coordinates is constant on S, the functions ĀS , b̄0S , b̄1S , and c̄S
are constant on S also. Now, looking at the element matrix approximated by some quadrature
Q̂, we observe

Q̂
(d∑
k,l=0

(āS,klψ̄i,λk ϕ̄
j
,λl

)
)

=
d∑

k,l=0

āS,klQ̂
(
ψ̄i,λk ϕ̄

j
,λl

)
,

Q̂
(d∑
l=0

(b̄0S,l ψ̄
i ϕ̄j,λl)

)
=

d∑
l=0

b̄0S,l Q̂
(
ψ̄i ϕ̄j,λl

)
,

Q̂
(d∑
k=0

(b̄1S,k ψ̄
i
,λk
ϕ̄j)
)

=
d∑

k=0

b̄1S,k Q̂
(
ψ̄i,λk ϕ̄

j)
)
, and

Q̂
(

(c̄S ψ̄i ϕ̄j)
)

= c̄S Q̂
(
ψ̄i ϕ̄j

)
.

142 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

The values of the quadrature applied to the basis functions does only depend on the basis
functions and the standard element but not on the actual simplex S. All information about
S is given by ĀS , b̄0S , b̄1S , and c̄S . Thus, these quadratures have only to be calculated once,
and can then be used on each element during the assembling.

For this we have to store for the basis functions {ψ̄i}i=1,...,n and {ϕ̄j}j=1,...,m the values

Q̂11
ij,kl := Q̂

(
ψ̄i,λk ϕ̄

j
,λl

)
for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k, l ≤ DIM,

if A 6= 0,

Q̂01
ij,l := Q̂

(
ψ̄i ϕ̄j,λl

)
for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ l ≤ DIM,

if b0 6= 0,

Q̂10
ij,k := Q̂

(
ψ̄i,λk ϕ̄

j
)

for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ DIM

if b1 6= 0, and

Q̂00
ij := Q̂

(
ψ̄i ϕ̄j

)
for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

if c 6= 0. Many of these values are zero, especially for the first and second order terms (if
ψ̄i and ϕ̄j are the linear nodal basis functions Q̂11

ij,kl = δijδkl). Thus, we use special data
structures for a sparse storage of the non zero values for these terms. These are described
now.

In order to “define” zero entries we use

static const REAL TOO_SMALL = 1.e-15;

and all computed values val with |val| ≤ TOO SMALL are treated as zeros.
The following data structure is used for storing values Q̂11 for two sets of basis functions

integrated with a given quadrature

typedef struct q11_psi_phi Q11_PSI_PHI;

struct q11_psi_phi
{
const BAS_FCTS *psi;
const BAS_FCTS *phi;
const QUAD *quad;

const int **n_entries;
const REAL ***values;
const int ***k;
const int ***l;

};

Description:
psi: pointer to the first set of basis functions;
phi: pointer to the second set of basis functions;
quad: pointer to the quadrature which is used for the integration;
n entries: matrix of size psi->n bas fcts × phi->n bas fcts storing the count of non

zero integrals;
n entries[i][j] is the count of non zero values of Q̂11

ij,kl (0 ≤ k,l ≤ DIM) for the pair
(psi[i], phi[j]), 0 ≤ i < psi->n bas fcts, 0 ≤ j < phi->n bas fcts;

2.12. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 143

values: tensor storing the non zero integrals;
values[i][j] is a vector of length n entries[i][j] storing the non zero values for the
pair (psi[i], phi[j]);

k, l: tensor storing the indices k, l of the non zero integrals;
k[i][j] and l[i][j] are vectors of length n entries[i][j] storing at k[i][j][r] and
l[i][j][r] the indices k and l of the value stored at values[i][j][r], i.e.

values[i][j][r] = Q̂11
ij,k[i][j][r],l[i][j][r] = Q̂

(
ψ̄i
,λk[i][j][r]

ϕ̄
j
,λl[i][j][r]

)
,

for 0 ≤ r < n entries[i][j]. Using these pre–computed values we have for all elements
S

d∑
k,l=0

āS,klQ̂
(
ψ̄i,λk ϕ̄

j
,λl

)
=

n entries[i][j]-1∑
r=0

āS,k[i][j][r],l[i][j][r] *values[i][j][r].

The following function initializes a Q11 PSI PHI structure:

const Q11_PSI_PHI *get_q11_psi_phi(const BAS_FCTS *, const BAS_FCTS *,
const QUAD *);

Description:
get q11 psi phi(psi, phi, quad): returns a pointer to a filled Q11 PSI PHI structure.
psi is a pointer to the first set of basis functions, phi is a pointer to the second set of
basis functions; if both are nil pointers, nothing is done and the return value is nil; if
one of the pointers is a nil pointer, the structure is initialized using the same set of basis
functions for the first and second set, i.e. phi = psi or psi = phi is used.
quad is a pointer to a quadrature for the approximation of the integrals; if quad is nil,
then a quadrature which is exact of degree psi->degree+phi->degree-2 is used.
All used Q11 PSI PHI structures are stored in a linked list and are identified uniquely
by the members psi, phi, and quad, and for such a combination only one Q11 PSI PHI
structure is created during runtime;
First, get q11 psi phi() looks for a matching structure in the linked list; if such a struc-
ture is found a pointer to this structure is returned; the values are not computed a second
time.
Otherwise a new structure is generated, linked to the list, and the values are computed
using the quadrature quad; all values val with |val| ≤ TOO SMALL are treated as zeros.

2.12.2. Example. The following example shows how to use these pre–computed values for
the integration of the 2nd order term∫

Ŝ
∇λψ̄i(λ(x̂)) · Ā(λ(x̂))∇λϕ̄j(λ(x̂)) dx̂

for all i, j. We only show the body of a function for the integration and assume that LALt fct
returns a matrix storing Ā (compare the member LALt in the OPERATOR INFO structure):

if (!q11_psi_phi) q11_psi_phi = get_q11_psi_phi(psi, phi, quad[2]);

LALt = LALt_fct(el_info, quad, 0, user_data);
n_entries = q11_psi_phi->n_entries;

for (i = 0; i < psi->n_bas_fcts; i++)
{

144 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

for (j = 0; j < phi->n__bas_fcts; j++)
{
k = q11_psi_phi->k[i][j];
l = q11_psi_phi->l[i][j];
values = q11_psi_phi->values[i][j];
for (val = m = 0; m < n_entries[i][j]; m++)
val += values[m]*LALt[k[m]][l[m]];

mat[i][j] += val;
}

}

The values Q̂01 for the set of basis functions psi and phi are stored in

typedef struct q01_psi_phi Q01_PSI_PHI;

struct q01_psi_phi
{
const BAS_FCTS *psi;
const BAS_FCTS *phi;
const QUAD *quad;

const int **n_entries;
const REAL ***values;
const int ***l;

};

Description:
psi: pointer to the first set of basis functions;
phi: pointer to the second set of basis functions;
quad: pointer to the quadrature which is used for the integration;
n entries: matrix of size psi->n bas fcts × phi->n bas fcts storing the count of non

zero integrals;
n entries[i][j] is the count of non zero values of Q̂01

ij,l (0 ≤ l ≤ DIM) for the pair
(psi[i], phi[j]), 0 ≤ i < psi->n bas fcts, 0 ≤ j < phi->n bas fcts;

values: tensor storing the non zero integrals;
values[i][j] is a vector of length n entries[i][j] storing the non zero values for the
pair (psi[i], phi[j]);

l: tensor storing the indices l of the non zero integrals;
l[i][j] is a vector of length n entries[i][j] storing at l[i][j][r] the index l of the
value stored at values[i][j][r], i.e.

values[i][j][r] = Q̂01
ij,l[i][j][r] = Q̂

(
ψ̄i ϕ̄

j
,λl[i][j][r]

)
,

for 0 ≤ r < n entries[i][j]. Using these pre–computed values we have for all elements
S

d∑
l=0

b̄0S,lQ̂
(
ψ̄i ϕ̄j,λl

)
=

n entries[i][j]-1∑
r=0

b̄0S,l[i][j][r] *values[i][j][r].

The following function initializes a Q01 PSI PHI structure:

const Q01_PSI_PHI *get_q01_psi_phi(const BAS_FCTS *, const BAS_FCTS *,
const QUAD *);

2.12. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 145

Description:

get q01 psi phi(psi, phi, quad): returns a pointer to a filled Q01 PSI PHI structure.

psi is a pointer to the first set of basis functions phi is a pointer to the second set of
basis functions; if both are nil pointers, nothing is done and the return value is nil; if
one of the pointers is a nil pointer, the structure is initialized using the same set of basis
functions for the first and second set, i.e. phi = psi or psi = phi is used.

quad is a pointer to a quadrature for the approximation of the integrals; is quad is nil, a
quadrature which is exact of degree psi->degree+phi->degree-1 is used.

All used Q01 PSI PHI structures are stored in a linked list and are identified uniquely
by the members psi, phi, and quad, and for such a combination only one Q01 PSI PHI
structure is created during runtime;

First, get q01 psi phi() looks for a matching structure in the linked list; if such a struc-
ture is found a pointer to this structure is returned; the values are not computed a second
time.

Otherwise a new structure is generated, linked to the list, and the values are computed
using the quadrature quad; all values val with |val| ≤ TOO SMALL are treated as zeros.

The values Q̂10 for the set of basis functions psi and phi are stored in

typedef struct q10_psi_phi Q10_PSI_PHI;

struct q10_psi_phi
{
const BAS_FCTS *psi;
const BAS_FCTS *phi;
const QUAD *quad;

const int **n_entries;
const REAL ***values;
const int ***k;

};

Description:

psi: pointer to the first set of basis functions;

phi: pointer to the second set of basis functions;

quad: pointer to the quadrature which is used for the integration;

n entries: matrix of size psi->n bas fcts × phi->n bas fcts storing the count of non
zero integrals;

n entries[i][j] is the count of non zero values of Q̂10
ij,k (0 ≤ k ≤ DIM) for the pair

(psi[i], phi[j]), 0 ≤ i < psi->n bas fcts, 0 ≤ j < phi->n bas fcts;

values: tensor storing the non zero integrals;

values[i][j] is a vector of length n entries[i][j] storing the non zero values for the
pair (psi[i], phi[j]);

k: tensor storing the indices k of the non zero integrals;

k[i][j] is a vector of length n entries[i][j] storing at k[i][j][r] the index k of the
value stored at values[i][j][r], i.e.

values[i][j][r] = Q̂10
ij,k[i][j][r] = Q̂

(
ψ̄i
,λk[i][j][r]

ϕ̄j
)
,

146 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

for 0 ≤ r < n entries[i][j]. Using these pre–computed values we have for all elements
S

d∑
k=0

b̄1S,kQ̂
(
ψ̄i,λk ϕ̄

j
)

=
n entries[i][j]-1∑

r=0

b̄1S,k[i][j][r] *values[i][j][r].

The following function initializes a Q10 PSI PHI structure:

const Q10_PSI_PHI *get_q10_psi_phi(const BAS_FCTS *, const BAS_FCTS *,
const QUAD *);

Description:
get q10 psi phi(psi, phi, quad): returns a pointer to a filled Q10 PSI PHI structure.
psi is a pointer to the first set of basis functions phi is a pointer to the second set of
basis functions; if both are nil pointers, nothing is done and the return value is nil; if
one of the pointers is a nil pointer, the structure is initialized using the same set of basis
functions for the first and second set, i.e. phi = psi or psi = phi is used.
quad is a pointer to a quadrature for the approximation of the integrals; is quad is nil, a
quadrature which is exact of degree psi->degree+phi->degree-1 is used.
All used Q10 PSI PHI structures are stored in a linked list and are identified uniquely
by the members psi, phi, and quad, and for such a combination only one Q10 PSI PHI
structure is created during runtime;
First, get q10 psi phi() looks for a matching structure in the linked list; if such a struc-
ture is found a pointer to this structure is returned; the values are not computed a second
time.
Otherwise a new structure is generated, linked to the list, and the values are computed
using the quadrature quad; all values val with |val| ≤ TOO SMALL are treated as zeros.

Finally, the values Q̂00 for the set of basis functions psi and phi are stored in

typedef struct q00_psi_phi Q00_PSI_PHI;

struct q00_psi_phi
{
const BAS_FCTS *psi;
const BAS_FCTS *phi;
const QUAD *quad;

const REAL **values;
};

Description:
psi: pointer to the first set of basis functions;
phi: pointer to the second set of basis functions;
quad: pointer to the quadrature which is used for the integration;
values: matrix storing the integrals;

values[i][j] = Q̂00
ij = Q̂

(
ψ̄i ϕ̄j

)
,

for the pair (psi[i], phi[j]), 0 ≤ i < psi->n bas fcts, 0 ≤ j < phi->n bas fcts.
The following function initializes a Q00 PSI PHI structure:

const Q00_PSI_PHI *get_q00_psi_phi(const BAS_FCTS *, const BAS_FCTS *,
const QUAD *);

2.12. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 147

Description:

get q00 psi phi(psi, phi, quad): returns a pointer to a filled Q00 PSI PHI structure.
psi is a pointer to the first set of basis functions phi is a pointer to the second set of
basis functions; if both are nil pointers, nothing is done and the return value is nil; if
one of the pointers is a nil pointer, the structure is initialized using the same set of basis
functions for the first and second set, i.e. phi = psi or psi = phi is used.
quad is a pointer to a quadrature for the approximation of the integrals; is quad is nil, a
quadrature which is exact of degree psi->degree+phi->degree is used.
All used Q00 PSI PHI structures are stored in a linked list and are identified uniquely
by the members psi, phi, and quad, and for such a combination only one Q00 PSI PHI
structure is created during runtime;
First, get q00 psi phi() looks for a matching structure in the linked list; if such a struc-
ture is found a pointer to this structure is returned; the values are not computed a second
time.
Otherwise a new structure is generated, linked to the list, and the values are computed
using the quadrature quad.

2.12.4 Data structures and functions for vector update

Besides the general routines update real vec() and update real d vec(), this section
presents also easy to use routines for calculation of L2 scalar products between a given
function and all basis functions of a finite element space.

The following structures hold full information for the assembling of element vectors. They
are used by the functions update real vec() and update real d vec() described below.

typedef struct el_vec_info EL_VEC_INFO;
typedef struct el_vec_d_info EL_VEC_D_INFO;

struct el_vec_info
{
int n_dof;
const DOF_ADMIN *admin;
const DOF *(*get_dof)(const EL *,const DOF_ADMIN *, DOF *);
const S_CHAR *(*get_bound)(const EL_INFO *, S_CHAR *);

REAL factor;

const REAL *(*el_vec_fct)(const EL_INFO *, void *);
void *fill_info;

FLAGS fill_flag;
};

struct el_vec_d_info
{
int n_dof;
const DOF_ADMIN *admin;
const DOF *(*get_dof)(const EL *,const DOF_ADMIN *, DOF *);
const S_CHAR *(*get_bound)(const EL_INFO *, S_CHAR *);

REAL factor;

148 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

const REAL_D *(*el_vec_fct)(const EL_INFO *, void *);
void *fill_info;

FLAGS fill_flag;
};

Description:
n dof: size of the element vector;
admin: pointer to a DOF ADMIN structure for the administration of DOFs of the vector to

be filled;
get dof: pointer to a function for the access of the global DOFs on a single element;
get row dof(el, admin, dof) returns a pointer to a vector of length n dof storing the
global DOFs; if dof is a nil pointer, get dof() has to provide memory for storing this
vector, which may be overwritten on the next call; otherwise the DOFs have to be stored at
dof; (usually, get dof() is the get dof indices() function inside a BAS FCTS structure
(compare Section 2.5.1);

get bound: is an optional pointer to a function providing information about the bound-
ary type of DOFs; if get bound() is not nil, get bound(el info, bound) returns a
pointer to a vector of length n dof storing the boundary type of the local DOFs; this
pointer is the optional pointer to a vector holding boundary information of the function
add element[d] vec() described above; if bound is a nil pointer, get bound() has to
provide memory for storing this vector, which may be overwritten on the next call; oth-
erwise the DOFs have to be stored at bound; (usually, get bound() is the get bound()
function inside a BAS FCTS structure (compare Section 2.5.1);

factor: is a multiplier for the element contributions; usually factor is 1 or -1;
el vec fct: is a pointer to a function for the computation of the element vector;
el vec fct(el info, fill info) returns a pointer to a REAL resp. REAL D vector of
length n dof storing the element vector on element el info->el; fill info is a pointer
to data needed by el matrix fct(); the function has to provide memory for storing the
element vector, which can be overwritten on the next call;

fill info: pointer to data needed by el vec fct(); is the second argument of this func-
tion;

fill flag: the flag for the mesh traversal for assembling the vector.
The following function does the update of vectors by assembling element contributions during
mesh traversal; information for computing the element vectors is hold in a EL VEC[D] INFO
structure:

void update_real_vec(DOF_REAL_VEC *, const EL_VEC_INFO *);
void update_real_d_vec(DOF_REAL_D_VEC *, const EL_VEC_D_INFO *);

update real[d] vec(dr[d]v, info): updates the vector drv resp. drdv by traversing
the underlying mesh and assembling the element contributions into the vector; information
about the computation of element vectors and connection of local and global DOFs is
stored in info;
the flags for the mesh traversal of the mesh dr[d]v->fe space->mesh are stored at
info->fill flags which specifies the elements to be visited and information that should
be present on the elements for the calculation of the element vectors and boundary infor-
mation (if info->get bound is not nil);
on the elements, information about the global DOFs is accessed by info->get dof us-
ing info->admin; the boundary type of the DOFs is accessed by info->get bound
if info->get bound is not a nil pointer; then the element vector is computed by

2.12. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 149

info->el vec fct(el info, info->fill info); these contributions are finally added to
dr[d]v multiplied by info->factor by a call of add element[d] vec() with all infor-
mation about global DOFs, the element vector, and boundary types, if available;
update real[d] vec() only adds element contributions; this makes several calls for the
assemblage of one vector possible; before the first call, the vector should be set to zero by
a call of dof set[d](0.0, dr[d]v).

L2 scalar products In many applications, the load vector is just the L2 scalar product of
a given function with all basis functions of the finite element space or this scalar product is a
part of the right hand side; such a scalar product can be directly assembled by the functions

void L2scp_fct_bas(REAL (*)(REAL_D), const QUAD *, DOF_REAL_VEC *);
void L2scp_fct_bas_d(const REAL *(*)(const REAL_D, REAL_D), const QUAD *,

DOF_REAL_D_VEC *);

Description:

L2scp fct bas(f, quad, fh): approximates the L2 scalar products of a given function
with all basis functions by numerical quadrature and adds the corresponding values to a
DOF vector;
f is a pointer for the evaluation of the given function in world coordinates x and returns
the value of that function at x; if f is a nil pointer, nothing is done;
fh is the DOF vector where at the ith entry the approximation of the L2 scalar product
of the given function with the ith global basis function of fh->fe space is stored;
quad is the quadrature for the approximation of the integral on each leaf element of
fh->fe space->mesh; if quad is a nil pointer, a default quadrature which is exact of
degree 2*fh->fe space->bas fcts->degree-2 is used.
The integrals are approximated by looping over all leaf elements, computing the ap-
proximations to the element contributions and adding these values to the vector fh by
add element vec().
The vector fh is not initialized with 0.0; only the new contributions are added.

L2scp fct bas d(fd, quad, fhd): approximates the L2 scalar products of a given vector
valued function with all scalar valued basis functions by numerical quadrature and adds
the corresponding values to a vector valued DOF vector;
fd is a pointer for the evaluation of the given function in world coordinates x; fd(x, fx)
returns a pointer to a vector storing the value at x; if fx is not nil, the value is stored
at fx otherwise the function has to provide memory for storing this vector, which can be
overwritten on the next call; if fd is a nil pointer, nothing is done;
fhd is the DOF vector where at the ith entry (a REAL D vector) the approximation of the
L2 scalar product of the given vector valued function with the ith global (scalar valued)
basis function of fhd->fe space is stored;
quad is the quadrature for the approximation of the integral on each leaf element of
fhd->fe space->mesh; if quad is a nil pointer, a default quadrature which is exact of
degree 2*fhd->fe space->bas fcts->degree-2 is used.
The integrals are approximated by looping over all leaf elements, computing the ap-
proximations to the element contributions and adding these values to the vector fhd by
add element d vec().
The vector fhd is not initialized with (0.0, . . . , 0.0); only the new contributions are added.

150 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

2.12.5 Dirichlet boundary conditions

For the solution of the discrete system (1.37) derived in Section 1.4.5 we have to set the
Dirichlet boundary values for all Dirichlet DOFs. Usually, we take for the approximation gh
of g the interpolant of g, i.e. gh = Ihg and we have to copy the coefficients of gh at the
Dirichlet DOFs to the load vector (compare (1.36)). Additionally we know that the discrete
solution has also the same coefficients at Dirichlet DOFs. Using an iterative solver we should
use such information for the initial guess. Copying the coefficients of gh at the Dirichlet DOFs
to the initial guess will result in an initial residual (and then for all subsequent residuals)
which is (are) zero at all Dirichlet DOFs.

Furthermore, the matrix we have derived in (1.35) (and which is assembled in this way by
the assemblage tools) is not symmetric even for the discretization of symmetric and elliptic
operators. Applying directly the conjugate gradient method for solving (1.37) will not work,
because the matrix is not symmetric. But setting the Dirichlet boundary values also in the
initial guess at Dirichlet DOFs, all residuals are zero at Dirichlet DOFs and thus the conjugate
gradient method will only apply to the non Dirichlet DOFs, which means the conjugate
gradient method will only “see” the symmetric and positive definite part of the matrix.

The following functions will set Dirichlet boundary values for all DOFs on the Dirichlet
boundary, using an interpolation of the boundary values g:

void dirichlet_bound(REAL (*)(REAL_D), DOF_REAL_VEC *, DOF_REAL_VEC *,
DOF_SCHAR_VEC *);

void dirichlet_bound_d(const REAL *(*)(const REAL_D, REAL_D), DOF_REAL_D_VEC *,
DOF_REAL_D_VEC *, DOF_SCHAR_VEC *);

Description:

dirichlet bound(g, fh, uh, bound): sets Dirichlet boundary values for all DOFs on
all leaf elements of fh->fe space->mesh or uh->fe space->mesh; values at DOFs not
belonging to the Dirichlet boundary are not changed by this function.

g is a pointer to a function for the evaluation of the boundary data; if g is a nil pointer,
all coefficients at Dirichlet DOFs are set to 0.0.

fh and uh are vectors where Dirichlet boundary values should be set (usually, fh stores
the load vector and uh an initial guess for an iterative solver); one of fh and uh may be
a nil pointer; if both arguments are nil pointers, nothing is done; if both arguments are
not nil, fh->fe space must equal uh->fe space.

Boundary values are set element–wise on the leaf elements. The boundary type is accessed
on an element by the function fe space->bas fcts->get bound(), where fe space is
the finite element space of fh or uh; this function extracts information about the bound-
ary type of a DOF from the EL INFO structure on single elements; interpolation is then
done by the function fe space->bas fcts->interpol() for all Dirichlet DOFs on the
element; the function g must fit to the needs of this function; for Lagrange elements,
(*g)() is evaluated for all Lagrange nodes on the Dirichlet boundary and has to re-
turn the values at these nodes (compare Section 2.5.1); the flag of the mesh traversal is
CALL LEAF EL|FILL BOUND|FILL COORDS.

bound is a vector for storing the boundary type for each used DOF; bound may be nil; if
it is not nil, the ith entry of the vector is filled with the boundary type of the ith DOF.
bound->fe space must be the same as fh’s or uh’s fe space.

dirichlet bound d(gd, fhd, uhd, bound): sets vector valued Dirichlet boundary val-
ues for all DOFs on all leaf elements of fhd->fe space->mesh or uhd->fe space->mesh;
values at DOFs not belonging to the Dirichlet boundary are not changed by this function.

2.12. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 151

gd is a pointer to a function for the evaluation of boundary data; the return value is a
pointer to a vector storing the values; if the second argument val of (*gd)(x, val) is
not nil, the values have to be stored at val, otherwise gd has to provide memory for the
vector which may be overwritten on the next call; if gd is a nil pointer, all coefficients at
Dirichlet DOFs are set to (0.0, . . . , 0.0).
fhd and uhd are DOF vectors where Dirichlet boundary values should be set (usually, fhd
stores the load vector and uhd an initial guess for an iterative solver); one of fhd and uhd
may be a nil pointer; if both arguments are nil pointers, nothing has is done; if both
arguments are not nil pointers, fhd->fe space must equal uhd->fe space.
Boundary values are set element–wise on the leaf element. The boundary type is accessed
on an element by the function fe space->bas fcts->get bound(), where fe space is the
finite element space of fhd or uhd; this function extracts information about the bound-
ary type of a DOF from the EL INFO structure on single elements; interpolation is then
done by the function fe space->bas fcts->interpol() for all Dirichlet DOFs on the
element; the function gd must fit to the needs of this function; for Lagrange elements,
(*gd)() is evaluated for all Lagrange nodes on the Dirichlet boundary and has to re-
turn the values at these nodes (compare Section 2.5.1); the flag of the mesh traversal is
CALL LEAF EL|FILL BOUND|FILL COORDS.
bound is a vector for the storing boundary type for each used DOF; bound may be nil; if
it is not nil, the ith entry of the vector is filled with the boundary type of the ith DOF.
bound->fe space must be the same as fh’s or uh’s fe space.

2.12.6 Interpolation into finite element spaces

In time dependent problems, usually the “solve” step in the adaptive method for the adapta-
tion of the initial grid is an interpolation of initial data to the finite element space, i.e. a DOF
vector is filled with the coefficient of the interpolant. The following functions are implemented
for this task:

void interpol(REAL (*)(REAL_D), DOF_REAL_VEC *);
void interpol_d(const REAL *(*)(const REAL_D, REAL_D), DOF_REAL_D_VEC *);

Description:
interpol(f, fh): computes the coefficients of the interpolant of a function and stores

these in a DOF vector;
f is a pointer to a function for the evaluation of the function to be interpolated; if f is a
nil pointer, all coefficients are set to 0.0.
fh is a DOF vector for storing the coefficients; if fh is a nil pointer, nothing is done.
Interpolation is done element–wise on the leaf elements of fh->fe space->mesh; the el-
ement interpolation is done by the function fh->fe space->bas fcts->interpol(); the
fill flag of the mesh traversal is CALL LEAF EL|FILL COORDS and the function f must fit
to the needs of fh->fe space->bas fcts->interpol(); for Lagrange elements, (*f)()
is evaluated for all Lagrange nodes on the element and has to return the value at these
nodes (compare Section 2.5.1).

interpol d(fd, fhd): computes the coefficients of the interpolant of a vector valued func-
tion and stores these in a DOF vector;
fd is a pointer to a function for the evaluation of the function to be interpolated; the return
value is a pointer to a vector storing the values; if the second argument fx of (*fd)(x,
fx) is not nil, the values have to be stored at fx, otherwise fd has to provide memory for
the vector which may be overwritten on the next call; if fd is a nil pointer, all coefficients
are set to (0.0, . . . , 0.0).

152 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

fhd is a DOF vector for storing the coefficients; if fhd is a nil pointer, nothing is done.
Interpolation is done element–wise on the leaf elements of fhd->fe space->mesh; the el-
ement interpolation is done by the function fhd->fe space->bas fcts->interpol d();
the fill flag of the mesh traversal is CALL LEAF EL|FILL COORDS and the function fd
must fit to the needs of fhd->fe space->bas fcts->interpol d(); for Lagrange ele-
ments, (*fd)() is evaluated for all Lagrange nodes on the element and has to return the
value at these nodes (compare Section 2.5.1).

2.13 Data structures and procedures for adaptive methods

2.13.1 ALBERT adaptive method for stationary problems

ALBERT provides a subroutine

void adapt_method_stat(MESH *mesh, ADAPT_STAT *adapt);

which implements the adaptive procedure described in Section 1.5.1. In order to provide
flexibility in applications, it uses a structure ADAPT STAT to pass several parameters, which
are described below. Some of the parameters are optional or used only when a special marking
strategy is selected.

Additionally, the ADAPT STAT structure contains pointers to problem dependent routines
to build the linear or nonlinear system(s) of equations corresponding to an adapted mesh,
and to a routine which solves the discrete problem and computes the new discrete solution.
For flexibility and efficiency reasons, building and solution of the system(s) may be split into
several parts, which are called at various stages of the mesh adaption process.

typedef struct adapt_stat ADAPT_STAT;

struct adapt_stat
{
const char *name;
REAL tolerance;
REAL p; /* power in estimator norm */
int max_iteration;
int info;

REAL (*estimate)(MESH *mesh, ADAPT_STAT *adapt);
REAL (*get_el_est)(EL *el); /* local error indicator */
REAL (*get_el_estc)(EL *el); /* local coarsening error */
U_CHAR (*marking)(MESH *mesh, ADAPT_STAT *adapt);

void *est_info; /* estimator parameters */
REAL err_sum, err_max; /* sum and max of el_est */

void (*build_before_refine)(MESH *mesh, U_CHAR flag);
void (*build_before_coarsen)(MESH *mesh, U_CHAR flag);
void (*build_after_coarsen)(MESH *mesh, U_CHAR flag);
void (*solve)(MESH *mesh);

int refine_bisections;
int coarsen_allowed; /* 0 : 1 */
int coarse_bisections;

int strategy; /* 1=GR, 2=MS, 3=ES, 4=GERS */

2.13. DATA STRUCTURES AND PROCEDURES FOR ADAPTIVE METHODS 153

REAL MS_gamma, MS_gamma_c; /* maximum strategy */
REAL ES_theta, ES_theta_c; /* equidistribution strategy */
REAL GERS_theta_star, GERS_nu, GERS_theta_c; /* GERS strategy */

};

The entries yield following information:

tolerance: given tolerance for the (absolute or relative) error,
p: power p used in estimate (1.49), 1 ≤ p <∞;
max iteration: maximal allowed number of iterations of the adaptive procedure; if
max iteration <= 0, no iteration bound is used;

info: level of information printed during the adaptive procedure; if info >= 2, the itera-
tion count and final error estimate are printed; if info >= 4, then information is printed
after each iteration of the adaptive procedure; if info >= 6, additional information about
the CPU time used for mesh adaption and building the linear systems is printed;

estimate: pointer to a function which calculates the local error indicators and sets the
values for the entries err sum and err max; return value is the sum of local error estimates(∑

S∈S
ηS(uh)p

)1/p

;

get el est: pointer to a subroutine which returns the local error estimate ηS(uh)p on one
element; will be called by marking();

get el estc: pointer to a subroutine which returns the local coarsening error ηc,S(uh)p

on one element; will be called by marking(); this pointer may be nil, which means
ηc,S(uh) = 0;

marking: pointer to a subroutine that marks elements for refinement or coarsening, de-
pending on local error indicators; if marking==nil, the standard ALBERT marking routine
is used, which uses the strategy entry to select a marking strategy and pay attention to
the refine bisections, coarsen allowed, and coarse bisections entries; return value
is a flag which tells if any elements are marked for refinement/coarsening (using the sym-
bolic bit flags MESH REFINED and MESH COARSENED);

est info: pointer to (problem dependent) parameters for the estimate() routine; via this
pointer the user can pass information to the estimate routine; this pointer may be nil;

err sum: variable to hold the sum of local error indicators
(∑

S∈S ηS(uh)p
)1/p; the value

for this entry is set by the user–defined function estimate();
err max: variable to hold the maximal local error indicators maxS∈S ηS(uh)p; the value for

this entry is set by the user–defined function estimate();
build before refine: pointer to a subroutine that may build parts of the (non-)linear

system(s) before adapting the mesh, the second parameter tells if refinement or coarsening
will be done; this pointer may be nil;

build before coarsen: pointer to a subroutine that may build parts of the (non-)linear
system(s) after refining, before coarsening the mesh, the second parameter tells if refine-
ment was done and coarsening will be done; this pointer may be nil;

build after coarsen: pointer to a subroutine that may build parts of the (non-)linear
system(s) after adapting the mesh, the second parameter tells if refinement or coarsening
were done; this pointer may be nil;

solve: pointer to a subroutine which solves the (non-)linear system(s) and calculates a
new solution on the adapted mesh; this pointer may be nil;

154 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

refine bisections: parameter to tell the marking strategy how many bisections should
be performed when an element is marked for refinement; usually the value is 1 or DIM;

coarsen allowed: flag to allow or forbid mesh coarsening;

coarse bisections: parameter to tell the marking strategy how many bisections should
be undone when an element is marked for coarsening; usually the value is 1 or DIM;

strategy: parameter to select a marking strategy; for the standard ALBERT marking
routine, the possible values are:

0: no mesh adaption,

1: global refinement (GR),

2: maximum strategy (MS),

3: equidistribution strategy (ES),

4: guaranteed error reduction strategy (GERS),

see Section 2.13.2;

MS gamma, MS gamma c: parameters for the marking maximum strategy, see Sections 1.5.2
and 1.5.3;

ES theta, ES theta c: parameters for the marking equidistribution strategy, see Sections
1.5.2 and 1.5.3;

GERS theta star, GERS nu, GERS theta c: parameters for the marking guaranteed error
reduction strategy, see Sections 1.5.2 and 1.5.3.

Besides parameters given directly in the ADAPT STAT structure, the adaptive procedure
gets main information from problem dependent subroutines

REAL estimate(MESH *mesh, ADAPT_STAT *adapt);

and

REAL get_el_est(EL *el);
REAL get_el_estc(EL *el);

Pointers to these routines are passed via the ADAPT STAT structure. The estimate() routine
has to compute error estimates, fill the ADAPT STAT entries err sum and err max with

err sum =

∑
S∈Sh

ηS(uh)p

1/p

, err max = max
S∈Sh

ηS(uh)p,

and return the value η(uh) = err sum, the total error estimate. Additional parameters for
the estimate() routine can be passed via an est info pointer to a (problem dependent)
parameter structure, which may contain a switch for absolute or relative error, or selection
of an error norm to estimate (like L2– or H1–norm). Usually, the local error indicators are
stored in LEAF DATA(el), which is problem dependent and thus not directly accessible by
general–purpose routines. The routine get el est() gives access to the local error indicators
ηS(uh)p, which are needed by the marking strategies. get el estc() returns the coarsening
error estimate ηc,S(uh)p, see Section 1.5.3 below.

Several marking strategies are already implemented in ALBERT, see Sections 1.5.2, 1.5.3,
and 2.13.2. Additional strategies may be implemented and used by using the marking pointer
of ADAPT STAT.

The routine adapt method stat() now implements the whole adaptive procedure for a
stationary problem, using the parameters given in ADAPT STAT:

2.13. DATA STRUCTURES AND PROCEDURES FOR ADAPTIVE METHODS 155

void adapt_method_stat(MESH *mesh, ADAPT_STAT *adapt)
{
FUNCNAME("adapt_method_stat");
int iter;
REAL est;

...

/* get solution on initial mesh */
if (adapt->build_before_refine) adapt->build_before_refine(mesh, 0);
if (adapt->build_before_coarsen) adapt->build_before_coarsen(mesh, 0);
if (adapt->build_after_coarsen) adapt->build_after_coarsen(mesh, 0);
if (adapt->solve) adapt->solve(mesh);
est = adapt->estimate(mesh, adapt);

for (iter = 0;
(est > adapt->tolerance) &&
((adapt->max_iteration <= 0) || (iter < adapt->max_iteration));

iter++)
{
if (adapt_mesh(mesh, adapt))
{
if (adapt->solve) adapt->solve(mesh);
est = adapt->estimate(mesh, adapt);

}

...
}

}

The actual mesh adaption is done in a (static) subroutine adapt mesh(), which combines
marking, refinement, coarsening and the linear system building routines:

static U_CHAR adapt_mesh(MESH *mesh, ADAPT_STAT *adapt)
{
FUNCNAME("adapt_mesh");
U_CHAR flag = 0;
U_CHAR mark_flag;

...

if (adapt->marking)
mark_flag = adapt->marking(mesh, adapt);

else
mark_flag = marking(mesh, adapt); /* use standard marking() */

if (!adapt->coarsen_allowed)
mark_flag &= MESH_REFINED; /* use refine mark only */

if (adapt->build_before_refine) adapt->build_before_refine(mesh, mark_flag);

if (mark_flag & MESH_REFINED) flag = refine(mesh);

if (adapt->build_before_coarsen) adapt->build_before_coarsen(mesh, mark_flag);

if (mark_flag & MESH_COARSENED) flag |= coarsen(mesh);

156 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

if (adapt->build_after_coarsen) adapt->build_after_coarsen(mesh, flag);

...
return(flag);

}

As the same procedure is used for time dependent problems, the different pointers to
routines for building parts of the (non-)linear systems make it possible, for example, to
compute the right hand side including a functional involving the solution from the old time
step before coarsening the mesh, and then using the DOF VEC restriction during coarsening
to compute exactly the projection to the coarsened finite element space, without loosing any
information.

2.13.1. Remark. For time dependent problems, usually the system matrices depend on the
current time step size. Thus, matrices may have to be rebuilt even if meshes are not changed,
but when the time step size was changed. Such changes can be detected in the set_time()
routine, for example.

2.13.2 Standard ALBERT marking routine

When the marking procedure pointer in the ADAPT STAT structure is nil, the standard AL-
BERT marking routine is called. By the strategy entry, five different marking strategies may
be selected (compare Sections 1.5.2 and 1.5.3):

0: No refinement or coarsening is performed;

1: Global refinement (GR):
the mesh is refined globally, no coarsening is performed;

2: Maximum strategy (MS):
the entries MS gamma, MS gamma c are used as refinement and coarsening parameters;

3: Equidistribution strategy (ES):
the entries ES theta, ES theta c are used as refinement and coarsening parameters;

4: Guaranteed error reduction strategy (GERS):
the entries GERS theta star, GERS nu, and GERS theta c are used as refinement and
coarsening parameters.

Coarsening is performed only when coarsen allowed is true.
As get el est() and get el estc() return the p–th power of the local estimates, all

algorithms are implemented to use the values ηpS instead of ηS . This results in a small change
to the coarsening tolerances, which use the inequality ηpS + ηpc,S ≤ cp tolp/Nk instead of

ηS + ηc,S ≤ c tol/N1/p
k .

2.13.3 ALBERT adaptive method for time dependent problems

The space and time adaptive procedure described in Section 1.5.4 is implemented in ALBERT
in the subroutine

void adapt_method_instat(MESH *mesh, ADAPT_INSTAT *adapt);

In order to provide flexibility in applications, it uses a structure ADAPT INSTAT to pass sev-
eral parameters, which are described below. Some of the parameters are optional. As adap-
tion in space is based on the adapt method stat() routine described in Section 2.13.1, the
ADAPT INSTAT structure includes some ADAPT STAT parameter structures.

2.13. DATA STRUCTURES AND PROCEDURES FOR ADAPTIVE METHODS 157

typedef struct adapt_instat ADAPT_INSTAT;
struct adapt_instat
{
const char *name;

ADAPT_STAT adapt_initial[1];
ADAPT_STAT adapt_space[1];

REAL time;
REAL start_time, end_time;
REAL timestep;

void (*init_timestep)(MESH *mesh, ADAPT_INSTAT *adapt);
void (*set_time)(MESH *mesh, ADAPT_INSTAT *adapt);
void (*one_timestep)(MESH *mesh, ADAPT_INSTAT *adapt);
REAL (*get_time_est)(MESH *mesh, ADAPT_INSTAT *adapt);
void (*close_timestep)(MESH *mesh, ADAPT_INSTAT *adapt);

int strategy;
int max_iteration;

REAL tolerance;
REAL rel_initial_error;
REAL rel_space_error;
REAL rel_time_error;
REAL time_theta_1;
REAL time_theta_2;
REAL time_delta_1;
REAL time_delta_2;
int info;

};

The entries yield following information:

adapt initial: mesh adaption parameters for initial mesh, compare Section 2.13.1;

adapt space: mesh adaption parameters during time steps, compare Section 2.13.1;

time: actual time, end of time interval for current time step;

start time: initial time;

end time: final time T ;

timestep: current time step size;

init timestep: pointer to a routine called at beginning of each time step, may be nil;

set time: pointer to a routine called after changes of entry time, may be nil;

one timestep: pointer to a routine which implements one (maybe adaptive) time step, if
nil, a default routine will be called;

get time est: pointer to a routine which returns the estimate ητ , may be nil;

close timestep: pointer to a routine called after finishing each time step, may be nil;

strategy: parameter for the default one timestep routine;

max iteration: parameter for the default one timestep routine;

tolerance: given total error tolerance tol ;

rel initial error: portion Γ0 of tol allowed for initial error;

158 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

rel space error: portion Γh of tol allowed for error from spatial discretization in each
time step;

rel time error: portion Γh of tol allowed for error from time discretization in each time
step;

time theta 1: parameter θ1 used in time step control;
time theta 2: parameter θ2 used in time step control;
time delta 1: parameter δ1 used in time step reduction;
time delta 2: parameter δ2 used in time step enlargement;
info: level of information produced by the adaption routine.

Implementation of the routine is very simple. All essential work is done by calling
adapt method stat() for the generation of the initial mesh, based on parameters given in
adapt->adapt initial with tolerance adapt->tolerance*adapt->rel space error, and
in one timestep() which solves the discrete problem and does mesh adaption and time step
adjustment for one single time step.

void adapt_method_instat(MESH *mesh, ADAPT_INSTAT *adapt)
{
FUNCNAME("adapt_method_instat");

TEST_EXIT(adapt)("no ADAPT_INSTAT\n");

/**/
/* adaptation of the initial grid: done by adapt_method_stat() */
/**/

adapt->time = adapt->start_time;
if (adapt->set_time) adapt->set_time(mesh, adapt);

adapt->adapt_initial->tolerance
= adapt->tolerance * adapt->rel_initial_error;

adapt_method_stat(mesh, adapt->adapt_initial);

if (adapt->close_timestep)
adapt->close_timestep(mesh, adapt);

/**/
/* adaptation of timestepsize and mesh: done by one_timestep() */
/**/

while (adapt->time < adapt->end_time)
{

if (adapt->init_timestep)
adapt->init_timestep(mesh, adapt);

if (adapt->one_timestep)
adapt->one_timestep(mesh, adapt);

else
one_timestep(mesh, adapt);

if (adapt->close_timestep)
adapt->close_timestep(mesh, adapt);

}
}

2.13. DATA STRUCTURES AND PROCEDURES FOR ADAPTIVE METHODS 159

Default one timestep() routine

The default one timestep() routine provided by ALBERT implements both the explicit and
the implicit time strategy A. The semi–implicit strategy described in Section 1.5.4 is only a
special case of the implicit strategy with a limited number of iterations (exactly one).

The routine uses the parameter adapt->strategy to select the strategy:

strategy 0: Explicit strategy, strategy 1: Implicit strategy.

Explicit strategy. The explicit strategy does one adaption of the mesh based on the error
estimate computed from the last time step’s discrete solution by using parameters given in
adapt->adapt space, with tolerance set to adapt->tolerance*adapt->rel space error.
Then the current time step’s discrete problem is solved, and the error estimators are com-
puted. No time step size adjustment is done.

Implicit strategy. The implicit strategy starts with the old mesh from last time step.
Using parameters given in adapt->adapt space, the discrete problem is solved on the current
mesh. Error estimates are computed, and time step size and mesh are adjusted, as shown in
Algorithm 1.5.9, with tolerances given by adapt->tolerance*adapt->rel time error and
adapt->tolerance*adapt->rel space error, respectively. This is iterated until the given
error bounds are reached, or until adapt->max iteration is reached.

With parameter adapt->max iteration==0, this is equivalent to the semi–implicit strat-
egy described in Section 1.5.4.

2.13.4 Initialization of data structures for adaptive methods

ALBERT provides functions for the initialization of structures ADAPT STAT and ADAPT INSTAT.
Both functions do not fill any function pointer which is a member of the structure! These
function pointers have to be adjusted by the user.

ADAPT_STAT *get_adapt_stat(const char *, const char *, int, ADAPT_STAT *);
ADAPT_INSTAT *get_adapt_instat(const char *, const char *, int, ADAPT_INSTAT *);

Description:
get adapt stat(name, prefix, info, adapt): returns a pointer to a partly initialized
ADAPT STAT structure; if the argument adapt is nil, a new structure is created, the name
name is duplicated at the name entry of the structure, if name is not nil; if name is nil,
and prefix is not nil, this string is duplicated at the name entry; for a newly created
structure, all function pointers of the structure are initialized with nil; all other members
are initialized with some default value; if the argument adapt is not nil, no default
initialization takes place this part is skipped if adapt is not nil;
if prefix is not nil, get adapt stat() tries then to initialize members by a call of
GET PARAMETER(), where the key for each member is value(prefix)->member name; the
argument info is the first argument of GET PARAMETER() giving the level of information
for the initialization;
only the parameters for the actually chosen strategy are initialized by a call of
GET PARAMETER(): for strategy == 2 only MS gamma and MS gamma c, for strategy == 3
only ES theta and ES theta c, and for strategy == 3 only GERS theta star, GERS nu,
and GERS theta c;
since the parameter tools are used for the initialization, get adapt stat() should be called
after the initialization of all parameters; there may be no initializer in the parameter file(s)
for some member, if the default value should be used; if info is not zero and there is no

160 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

initializer for some member this will result in an error message by GET PARAMETER() which
can be ignored;
Table 2.11 shows the initialized members, the default values and the key for the initializa-
tion by GET PARAMETER();

member default parameter key
tolerance 1.0 prefix->tolerance
p 2 prefix->p
max iteration 30 prefix->max iteration
info 2 prefix->info
refine bisections DIM prefix->refine bisections
coarsen allowed 0 prefix->coarsen allowed
coarse bisections DIM prefix->coarse bisections
strategy 1 prefix->strategy
MS gamma 0.5 prefix->MS gamma
MS gamma c 0.1 prefix->MS gamma c
ES theta 0.9 prefix->ES theta
ES theta c 0.2 prefix->ES theta c
GERS theta star 0.6 prefix->GERS theta star
GERS nu 0.1 prefix->GERS nu
GERS theta c 0.1 prefix->GERS theta c

Table 2.11: Initialized members of an ADAPT STAT structure, the default values and the key
for the initialization by GET PARAMETER().

get adapt instat(name, prefix, info, adapt): returns a pointer to a partly initial-
ized ADAPT INSTAT structure; if the argument adapt is nil, a new structure is created, the
name name is duplicated at the name entry of the structure, if name is not nil; if name
is nil, and prefix is not nil, this string is duplicated at the name entry; for a newly
created structure, all function pointers of the structure are initialized with nil; all other
members are initialized with some default value; if the argument adapt is not nil, no
default initialization takes place this part is skipped if adapt is not nil;
if prefix is not nil, get adapt instat() tries then to initialize members by a call of
GET PARAMETER(), where the key for each member is value(prefix)->member name; the
argument info is the first argument of GET PARAMETER() giving the level of information
for the initialization;
Table 2.12 shows the initialized members, the default values and the key for the initializa-
tion by GET PARAMETER();

2.14 Implementation of error estimators

2.14.1 Error estimator for elliptic problems

ALBERT provides a residual type error estimator for quasi–linear elliptic problems of the type

−∇ ·A∇u(x) + f
(
x, u(x),∇u(x)

)
= 0 x ∈ Ω,

u(x) = 0 x ∈ ΓD,
ν ·A∇u(x) = 0 x ∈ ΓN ,

where A ∈ Rd×d is a positive definite matrix and ∂Ω = ΓD ∪ ΓN .

2.14. IMPLEMENTATION OF ERROR ESTIMATORS 161

member default parameter key
adapt initial->tolerance 1.0 prefix->initial->tolerance
adapt initial->p 2 prefix->initial->p
adapt initial->max iteration 30 prefix->initial->max iteration
adapt initial->info 2 prefix->initial->info
adapt initial->refine bisections DIM prefix->initial->refine bisections
adapt initial->coarsen allowed 0 prefix->initial->coarsen allowed
adapt initial->coarse bisections DIM prefix->initial->coarse bisections
adapt initial->strategy 1 prefix->initial->strategy
adapt initial->MS gamma 0.5 prefix->initial->MS gamma
adapt initial->MS gamma c 0.1 prefix->initial->MS gamma c
adapt initial->ES theta 0.9 prefix->initial->ES theta
adapt initial->ES theta c 0.2 prefix->initial->ES theta c
adapt initial->GERS theta star 0.6 prefix->initial->GERS theta star
adapt initial->GERS nu 0.1 prefix->initial->GERS nu
adapt initial->GERS theta c 0.1 prefix->initial->GERS theta c
adapt space->tolerance 1.0 prefix->space->tolerance
adapt space->p 2 prefix->space->p
adapt space->max iteration 30 prefix->space->max iteration
adapt space->info 2 prefix->space->info
adapt space->refine bisections DIM prefix->space->refine bisections
adapt space->coarsen allowed 1 prefix->space->coarsen allowed
adapt space->coarse bisections DIM prefix->space->coarse bisections
adapt space->strategy 1 prefix->space->strategy
adapt space->MS gamma 0.5 prefix->space->MS gamma
adapt space->MS gamma c 0.1 prefix->space->MS gamma c
adapt space->ES theta 0.9 prefix->space->ES theta
adapt space->ES theta c 0.2 prefix->space->ES theta c
adapt space->GERS theta star 0.6 prefix->space->GERS theta star
adapt space->GERS nu 0.1 prefix->space->GERS nu
adapt space->GERS theta c 0.1 prefix->space->GERS theta c
start time 0.0 prefix->start time
end time 1.0 prefix->end time
timestep 0.01 prefix->timestep
strategy 0 prefix->strategy
max iteration 0 prefix->max iteration
tolerance 1.0 prefix->tolerance
rel initial error 0.1 prefix->rel initial error
rel space error 0.4 prefix->rel space error
rel time error 0.4 prefix->rel time error
time theta 1 1.0 prefix->time theta 1
time theta 2 0.3 prefix->time theta 2
time delta 1 0.7071 prefix->time delta 1
time delta 2 1.4142 prefix->time delta 2
info 8 prefix->info

Table 2.12: Initialized members of an ADAPT INSTAT structure, the default values and the key
for the initialization by GET PARAMETER().

162 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

Verfürth [38] proved for this kind of equation under suitable assumptions on f , u and uh
(in the non–linear case) the following estimate

‖u− uh‖2H1(Ω) ≤
∑
S∈S

C2
0 h

2
S ‖ − ∇ ·A∇uh + f(., uh,∇uh)‖2L2(S)

+ C2
1

∑
Γ⊂∂S∩Ω

hS ‖ [[A∇uh]] ‖2L2(Γ),+C
2
1

∑
Γ⊂∂S∩ΓN

hS ‖ν ·A∇uh‖2L2(Γ),

where [[.]] denotes the jump of the normal component across an interior edge/face Γ ⊂ ∂S.
Bänsch and Siebert [4] proved a similar L2 error estimate for semi–linear problems, i.e.

f = f(x, u), namely

‖u− uh‖2L2(Ω) ≤
∑
S∈S

C2
0 h

4
S ‖ − ∇ ·A∇uh + f(., uh)‖2L2(S)

+ C2
1

∑
Γ⊂∂S∩Ω

h3
S ‖ [[A∇uh]] ‖2L2(Γ) + C2

1

∑
Γ⊂∂S∩ΓN

h3
S ‖ν ·A∇uh‖2L2(Γ).

The following function is an implementation of the above estimators:

REAL ellipt_est(const DOF_REAL_VEC *, ADAPT_STAT *,
REAL *(*)(EL *), REAL *(*)(EL *), int, int, REAL[3],const REAL_DD,
REAL (*f)(const EL_INFO *, const QUAD *, int, REAL,const REAL_D),
FLAGS);

Description:

ellipt est(uh, adapt, rw el est, rw el estc, degree, norm, C, A, f, f flag):
computes an error estimate of the above type for the H1 or L2 norm; the return value is
an approximation of the estimate ‖u− uh‖ by quadrature.
uh is a vector storing the coefficients of the discrete solution; if uh is a nil pointer, nothing
is done, the return value is 0.0.
adapt is a pointer to an ADAPT STAT structure; if it is not nil, the entries err sum and
err max of adapt are set by ellipt est() (compare Section 2.13.1).
rw el est is a function for writing the local error indicator for a single element (usually
to some location inside leaf data, compare Section 2.2.12); if this function is nil, only
the global estimate is computed, no local indicators are stored. rw el est(el) returns for
each leaf element el a pointer to a REAL for storing the square of the element indicator,
which can directly be used in the adaptive method, compare the get el est() function
pointer in the ADAPT STAT structure (compare Section 2.13.1).
rw el estc is a function for writing the local coarsening error indicator for a single element
(usually to some location inside leaf data, compare Section 2.2.12); if this function is nil,
no coarsening error indicators are computed and stored; rw el estc(el) returns for each
leaf element el a pointer to a REAL for storing the square of the element coarsening error
indicator.
degree is the degree of the quadrature that should be used for the approximation of the
norms on the elements and edges/faces; if degree is less than zero a quadrature which is
exact of degree 2*uh->fe space->bas fcts->degree is used.
norm can be either H1 NORM or L2 NORM (which are defined as symbolic constants in
albert.h) to indicate that the H1 or L2 error estimate has to be calculated.
C[0], C[1], C[2] are the constants in front of the element residual, edge/face residual,
and coarsening term respectively. If C is nil, then all constants are set to 1.0.
A is the constant matrix of the second order term.

2.14. IMPLEMENTATION OF ERROR ESTIMATORS 163

f is a pointer to a function for the evaluation of the lower order terms at all quadrature
nodes, i.e. f(x(λ), u(λ),∇u(λ)) ; if f is a nil pointer, f ≡ 0 is assumed;
f(el info, quad, iq, uh iq, grd uh iq) returns the value of the lower oder terms on
element el info->el at the quadrature node quad->lambda[iq], where uh iq is the value
and grd uh iq the gradient (with respect to the world coordinates) of the discrete solution
at that quadrature node.
f flag specifies whether the function f() actually needs values of uh iq or grd uh iq.
This flag may hold zero, the predefined values INIT UH or INIT GRD UH, or their compo-
sition INIT UH|INIT GRD UH; the arguments uh iq and grd uh iq of f() only hold valid
information, if the flags INIT UH respectively INIT GRD UH are set.

The estimate is computed by traversing all leaf elements of uh->fe space->mesh, using
the quadrature for the approximation of the residuals and storing the square of the element
indicators on the elements (if rw el est and rw el estc are not nil).

2.14.1. Example (Linear problem). Consider the linear model problem (1.27) with con-
stant coefficients A, b, and c:

−∇ ·A∇u+ b · ∇u+ c u = r in Ω,
u = 0 on ∂Ω.

Let A be a REAL DD matrix storing A, which is then the eighth argument of ellipt est().
Assume that const REAL *b(const REAL D) is a function returning a pointer to a vector
storing b, REAL c(REAL D) returns the value of c and REAL r(const REAL D) returns the
value of the right hand side r of (1.27) at some point in world coordinates. The implementation
of the function f is:

static REAL f(const EL_INFO *el_info, const QUAD *quad, int iq, REAL uh_iq,
const REAL_D grd_uh_iq)

{
FUNCNAME("f");
const REAL *bx, *x;
extern const REAL b(const REAL_D);
extern REAL c(const REAL_D), r(const REAL_D);

x = coord_to_world(el_info, quad->lambda[iq], nil);
bx = b(x);

return(SCP_DOW(bx, grd_uh_iq) + c(x)*uh_iq - r(x));
}

As both uh iq and grd uh iq are used, the estimator parameter f flag must be given as
INIT UH|INIT GRD UH.

2.14.2 Error estimator for parabolic problems

Similar to the stationary case, the ALBERT library provides an error estimator for the quasi–
linear parabolic problem

∂tu−∇ ·A∇u(x) + f
(
x, t, u(x),∇u(x)

)
= 0 x ∈ Ω, t > 0,

u(x, t) = 0 x ∈ ΓD, t > 0,
ν ·A∇u(x, t) = 0 x ∈ ΓN , t > 0,

u(x, 0) = u0 x ∈ Ω,

164 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

where A ∈ Rd×d is a positive definite matrix and ∂Ω = ΓD ∪ ΓN . The estimator is split in
several parts, where the initial error

η0 = ‖u0 − U0‖L2(Ω)

can be approximated by the function L2 err(), e.g. (compare Section 2.11).
For the estimation of the spacial discretization error, the coarsening error, and the time

discretization error, the ALBERT estimator implements the following (local) indicators

η2
S = C2

0 h
4
S

∥∥∥∥Un+1 − In+1Un
τn+1

−∇ ·A∇Un+1 + f(., tn+1, Un+1,∇Un+1)
∥∥∥∥2

L2(S)

+ C2
1

∑
Γ⊂∂S∩Ω

h3
S ‖ [[A∇Un+1]] ‖2L2(Γ) + C2

1

∑
Γ⊂∂S∩ΓN

h3
S ‖ν ·A∇Un+1‖2L2(Γ),

η2
S,c = C2

2 ‖Un − In+1Un‖2L2(S)

ητ = C3‖Un+1 − In+1Un‖L2(Ω).

The implementation is done by the function

REAL heat_est(const DOF_REAL_VEC *, ADAPT_INSTAT *,
REAL *(*)(EL *), REAL *(*)(EL *), int, REAL[4],
const DOF_REAL_VEC *, const REAL_DD,
REAL (*)(const EL_INFO *, const QUAD *, int, REAL, REAL, const REAL_D),
FLAGS);

Description:
heat est(uh, adapt, rw el est, rw el estc, degree, C, uh old, A, f, f flag):

computes an error estimate of the above type, the local and global space discretization
estimators are stored in adapt->adapt space and via the rw ... pointers; the return
value is the time discretization indicator ητ .
uh is a vector storing the coefficients of the discrete solution Un+1; if uh is a nil pointer,
nothing is done, the return value is 0.0.
adapt is a pointer to an ADAPT INSTAT structure; if it is not nil, then the entries
adapt space->err sum and adapt space->err max of adapt are set by heat est() (com-
pare Section 2.13.1).
rw el est is a function for writing the local error indicator η2

S for a single element (usually
to some location inside leaf data, compare Section 2.2.12); if this function is nil, only
the global estimate is computed, no local indicators are stored. rw el est(el) returns for
each leaf element el a pointer to a REAL for storing the square of the element indicator,
which can directly be used in the adaptive method, compare the get el est() function
pointer in the ADAPT STAT structure (compare Section 2.13.1).
rw el estc is a function for writing the local coarsening error indicator η2

S,c for a sin-
gle element (usually to some location inside leaf data, compare Section 2.2.12); if this
function is nil, no coarsening error indicators are computed and stored; rw el estc(el)
returns for each leaf element el a pointer to a REAL for storing the square of the element
coarsening error indicator.
degree is the degree of the quadrature that should be used for the approximation of the
norms on the elements and edges/faces; if degree is less than zero a quadrature which is
exact of degree 2*uh->fe space->bas fcts->degree is used.
C[0], C[1], C[2], C[3] are the constants in front of the element residual, edge/face resid-
ual, coarsening term, and time residual, respectively. If C is nil, then all constants are set
to 1.0.

2.15. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 165

uh old is a vector storing the coefficients of the discrete solution Un from previous time
step; if uh old is a nil pointer, nothing is done, the return value is 0.0.
A is the constant matrix of the second order term.
f is a pointer to a function for the evaluation of the lower order terms at all quadrature
nodes, i.e. f(x(λ), t, u(λ),∇u(λ)) ; if f is a nil pointer, f ≡ 0 is assumed;
f(el info, quad, iq, t, uh iq, grd uh iq) returns the value of the lower oder terms
on element el info->el at the quadrature node quad->lambda[iq], where uh iq is the
value and grd uh iq the gradient (with respect to the world coordinates) of the discrete
solution at that quadrature node.
f flag specifies whether the function f() actually needs values of uh iq or grd uh iq.
This flag may hold zero, the predefined values INIT UH or INIT GRD UH, or their compo-
sition INIT UH|INIT GRD UH; the arguments uh iq and grd uh iq of f() only hold valid
information, if the flags INIT UH respectively INIT GRD UH are set.

The estimate is computed by traversing all leaf elements of uh->fe space->mesh, using
the quadrature for the approximation of the residuals and storing the square of the element
indicators on the elements (if rw el est and rw el estc are not nil).

2.15 Solver for linear and nonlinear systems

ALBERT uses a library for solving general linear and nonlinear systems. The solvers use
vectors for storing coefficients. The linear solvers need a subroutine for the matrix–vector
multiplication, and in the case that a preconditioner is used, a function for preconditioning.
The nonlinear solvers need subroutines for assemblage and solution of a linearized system.

In the subsequent sections we describe the basic data structures for the OEM library, an
ALBERT interface for solving systems involving a DOF MATRIX and DOF REAL[D] vectors, and
the access of functions for matrix–vector multiplication and preconditioning for a direct use
of the OEM solvers. Then we describe the basic data structures for multigrid solvers and for
the available solvers of nonlinear equations.

2.15.1 General linear solvers

Very efficient solvers for linear systems are Krylov-space (or Orthogonal Error Methods)
solvers.

The OEM library provides such solvers for the solution of general linear systems

Ax = b

with A ∈ RN×N and x, b ∈ RN . The solvers in that library are working on vectors and do not
know the storage of the system matrix, or the matrix used for preconditioning. Matrix–vector
multiplication and preconditioning is done by application dependent routines.

The OEM solvers are not part of ALBERT. For the access of the basic data structure and
prototypes of solvers, the header file

#include <oem.h>

has to be included in each file using a solver from the library. Most of the implemented solvers
are a C-translation from the solvers of FORTRAN OFM-library, by Dörfler [13]. All solvers
allow a left preconditioning and some also a right preconditioning.

The data structure (defined in oem.h) for passing information about matrix–vector mul-
tiplication, preconditioning and tolerances, etc. to the solvers is

166 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

typedef struct oem_data OEM_DATA;
struct oem_data
{
int (*mat_vec)(void *, int, const REAL *, REAL *);
void *mat_vec_data;
int (*mat_vec_T)(void *, int, const REAL *, REAL *);
void *mat_vec_T_data;
void (*left_precon)(void *, int, REAL *);
void *left_precon_data;
void (*right_precon)(void *, int, REAL *);
void *right_precon_data;

WORKSPACE *ws;

REAL tolerance;
int restart;
int max_iter;
int info;

REAL initial_residual;
REAL residual;

};

Description:

mat vec: pointer to a function for the matrix–vector multiplication with the system matrix;
mat vec(mat vec data, dim, u, b) applies A to the input vector u and stores the prod-
uct in b; dim is the dimension of the linear system, mat vec data a pointer to user data;

mat vec data: pointer to user data for the matrix–vector multiplication, first argument to
mat vec();

mat vec T: pointer to a function for the matrix–vector multiplication with the transposed
system matrix;
mat vec T(mat vec data, dim, u, b) applies At to the input vector u and stores the
product in b; dim is the dimension of the linear system, mat vec T data a pointer to user
data;

mat vec T data: pointer to user data for the matrix–vector multiplication with the trans-
posed matrix, first argument to mat vec T();

left precon: pointer to function for left preconditioning; it may be a nil pointer; in this
case no left preconditioning is done;
left precon(left precon data, dim, r) is the implementation of the left precondi-
tioner; r is input and output vector of length dim and left precon data a pointer to user
data;

left precon data: pointer to user data for the left preconditioning, first argument to
left precon();

right precon: pointer to function for right preconditioning; it may be a nil pointer; in
this case no right preconditioning is done;
right precon(right precon data, dim, r) is the implementation of the right precon-
ditioner; r is input and output vector of length dim and right precon data a pointer to
user data;

right precon data: pointer to user data for the right preconditioning, first argument to
right precon();

2.15. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 167

ws: a pointer to a WORKSPACE structure for storing additional vectors used by a solver; if
the space is not sufficient, the used solver will enlarge this workspace; if ws is nil, then
the used solver allocates memory, which is freed before exit;

tolerance: tolerance for the residual; if the norm of the residual is less or equal tolerance,
the solver returns the actual iterate as the solution of the system;

restart: restart for the linear solver; used only by oem gmres() at the moment;

max iter: maximal number of iterations to be performed although the tolerance may not
be reached;

info: the level of information produced by the solver; 0 is the lowest level of information
(no information is printed) and 10 the highest level;

initial residual: stores the norm of the initial residual on exit;

residual: stores the norm of the last residual on exit.

The following linear solvers are currently implemented:

int oem_bicgstab(OEM_DATA *, int, const REAL *, REAL *);
int oem_cg(OEM_DATA *, int, const REAL *, REAL *);
int oem_gmres(OEM_DATA *, int, const REAL *, REAL *);
int oem_odir(OEM_DATA *, int, const REAL *, REAL *);
int oem_ores(OEM_DATA *, int, const REAL *, REAL *);

Description:

oem bicgstab(oem data, dim, b, x0): solves a linear system by a stabilized BiCG
method and can be used for symmetric system matrices; oem data stores information
about matrix vector multiplication, preconditioning, tolerances, etc. dim is the dimension
of the linear system, b the right hand side vector, and x0 the initial guess on input and
the solution on output; oem bicgstab() needs a workspace for storing 5*dim additional
REALs; the return value is the number of iterations; oem bicgstab() only uses left precon-
ditioning;

oem cg(oem data, dim, b, x0): solves a linear system by the conjugate gradient method
and can be used for symmetric positive definite system matrices; oem data stores infor-
mation about matrix vector multiplication, preconditioning, tolerances, etc. dim is the
dimension of the linear system, b the right hand side vector, and x0 the initial guess on
input and the solution on output; oem cg() needs a workspace for storing 3*dim additional
REALs; the return value is the number of iterations; oem cg() only uses left preconditioning;

oem gmres(oem data, dim, b, x0): solves a linear system by the GMRes method with
restart and can be used for regular system matrices; oem data stores information about
matrix vector multiplication, preconditioning, tolerances, etc. dim is the dimension of
the linear system, b the right hand side vector, and x0 the initial guess on input
and the solution on output; oem data->restart is the dimension of the Krylov–space
for the minimizing procedure; oem data->restart must be bigger than 0 and less or
equal dim; oem gmres() needs a workspace for storing (oem data->restart+2)*dim +
oem data->restart*(oem data->restart+4) additional REALs;

oem odir(oem data, dim, b, x0): solves a linear system by the method of orthogonal
directions and can be used for symmetric, positive system matrices; oem data stores in-
formation about matrix vector multiplication, preconditioning, tolerances, etc. dim is the
dimension of the linear system, b the right hand side vector, and x0 the initial guess on
input and the solution on output; oem dir() needs a workspace for storing 5*dim ad-
ditional REALs; the return value is the number of iterations; oem odir() only uses left
preconditioning;

168 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

oem ores(oem data, dim, b, x0): solves a linear system by the method of orthogonal
residuals and can be used for symmetric system matrices; oem data stores information
about matrix vector multiplication, preconditioning, tolerances, etc. dim is the dimension
of the linear system, b the right hand side vector, and x0 the initial guess on input and
the solution on output; oem res() needs a workspace for storing 7*dim additional REALs;
the return value is the number of iterations; oem ores() only uses left preconditioning;

2.15.2 Linear solvers for DOF matrices and vectors

OEM solvers

The following functions are an interface to the above described solvers for DOF matrices and
vectors. The function oem solve s is used for scalar valued problems, i.e.

Ax = b

with A ∈ RN×N and x, b ∈ RN , and oem solve d for decoupled vector valued problems of
the form 

A 0 . . . 0

0 A
. . .

...
...

. 0
0 . . . 0 A



u1

u2
...
ud

 =


f1

f2
...
fd


with A ∈ RN×N and ui, fi ∈ RN , i = 1, . . . , d, where d = DIM OF WORLD. The vectors
(u1, . . . , ud) and (f1, . . . , fd) are stored in DOF REAL D VECs, whereas the matrix is stored as
a single DOF MATRIX.

For the solver identification we use the following type

typedef enum {NoSolver, BiCGStab, CG, GMRes, ODir, ORes} OEM_SOLVER;

This type will be changed at the time when additional solvers will be available.
The following functions can directly be used for solving a linear system involving a

DOF MATRIX and DOF REAL[D] VECs.

int oem_solve_s(const DOF_MATRIX *, const DOF_REAL_VEC *, const DOF_SCHAR_VEC *,
DOF_REAL_VEC *, OEM_SOLVER, REAL, int, int, int, int);

int oem_solve_d(const DOF_MATRIX *,const DOF_REAL_D_VEC *,const DOF_SCHAR_VEC *,
DOF_REAL_D_VEC *, OEM_SOLVER, REAL, int, int, int, int);

Description:

oem solve s[d](A, f, bound, u, solver, tol, icon, restart, max iter, info):

solves a linear system by an OEM solver; the return value is the number of performed
iterations;
A: pointer to a DOF MATRIX storing the system matrix;
f: pointer to a DOF REAL[D] vector storing the right hand side of the linear system;
bound: pointer to a DOF SCHAR vector storing information about the boundary type of
DOFs; if bound is nil, then boundary information is build in the system matrix; otherwise,
all DOFs with bound->vec[dof] >= DIRICHLET are treated as Dirichlet boundary values;
u: pointer to a DOF REAL[D] storing the initial guess on input and the calculated solution
on output;
the values for u and f have to be the same at all Dirichlet DOFs (compare Section 2.12.5);

2.15. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 169

solver: use solver solver from the OEM library for solving the linear system; may be
one of BiCGStab, CG, GMRes, ODir, or ORes; the meaning of solver is more or less self
explaining;
tol: tolerance for the residual; if the norm of the residual is less or equal tol,
oem solve s[d]() returns the actual iterate as the solution of the system;
icon: parameter for preconditioning: 0: no preconditioning

1: diagonal preconditioning
2: hierarchical basis preconditioning

(only for linear f.e. at the moment)
max iter: maximal number of iterations to be performed by the linear solver although the
tolerance may not be reached;
info: is the level of information of the linear solver; 0 is the lowest level of information
(no information is printed) and 10 the highest level.
The function initializes a data structure oem data with information about the matrix–
vector multiplication, preconditioning, tolerances, etc. and the additional memory needed
by the linear solver is allocated automatically. The linear system is then solved by the
chosen OEM solver.

SOR solvers

The SOR and SSOR methods are implemented directly for a linear system involving a
DOF MATRIX and DOF REAL [D]VECs.

int sor_s(DOF_MATRIX *, const DOF_REAL_VEC *, const DOF_SCHAR_VEC *,
DOF_REAL_VEC *, REAL, REAL, int, int);

int sor_d(DOF_MATRIX *, const DOF_REAL_D_VEC *, const DOF_SCHAR_VEC *,
DOF_REAL_D_VEC *, REAL, REAL, int, int);

int ssor_s(DOF_MATRIX *, const DOF_REAL_VEC *, const DOF_SCHAR_VEC *,
DOF_REAL_VEC *, REAL, REAL, int, int);

int ssor_d(DOF_MATRIX *, const DOF_REAL_D_VEC *, const DOF_SCHAR_VEC *,
DOF_REAL_D_VEC *, REAL, REAL, int, int);

[s]sor s[d](matrix, f, bound, u, omega, tol, max iter, info): solves a linear
system
by the [Symmetric] Successive OverRelaxation method; the return value is the number of
used iterations to reach the prescribed tolerance;
matrix: pointer to a DOF matrix storing the system matrix;
f: pointer to a DOF vector storing the right hand side of the system;
bound: optional pointer to a DOF vector giving Dirichlet boundary information;
u: pointer to a DOF vector storing the initial guess on input and the calculated solution
on output;
omega: the relaxation parameter and must be in the interval (0, 2]; if it is not in this
interval omega=1.0 is used;
tol: tolerance for the maximum norm of the correction; if this norm is less or equal tol,
sor s[d]() returns the actual iterate as the solution of the system;
max iter: maximal number of iterations to be performed by sor s[d]() although the
tolerance may not be reached;
info: level of information of sor s[d](); 0 is the lowest level of information (no informa-
tion is printed) and 6 the highest level.

170 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

2.15.3 Access of functions for matrix–vector multiplication

The general oem ...() solvers all need pointers to matrix–vector multiplication routines
which do not work with DOF REAL VECs and a DOF MATRIX but directly on REAL vectors. For
the application to a scalar or vector–valued linear system described by a DOF MATRIX (and an
optional DOF SCHAR VEC holding boundary information), the following routines are provided.

void *init_mat_vec_s(const DOF_MATRIX *, const DOF_SCHAR_VEC *);
int mat_vec_s(void *, int, const REAL *, REAL *);

void *init_mat_vec_d(const DOF_MATRIX *, const DOF_SCHAR_VEC *);
int mat_vec_d(void *, int, const REAL *, REAL *);

After a call to the initialization routine init mat vec s(), the routine mat vec s() im-
plements the (scalar) matrix–vector multiplication. Thus, mat vec s() and the pointer re-
turned by the init ...() routine can be passed as mat vec and mat vec data entries in the
OEM DATA structure to an oem ...() solver.

2.15.4 Access of functions for preconditioning

While a preconditioner can be selected in oem solve s[d]() just by an integer parameter, a
direct access to the functions is needed for a more general application, which directly calls
one of the oem ...() routines.

A preconditioner may need some initialization phase, which depends on the matrix of the
linear system, but is independent of the actual application of the preconditioner to a vector.
Thus, a preconditioner is described by three functions for initialization, application, and a
final exit routine which may free some memory which was allocated during initialization, e.g.
All three functions are collected in the structure

typedef struct precon PRECON;
struct precon
{
void *(*init_precon)(const DOF_MATRIX *, const DOF_SCHAR_VEC *, int);
void (*precon)(void *, int, REAL *);
void (*exit_precon)(void *);

};

The pointer returned by init precon() must be given as first parameter to precon() and
exit precon().

Currently, a diagonal preconditioner and a hierarchical basis preconditioner are imple-
mented. Access to the corresponding routines for scalar (... s()) and vector valued prob-
lems (... d()) are given via the following functions, which return a pointer to such a PRECON
structure:

const PRECON *get_diag_precon_s(void);
const PRECON *get_diag_precon_d(void);
const PRECON *get_HB_precon_s(void);
const PRECON *get_HB_precon_d(void);

As already indicated above, the hierarchical basis preconditioner is currently implemented
only for piecewise linear Lagrange finite elements.

2.15.5 Multigrid solvers

A abstract framework for multigrid solvers is available. Based upon information given in a
data structure MULTI_GRID_INFO, the subroutine MG() iterates until a prescribed tolerance is

2.15. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 171

met or a prescribed number of multigrid cycles is performed.

typedef struct multi_grid_info MULTI_GRID_INFO;
struct multi_grid_info
{
REAL tolerance; /* tol. for resid */
REAL exact_tolerance; /* tol. for exact_solver */

int cycle; /* 1=V-cycle, 2=W-cycle */
int n_pre_smooth, n_in_smooth; /* no of smoothing loops */
int n_post_smooth; /* no of smoothing loops */
int mg_levels; /* current no. of levels */
int exact_level; /* level for exact_solver */
int max_iter; /* max. no of MG iter’s */
int info;

int (*init_multi_grid)(MULTI_GRID_INFO *mg_info);
void (*pre_smooth)(MULTI_GRID_INFO *mg_info, int level, int n);
void (*in_smooth)(MULTI_GRID_INFO *mg_info, int level, int n);
void (*post_smooth)(MULTI_GRID_INFO *mg_info, int level, int n);
void (*restrict)(MULTI_GRID_INFO *mg_info, int level);
void (*prolongate)(MULTI_GRID_INFO *mg_info, int level);
void (*exact_solver)(MULTI_GRID_INFO *mg_info, int level);
REAL (*resid)(MULTI_GRID_INFO *mg_info, int level);
void (*exit_multi_grid)(MULTI_GRID_INFO *mg_info);

void *data; /* application dep. data */
};

The entries yield following information:

tolerance: tolerance for norm of residual;

exact tolerance: tolerance for “exact solver” on coarsest level;

cycle: selection of multigrid cycle type: 1 =V-cycle, 2 =W-cycle, ...;

n pre smooth: number of smoothing steps on each level before (first) coarse level correc-
tion;

n in smooth: number of smoothing steps on each level between coarse level corrections
(for cycle≥ 2);

n post smooth: number of smoothing steps on each level after (last) coarse level correction;

mg levels: number of levels;

exact level: selection of grid level where the “exact” solver is used (and no further coarse
grid correction), usually exact level=0;

max iter: maximal number of multigrid iterations;

info: selection of information message output;

init multi grid(mg info): initialization routine, returns true if an error occurs, may be
nil;

pre smooth(mg info, level, n): perform n smoothing iterations (before coarse grid cor-
rections) on grid level;

in smooth(mg info, level, n): perform n smoothing iterations (between coarse grid
corrections) on grid level;

post smooth(mg info, level, n): perform n smoothing iterations (after coarse grid cor-
rections) on grid level;

172 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

restrict(mg info, level): calculate and restrict residual from grid level to next
coarser grid (level-1);

prolongate(mg info, level): prolongate and add coarse grid (level-1) correction to
fine grid solution on grid level;

exact solver(mg info, level): “exact” solution of the problem on grid level (with
tolerance mg info->exact tolerance);

resid(mg info, level): returns norm of residual on grid level;

exit multi grid(mg info): cleanup routine, may be nil;

data: pointer to application dependent data, holding information on or about different
grid levels, e.g.

The abstract multigrid solution is done by the subroutine

int MG(MULTI_GRID_INFO *mg_info)

Main parts of this routine are:

{
int iter;
REAL resid;

if (mg_info->init_multi_grid)
if (mg_info->init_multi_grid(mg_info))
return(-1);

resid = mg_info->resid(mg_info, mg_info->mg_levels-1);
if (resid <= mg_info->tolerance)

return(0);

for (iter = 0; iter < mg_info->max_iter; iter++)
{

recursive_MG_iteration(mg_info, mg_info->mg_levels-1);
resid = mg_info->resid(mg_info, mg_info->mg_levels-1);
if (resid <= mg_info->tolerance)
break;

}
if (mg_info->exit_multi_grid)

mg_info->exit_multi_grid(mg_info);

return(iter+1);
}

The subroutine recursive MG iteration() performs smoothing, restriction of the residual
and prolongation of the coarse grid correction:

static void recursive_MG_iteration(MULTI_GRID_INFO *mg_info, int level)
{
int cycle;

if (level <= mg_info->exact_level) {
mg_info->exact_solver(mg_info, level);

}
else {

if (mg_info->pre_smooth)
mg_info->pre_smooth(mg_info, level, mg_info->n_pre_smooth);

for (cycle = 0; cycle < mg_info->cycle; cycle++) {

2.15. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 173

member default key
mg info->cycle 1 prefix->cycle
mg info->n pre smooth 1 prefix->n pre smooth
mg info->n in smooth 1 prefix->n in smooth
mg info->n post smooth 1 prefix->n post smooth
mg info->exact level 0 prefix->exact level
mg info->info prefix->info
mg s info->smoother 1 prefix->smoother
mg s info->smooth omega 1.0 prefix->smooth omega
mg s info->exact solver 1 prefix->exact solver
mg s info->exact omega 1.0 prefix->exact omega

Table 2.13: Parameters read by mg s() and mg s init()

if ((cycle > 0) && mg_info->in_smooth)
mg_info->in_smooth(mg_info, level, mg_info->n_in_smooth);

mg_info->restrict(mg_info, level);
recursive_MG_iteration(mg_info, level-1);
mg_info->prolongate(mg_info, level);

}

if (mg_info->post_smooth)
mg_info->post_smooth(mg_info, level, mg_info->n_post_smooth);

}
}

For multigrid solution of a scalar linear system

Au = f

given by a DOF MATRIX A and a DOF REAL VEC f, the following subroutine is available:

int mg_s(DOF_MATRIX *matrix, DOF_REAL_VEC *u, const DOF_REAL_VEC *f,
const DOF_SCHAR_VEC *bound,
REAL tol, int max_iter, int info, char *prefix);

Parameters include:

matrix: the system matrix;

u: the solution vector;

f: the right hand side vector;

bound: boundary type vector for correct handling of Dirichlet DOFs;

tol: tolerance for multigrid solver;

max iter: maximal number of multigrid iterations;

info: selection of information messages from solver;

prefix: parameter key prefix for initialization of additional data via GET PARAMETER, see
Table 2.13, may be nil.

An SOR smoother (mg s info->smoother=1) and an SSOR smoother (smoother=2) are avail-
able. An under- or over relaxation parameter can be specified by mg s info->smooth omega.
These SOR/SSOR smoothers are used for exact solver, too.

174 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

For applications, where several systems with the same matrix have to be solved, computing
time can be saved by doing all initializations like setup of grid levels and restriction of matrices
only once. For such cases, three subroutines are available:

MG_S_INFO *mg_s_init(DOF_MATRIX *matrix, const DOF_SCHAR_VEC *bound,
int info, char *prefix);

int mg_s_solve(MG_S_INFO *mg_s_info,
DOF_REAL_VEC *u, const DOF_REAL_VEC *f, REAL tol, int max_iter);

void mg_s_exit(MG_S_INFO *mg_s_info);

Parameters are the same as described above; the structure MG S INFO contains matrices and
vectors for linear problems on all different grid levels. After initialization of the multigrid
solver via mg s init(), the routine mg s solve() can be called several times (with different
right hand sides, e.g.). Finally, mg s exit() frees all memory that was previously allocated
by mg s init().

2.15.1. Remark. The multigrid solver is currently available only for Lagrange finite ele-
ments of first order (lagrange1). An implementation for higher order elements is in progress.

2.15.6 Nonlinear solvers

For the solution of a nonlinear equation

u ∈ RN : F (u) = 0 in RN (2.1)

several Newton methods are provided. For testing the convergence a (problem dependent)
norm of either the correction dk in the kth step, i.e.

‖dk‖ = ‖uk+1 − uk‖,

or the residual, i.e.

‖F (uk+1)‖,

is used.
These solvers are not part of ALBERT and need for the access of the basic data structure

and prototypes of solvers the header file

#include <nls.h>

The data structure (defined in nls.h) for passing information about assembling and solving
a linearized equation, tolerances, etc. to the solvers is

typedef struct nls_data NLS_DATA;
struct nls_data
{
void (*update)(void *, int, const REAL *, int, REAL *);
void *update_data;
int (*solve)(void *, int, const REAL *, REAL *);
void *solve_data;
REAL (*norm)(void *, int, const REAL *);
void *norm_data;

WORKSPACE *ws;

REAL tolerance;
int restart;

2.15. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 175

int max_iter;
int info;

REAL initial_residual;
REAL residual;

};

Description:
update: subroutine for computing a linearized system;
update(update data, dim, uk, update matrix, F) computes a linearization of the
system matrix, if update matrix is not zero, and the right hand side F, if F is not
nil, around the actual iterate uk; dim is the dimension of the nonlinear system, and
update data a pointer to user data;

update data: pointer to user data for the update of a linearized equation, first argument
to update();

solve: function for solving a linearized system for the new correction; the return value
is the number of iterations used by an iterative solver or zero; this number is printed, if
information about the solution process should be produced;
solve(solve data, dim, F, d) solves the linearized equation of dimension dim with
right hand side F for a correction d of the actual iterate; d is initialized with zeros and
update data is a pointer to user data;

solve data: pointer to user data for solution of the linearized equation, first argument to
solve();
the nonlinear solver does not know how the sytem matrix is stored; such information can
be passed from update() to solve() by using pointers to the same DOF matrix in both
update data and solve data, e.g.

norm: function for computing a problem dependent norm ‖.‖; if norm is nil, the Euclidian
norm is used;
norm(norm data, dim, x) returns the norm of the vector x; dim is the dimension of the
nonlinear system, and norm data pointer to user data;

norm data: pointer to user data for the calculation of the problem dependent norm, first
argument to norm();

ws: a pointer to a WORKSPACE structure for storing additional vectors used by a solver; if
the space is not sufficient, the used solver will enlarge this workspace; if ws is nil, then
the used solver allocates memory, which is freed before exit;

tolerance: tolerance for the nonlinear solver; if the norm of the correction/residual is less
or equal tolerance, the solver returns the actual iterate as the solution of the nonlinear
system;

restart: restart for the nonlinear solver;
max iter: is a maximal number of iterations to be performed, even if the tolerance may

not be reached;
info: the level of information produced by the solver; 0 is the lowest level of information

(no information is printed) and 4 the highest level;
initial residual: stores the norm of the initial correction/residual on exit;
residual: stores the norm of the last correction/residual on exit.

The following Newton methods for solving (2.1) are currently implemented:

int nls_newton(NLS_DATA *, int, REAL *);
int nls_newton_ds(NLS_DATA *, int, REAL *);
int nls_newton_fs(NLS_DATA *, int, REAL *);

176 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

Description:

nls newton(nls data, dim, u0): solves a nonlinear system by the classical Newton
method; the return value is the number of iterations;

nls data stores information about functions for the assemblage and solution of DF (uk),
F (uk), calculation of a norm, tolerances, etc. dim is the dimension of the nonlinear system,
and u0 the initial guess on input and the solution on output; nls newton() stops if the
norm of the correction is less or equal nls data->tolerance; it needs a workspace for
storing 2*dim additional REALs;

nls newton ds(nls data, dim, u0): solves a nonlinear system by a Newton method with
step size control; the return value is the number of iterations;

nls data stores information about functions for the assembling and solving of DF (uk),
F (uk), calculation of a norm, tolerances, etc. dim is the dimension of the nonlinear system,
and u0 the initial guess on input and the solution on output; nls newton() stops if the
norm of the correction is less or equal nls data->tolerance; in each iteration at most
nls data->restart steps for controlling the step size τ are performed; the aim is to choose
τ such that

‖DF (uk)−1F (uk + τdk)‖ ≤ (1− 1
2τ)‖dk‖

holds, where ‖.‖ is the problem dependent norm, if nls data->norm is not nil, otherwise
the Euclidian norm; each step needs the update of F , the solution of one linearized problem
(the system matrix for the linearized system does not change during step size control) and
the calculation of a norm;

nls newton() needs a workspace for storing 4*dim additional REALs;

nls newton fs(nls data, dim, u0): solves a nonlinear system by a Newton method with
step size control; the return value is the number of iterations;

nls data stores information about functions for the assembling and solving of DF (uk),
F (uk), calculation of a norm, tolerances, etc. dim is the dimension of the nonlinear system,
and u0 the initial guess on input and the solution on output; nls newton() stops if the
norm of the residual is less or equal nls data->tolerance; in each iteration at most
nls data->restart steps for controlling the step size τ are performed; the aim is to
choose τ such that

‖F (uk + τdk)‖ ≤ (1− 1
2τ)‖F (uk)‖

holds, where ‖.‖ is the problem dependent norm, if nls data->norm is not nil, otherwise
the Euclidian norm; the step size control is not expensive, since in each step only an update
of F and the calculation of ‖F‖ are involved;

nls newton() needs a workspace for storing 3*dim additional REALs; the return value is
the number of iterations;

2.16 Graphics output

ALBERT provides two dimensional graphic subroutines built on the X-Windows and
GL/OpenGL interfaces, and two and three dimensional graphics via the gltools [21] and
GRAPE [34].

2.16. GRAPHICS OUTPUT 177

2.16.1 Two dimensional graphics subroutines

A set of subroutines for opening (and closing) of graphic output windows, drawing of the
triangulation, drawing isolines of scalar functions, and arrow based display of vector valued
functions are provided.

The routines use the following type definitions for window identification and color speci-
fication in [red, green, blue] coordinates, with 0 ≤red, green, blue≤ 1.

typedef void * GRAPH_WINDOW;
typedef float GRAPH_RGBCOLOR[3];

The following “standard” colors are provided by ALBERT:

extern const GRAPH_RGBCOLOR rgb_black;
extern const GRAPH_RGBCOLOR rgb_white;
extern const GRAPH_RGBCOLOR rgb_red;
extern const GRAPH_RGBCOLOR rgb_green;
extern const GRAPH_RGBCOLOR rgb_blue;
extern const GRAPH_RGBCOLOR rgb_yellow;
extern const GRAPH_RGBCOLOR rgb_magenta;
extern const GRAPH_RGBCOLOR rgb_cyan;
extern const GRAPH_RGBCOLOR rgb_grey50;

Opening graphic output windows

Graphic output windows are created and destroyed with

GRAPH_WINDOW graph_open_window(char *title, char *geometry,
REAL *world, MESH *mesh);

void graph_close_window(GRAPH_WINDOW win);

Parameters are:

title: optional window title, if nil, a default title is used;

geometry: optional window geometry in X11 format “WxH” or “WxH+X+Y”, if nil, a
default geometry is used;

world: optional array of world coordinates (xmin, xmax, ymin, ymax) to specify which
part of a triangulation will be displayed in this window, if world is nil, either mesh is
used or the square [0, 1]× [0, 1] will be displayed;

mesh: optional triangulation, is used (if world is nil) to select a range of world coordinates
which will be displayed in the window; if both world and mesh are nil, the unit square
[0, 1]× [0, 1] will be displayed.

graph open window() returns a GRAPH WINDOW, and graph close window() needs a previ-
ously opened GRAPH WINDOW as parameter. The valid range of GRAPH WINDOW values depends
on the underlying graphics library which is used to implement the routines. Because of that,
the value nil is not necessarily an invalid GRAPH WINDOW value which could be used to check
if a window was already opened. A symbolic constant

const GRAPH_WINDOW NO_WINDOW;

is defined as an invalid GRAPH WINDOW value.
Clearing of a graphics output window win is done by

void graph_clear_window(GRAPH_WINDOW win, GRAPH_RGBCOLOR c);

The optional parameter c selects a color which is used to fill the window. If c==nil then a
default color (black) is used.

178 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

Drawing triangulations

Triangulations are displayed in a graphics output window by the routine

void graph_mesh(GRAPH_WINDOW win, MESH *mesh, GRAPH_RGBCOLOR c, FLAGS flag);

Parameters are:
win: graphics window;
mesh: triangulation;
c: optional color used for drawing lines, if nil, a default color (white) will be used;
flag: selection of a special or additional display, may be 0 or the bitwise OR of some of

the following flags.
Flags used by graph mesh():

GRAPH MESH BOUNDARY: if set, only boundary edges are drawn, otherwise all edges of the
triangulation will be drawn. If not otherwise specified by c, the color of Dirichlet boundary
edges is blue, while Neumann edges are drawn in red;

GRAPH MESH ELEMENT MARK: if set, then triangles which are marked for refinement are filled
red, and triangles which are marked for coarsening are filled blue, unmarked triangles are
filled white;

GRAPH MESH VERTEX DOF: if set, the first DOF at each vertex will be written near the vertex;
GRAPH MESH ELEMENT INDEX: if set, element indices will be written (only available if
EL INDEX==1).

Printing of indices is only possible at the moment if the library was compiled with the flag
USE OPENGL=0.

Isoline display of functions

Isolines of a function which is given by a DOF REAL VEC are drawn by the routines

void graph_levels(GRAPH_WINDOW win, DOF_REAL_VEC *v,
int n, REAL *levels, GRAPH_RGBCOLOR *c, int refine);

void graph_level(GRAPH_WINDOW win, DOF_REAL_VEC *v, REAL level,
GRAPH_RGBCOLOR c, int refine);

The routine graph levels() can be used to draw multiple isolines. Parameters are
win: graphics window;
v: DOF REAL VEC structure containing data of the function;
n: number of isolines to be drawn;
levels: optional REAL vector of size n which contains the different values where isolines

will be drawn, if nil, then n equally spaced isolines are drawn between the minimal and
maximal value of the function;

c: optional vector of color values for the n isolines, if nil, then default color values will be
used,

refine: optional refinement level selector. Isolines are always computed from the piecewise
linear interpolation on a triangle. If refine≥ 0, each triangle will be recursively refined
into 4refine smaller triangles, and the function will be evaluated at all vertices of these
small triangles. If refine< 0, then the default value v->admin->bas fcts->degree-1
will be used.

The routine graph level() draws a single selected isoline at value level with color c and
refinement refine; again, if c=nil, then a default color (white) will be used, and if refine< 0
then the default refinement will be done.

2.16. GRAPHICS OUTPUT 179

Color display of functions

Function values may be visualized using colored triangles by the routine

void graph_values(GRAPH_WINDOW win, DOF_REAL_VEC *v, int refine);

The color values are selected by default; color is distributed between minimum and maximum
of the v. If such display is not available, this routine will call the graph levels() routine.

Vector valued functions

Similar to the display routines for scalar functions given above, equivalent routines are avail-
able for vector valued functions, which use the modulus |v(x)| of the function as scalar value.
Available routines are:

void graph_levels_d(GRAPH_WINDOW win, DOF_REAL_D_VEC *v,
int n, REAL *levels, GRAPH_RGBCOLOR *c, int refine);

void graph_level_d(GRAPH_WINDOW win, DOF_REAL_D_VEC *v,
REAL level, GRAPH_RGBCOLOR c, int refine);

void graph_values_d(GRAPH_WINDOW win, DOF_REAL_D_VEC *v, int refine);

(Not yet implemented.)

Additionally, vector valued functions may be visualized by using arrows. Such display will
be generated by the routine

void graph_vec(GRAPH_WINDOW win, DOF_REAL_D_VEC *v, REAL scale,
GRAPH_RGBCOLOR c, int refine);

(Not yet implemented; parameters may change.)

Displaying piecewise constant values

Piecewise constant values, like local error estimates calculated by an error estimator, can be
visualized by the routine

void graph_el_est(GRAPH_WINDOW win, MESH *mesh, REAL (*get_el_est)(EL *el));

Parameters are

win: graphics window;

mesh: triangulation;

get el est: pointer to a function which returns the value on a single element; this function
defines the piecewise constant function which should be displayed.

2.16.2 gltools interface

The following interface for using the interactive gltools graphics is implemented. For obtaining
the gltools package please see

http://www.wias-berlin.de/~gltools

This interface can be used for 2d and 3d triangulations, but only when DIM equals
DIM OF WORLD. For window identification we use the data type

typedef void* GLTOOLS_WINDOW;

The interface provides the following functions:

http://www.wias-berlin.de/~gltools

180 CHAPTER 2. DATA STRUCTURES AND IMPLEMENTATION

GLTOOLS_WINDOW open_gltools_window(const char *, const char *, const REAL *,
MESH *, int);

void close_gltools_window(GLTOOLS_WINDOW);
void gltools_mesh(GLTOOLS_WINDOW, MESH *, int);
void gltools_drv(GLTOOLS_WINDOW, const DOF_REAL_VEC *, REAL, REAL);
void gltools_drv_d(GLTOOLS_WINDOW, const DOF_REAL_D_VEC *, REAL, REAL);
void gltools_est(GLTOOLS_WINDOW, MESH *, REAL (*)(EL *), REAL, REAL);

Description:

open gltools window(title, geometry, world, mesh, dialog): the function returns
a GLTOOLS WINDOW which is opened for display; if the window could not be opened, the
return value is nil; title is an optional string holding a title for the window; if title
is nil, a default is used; geometry is an optional string holding the window geometry in
X11 format (“WxH” or “WxH+X+Y”), if nil, a default geometry is used; the optional
argument world is a pointer to an array of world coordinates (xmin, xmax, ymin, ymax)
for 2d and (xmin, xmax, ymin, ymax, zmin, zmax) for 3d can be used to specify which
part of the mesh will be displayed in the window; if world is nil, either mesh or the
default domain [0, 1]DIM is used; mesh is an optional pointer to a mesh to select a range of
world coordinates which will be displayed in the window; if both world and mesh are nil,
the default domain [0, 1]DIM is used; display is not done or is done in an interactive mode
depending on whether dialog equals 0 or not; in interactive mode type ’h’ to get a list
of all key bindings;

close gltools window(win): closes the window win which has been previously opened
by open gltools window();

gltools mesh(win, mesh, mark): displays the elements of mesh in the graphic window
win; if mark is not zero the piecewise constant function sign(el->mark) is shown;

gltools drv(win, u, min, max): displays the DOF REAL VEC u in the graphic window
win; only available for Lagrange elements up to order four; if the Lagrange elements are
of higher order, it is possible to display the vector on a refined grid; the key ’P’ toggles
between refined and not refined mode (not for cubics in 3d at the moment); min and max
define the range of the discrete function for display; if min ≥ max this range is adjusted
automatically;

gltools drv d(win, ud, min, max): displays the modulus of the DOF REAL D VEC ud in
the graphic window win; only available for Lagrange elements up to order four; the modulus
of ud is stored in a DOF REAL VEC which is displayed by gltools drv();

gltools est(win, mesh, get el est, min, max): displays the estimated error on mesh
as a piecewise constant function in the graphic window win; the local indicators are ac-
cessed by get el est() on each element; min and max define the range for display; if min
≥ max this range is adjusted automatically;
gltools est() can also be used to display any piecewise constant function on the mesh,
where local values are accessed by get el est().

2.16.3 GRAPE interface

Visualization using the GRAPE library is usually done during postprocessing. Data of the
actual geometry and finite element functions is written to file by write mesh[xdr]() and
write dof real[d] vec[xdr]() and then read by some programs, using GRAPE mesh
interface for the visualization. The use of the GRAPE H–mesh is work in progress and the
description of these programs will be done in the near future.

For obtaining the GRAPE library please see

2.16. GRAPHICS OUTPUT 181

http://www.iam.uni-bonn.de/sfb256/grape/

http://www.iam.uni-bonn.de/sfb256/grape/

Chapter 3

Implementation of model problems

In this chapter we describe the implementation of two stationary model problems (the linear
Poisson equation and a nonlinear Poisson equation) and of one instationary model problem
(the heat equation). Removing all LATEX descriptions of functions and variables results in the
source code for the adaptive solvers.

3.1 Poisson equation

In this section we describe a model implementation for the Poisson equation

−∆u = f in Ω ⊂ Rd,
u = g on ∂Ω.

The implementation is split into nine major steps which are now described in detail.

3.1.1 Graphical output of the discrete solution and error estimate

All three programs use the following graphic routine

graphics(MESH *mesh, DOF_REAL_VEC *u_h, REAL (*get_est)(EL *el))

for displaying the discrete solution, the error estimate (, and mesh). The function is imple-
mented in a separate file. By redefining the symbolic constant

#define USE_GLTOOLS true

to false one can easily switch from the gltools graphics (compare Section 2.16.2) to the two
dimensional graphics routines (compare Section 2.16.1). The 2d graphics routines are not
available in 3d!

The routine uses the parameter graphic windows, which should be initialized by the
parameter tools, for deciding, which windows should be opened for display. The value of this
parameter are two integers (gltools) or three integers (2d graphics) holding the window sizes
for displaying the discrete solution, error estimate, and the underlying mesh (only for 2d
graphics, the mesh can be displayed using gltools graphics, by toggling to wire frame mode
(key ‘w’) in one of the other graphic windows). If the window size is 0 for one of these
windows, this window will not be opened for display. All windows are opened on the first call
of graphics() and values are displayed on each call.

The DOF vector uh (the second argument) is displayed in the first window, if this window
was opened and uh is not nil. The error indicators are displayed in the second window, if
this window was opened and if the third argument get est() is not nil. The function
get est(el) will return for each element el of the grid the local error indicator.

182

3.1. POISSON EQUATION 183

If the 2d graphics routines are used, then the grid is displayed in the third window, if this
window was opened and mesh is not nil.

#include <albert.h>

/**/
/* graphical output of mesh, discrete solution, and estimate */
/**/
#define USE_GLTOOLS true

#if USE_GLTOOLS
void graphics(MESH *mesh, DOF_REAL_VEC *u_h, REAL (*get_est)(EL *el))
{
FUNCNAME("graphics");
static int first = true;
static GLTOOLS_WINDOW win_est = nil, win_val = nil;

if (first)
{
int size[2] = {0, 0};
char geom[128] = "500x500+0+0";
GET_PARAMETER(1, "graphic windows", "%d %d", size, size+1);

if (size[0] > 0)
{
sprintf(geom, "%dx%d+%d+%d", size[0], size[0], 0, 0);
win_val = open_gltools_window("ALBERT values", geom, nil, mesh, true);

}

if (size[1] > 0)
{
sprintf(geom, "%dx%d+%d+%d", size[1], size[1], size[0], 0);
win_est = open_gltools_window("ALBERT estimate", geom, nil, mesh, true);

}
first = false;

}

if (u_h && win_val)
gltools_drv(win_val, u_h, 0.0, 0.0);

if (get_est && win_est)
gltools_est(win_est, mesh, get_est, 0.0, -1.0);

if (mesh && win_val && !u_h && !get_est)
gltools_mesh(win_val, mesh, 1); /* graph mesh with element marker */

if (!win_val && !win_est) WAIT;

return;
}
#else
void graphics(MESH *mesh, DOF_REAL_VEC *u_h, REAL (*get_est)(EL *el))
{
FUNCNAME("graphics");

#if DIM == 2
static int first = true;
static GRAPH_WINDOW win_est = nil, win_val = nil, win_mesh = nil;

184 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

if (first)
{
int size[3] = {0, 0, 0};
char geom[128] = "500x500+0+0";
GET_PARAMETER(1, "graphic windows", "%d %d %d", size, size+1, size+2);

if (size[0] > 0)
{

sprintf(geom, "%dx%d+%d+%d", size[0], size[0], 0, 0);
win_val = graph_open_window("ALBERT values", "300x300+305+0",nil,mesh);

}
if (size[1] > 0)
{

sprintf(geom, "%dx%d+%d+%d", size[0], size[0], size[0], 0);
win_est = graph_open_window("ALBERT estimate", "300x300+610+0",nil,mesh);

}
if (size[2] > 0)
{

sprintf(geom, "%dx%d+%d+%d", size[2], size[2], size[1], 0);
win_mesh = graph_open_window("ALBERT mesh", "300x300+0+0",nil,mesh);

}
first = false;

}

if (mesh && win_mesh)
{
graph_clear_window(win_mesh, rgb_black);
graph_mesh(win_mesh, mesh, rgb_white, 0);

}
if (u_h && win_val)
{
graph_clear_window(win_val, rgb_black);
graph_values(win_val, u_h, 0);

}
if (get_est && win_est)
{
graph_clear_window(win_est, rgb_black);
graph_el_est(win_est, mesh, get_est);

}
#else
MSG("only in 2d available, please use gltools graphics\n");

#endif
WAIT;

return;
}
#endif

3.1.2 Include file and global variables

All ALBERT source files must include the header file albert.h with all ALBERT type defini-
tions, function prototypes and macro definitions:

#include <albert.h>

For a linear elliptic problem we need 4 global variables:

3.1. POISSON EQUATION 185

fe space: a pointer to the actually used finite element space; it is initialized by the function
init dof admin() which is called by GET MESH(), see Section 3.1.3;

u h: a pointer to a DOF vector storing the coefficients of the discrete solution; it is ini-
tialized on the first call of build() which is called by adapt method stat(), see Section
3.1.6;

f h: a pointer to a DOF vector storing the load vector; it is initialized on the first call of
build();

matrix: a pointer to a DOF matrix storing the system matrix; it is initialized on the first
call of build();

static const FE_SPACE *fe_space; /* initialized by init_dof_admin() */
static DOF_REAL_VEC *u_h = nil; /* initialized by build() */
static DOF_REAL_VEC *f_h = nil; /* initialized by build() */
static DOF_MATRIX *matrix = nil; /* initialized by build() */

3.1.3 Initialization of the finite element space

During the initialization of the mesh by GET MESH() in the main program, we have to specify
all DOFs which we want to use during the simulation on the mesh. The initialization of the
DOFs is implemented in the function init dof admin() which is called by GET MESH().

For an elliptic problem we need one finite element space for the discretization. In this
example, we use Lagrange elements and we initialize the degree of the elements via a param-
eter. The corresponding fe space is accessed by get fe space() which automatically gives
the mesh information about the DOFs used by this finite element space.

It is possible to access several finite element spaces inside this function, compare Section
2.6.2.

void init_dof_admin(MESH *mesh)
{
FUNCNAME("init_dof_admin");
int degree = 1;
const BAS_FCTS *lagrange;

GET_PARAMETER(1, "polynomial degree", "%d", °ree);
lagrange = get_lagrange(degree);
TEST_EXIT(lagrange)("no lagrange BAS_FCTS\n");
fe_space = get_fe_space(mesh, lagrange->name, nil, lagrange);
return;

}

3.1.4 Functions for leaf data

As mentioned in Section 2.2.12 we can “hide” information which is only needed on leaf element
at the pointer to the second child. Such information is the local error indicator on an element.
For this elliptic problem we need one REAL for storing this element indicator.

During mesh initialization by GET MESH() in the main program, we have to give informa-
tion about the size of leaf data to be stored and how to transform leaf data from parent to
children during refinement and vice versa during coarsening. The function init leaf data()
initializes the leaf data used for this problem and is called by GET MESH(). Here, leaf data is

186 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

one structure struct ellipt leaf data and no transformation during mesh modifications
takes places.

The error estimation is done by the library function ellipt est(), see Section 2.14.1.
For ellipt est(), we need a function which gives read and write access to the local element
error and for the marking function of the adaptive procedure we need a function which
returns the local error indicator, see Section 2.13.1. The indicator is stored as the REAL
member estimate of struct ellipt leaf data and the function rw el est() returns for
each element a pointer to this member. The function get el est() returns the value stored
at that member for each element.

struct ellipt_leaf_data
{
REAL estimate; /* one real for the element indicator */

};

void init_leaf_data(LEAF_DATA_INFO *leaf_data_info)
{
FUNCNAME("init_leaf_data");
leaf_data_info->leaf_data_size = sizeof(struct ellipt_leaf_data);
leaf_data_info->coarsen_leaf_data = nil;
leaf_data_info->refine_leaf_data = nil;
return;

}

static REAL *rw_el_est(EL *el)
{
FUNCNAME("rw_el_est");

if (IS_LEAF_EL(el))
return(&((struct ellipt_leaf_data *)LEAF_DATA(el))->estimate);

else
return(nil);

}

static REAL get_el_est(EL *el)
{
FUNCNAME("get_el_est");

if (IS_LEAF_EL(el))
return(((struct ellipt_leaf_data *)LEAF_DATA(el))->estimate);

else
return(0.0);

}

3.1.5 Data of the differential equation

Data for the Poisson equation are the right hand side f and boundary values g. For test
purposes it is convenient to have access to an exact solution of the problem. In this example
we use the function

u(x) = e−10 |x|2

as exact solution, resulting in

∇u(x) = −20x e−10 |x|2

3.1. POISSON EQUATION 187

and

f(x) = −∆u(x) = −(400 |x|2 − 20 d) e−10 |x|2 .

The functions u and grd u are the implementation of u and ∇u and are optional. The func-
tions g and f are implementations of the boundary values and the right hand side and are
not optional.

static REAL u(const REAL_D x)
{
FUNCNAME("u");
return(exp(-10.0*SCP_DOW(x,x)));

}

static const REAL *grd_u(const REAL_D x)
{
FUNCNAME("grd_u");
static REAL_D grd;
REAL ux = exp(-10.0*SCP_DOW(x,x));

grd[0] = -20.0*x[0]*ux;
grd[1] = -20.0*x[1]*ux;

#if DIM_OF_WORLD == 3
grd[2] = -20.0*x[2]*ux;

#endif
return(grd);

}

static REAL g(const REAL_D x) /* boundary values, not optional */
{
FUNCNAME("g");
return(u(x));

}

static REAL f(const REAL_D x) /* -Delta u, not optional */
{
FUNCNAME("f");
REAL r2 = SCP_DOW(x,x), ux = exp(-10.0*r2);
return(-(400.0*r2 - 20.0*DIM)*ux);

}

3.1.6 The assemblage of the discrete system

For the assemblage of the discrete system we use the tools described in Sections 2.12.2, 2.12.4,
and 2.12.5. For the matrix assemblage we have to provide the functions init element() and
LALt() for the evaluation of det |DFS |ΛΛt on single elements, where Λ is the Jacobian of the
barycentric coordinates (for −∆ we have A = id).

For passing information about the Jacobian Λ of the barycentric coordinates and det |DFS |
from the function init element() to the function LALt we use the data structure struct
op info which stores the Jacobian and the determinant. The function init element() cal-
culates the Jacobian and the determinant by the library function el grd lambda() and the
function LALt() uses these values in order to compute det |DFS |ΛΛt.

Pointers to these functions and to one structure struct op info are members of a struc-
ture OPERATOR INFO which is used for the initialization of a function for the automatic as-
semblage of the system matrix (see also Example 2.12.1 in Section 2.12.2 for the access of a

188 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

structure matrix info). For more general equations, additional functions Lb0, Lb1, and/or
c have to be defined at that point. The functions init element() and LALt() only work
properly in this version for DIM OF WORLD == DIM.

This initialization is done on the first call of the function build() which is called by
adapt method stat() (compare Section 2.13.1). On the first call, build() also accesses the
DOF vectors u h and f h, and the DOF matrix matrix. The vector u h additionally is initial-
ized with zeros and the function pointers for an automatic interpolation during refinement
and coarsening are adjusted to the predefined functions in fe space->bas fcts. The load
vector f h and the system matrix matrix are newly assembled on each call of build(). Thus,
they may not be interpolated during mesh modifications and may not be initialized.

On each call of build() the matrix is assembled by first clearing the matrix using the
function clear dof matrix() and then adding element contributions by update matrix().
This function will call init element() and LALt() on each element.

The load vector f h is then initialized with zeros and the right hand side is added by
L2scp fct bas(). Finally, Dirichlet boundary values are set for all Dirichlet DOFs in the
load vector and the discrete solution u h by dirichlet bound() (compare Section 2.12.4
and 2.12.5).

struct op_info
{
REAL_D Lambda[DIM+1]; /* the gradient of the barycentric coordinates */
REAL det; /* det |D F_S| */

};

static void init_element(const EL_INFO *el_info, const QUAD *quad[3], void *ud)
{
FUNCNAME("init_element");
struct op_info *info = ud;

info->det = el_grd_lambda(el_info, info->Lambda);
return;

}

const REAL (*LALt(const EL_INFO *el_info, const QUAD *quad,
int iq, void *ud))[DIM+1]

{
FUNCNAME("LALt");
struct op_info *info = ud;
int i, j, k;
static REAL LALt[DIM+1][DIM+1];

for (i = 0; i <= DIM; i++)
for (j = i; j <= DIM; j++)
{

for (LALt[i][j] = k = 0; k < DIM_OF_WORLD; k++)
LALt[i][j] += info->Lambda[i][k]*info->Lambda[j][k];

LALt[i][j] *= info->det;
LALt[j][i] = LALt[i][j];

}

return((const REAL (*)[DIM+1]) LALt);
}

static void build(MESH *mesh, U_CHAR flag)

3.1. POISSON EQUATION 189

{
FUNCNAME("build");
static const EL_MATRIX_INFO *matrix_info = nil;
const QUAD *quad;

dof_compress(mesh);
MSG("%d DOFs for %s\n", fe_space->admin->size_used, fe_space->name);

if (!u_h) /* access matrix and vector for linear system */
{
matrix = get_dof_matrix("A", fe_space);
f_h = get_dof_real_vec("f_h", fe_space);
u_h = get_dof_real_vec("u_h", fe_space);
u_h->refine_interpol = fe_space->bas_fcts->real_refine_inter;
u_h->coarse_restrict = fe_space->bas_fcts->real_coarse_inter;
dof_set(0.0, u_h); /* initialize u_h ! */

}

if (!matrix_info) /* information for matrix assembling */
{
OPERATOR_INFO o_info = {nil};

o_info.row_fe_space = o_info.col_fe_space = fe_space;
o_info.init_element = init_element;
o_info.LALt = LALt;
o_info.LALt_pw_const = true; /* pw const. assemblage is faster */
o_info.LALt_symmetric = true; /* symmetric assemblage is faster */
o_info.use_get_bound = true; /* Dirichlet boundary conditions! */
o_info.user_data = MEM_ALLOC(1, struct op_info); /* user data! */
o_info.fill_flag = CALL_LEAF_EL|FILL_COORDS;

matrix_info = fill_matrix_info(&o_info, nil);
}

clear_dof_matrix(matrix); /* assembling of matrix */
update_matrix(matrix, matrix_info);

dof_set(0.0, f_h); /* assembling of load vector */
quad = get_quadrature(DIM, 2*fe_space->bas_fcts->degree - 2);
L2scp_fct_bas(f, quad, f_h);

dirichlet_bound(g, f_h, u_h, nil); /* boundary values */
return;

}

3.1.7 The solution of the discrete system

The solution of the resulting linear system is rather easy and we can use a preconditioned
Krylov-space solver (oem solve s()), compare Section 2.15.2. On the first call of solve(),
the parameters for the linear solver are initialized and stored in static variables. For the
OEM solver we have to initialize the solver, the tolerance tol for the residual, a maximal
number of iterations miter, the use of a preconditioner by the parameter icon, which may
be 0 (no preconditioning) or 1 (diagonal preconditioning), the dimension of the Krylov-space
for the minimizing procedure, if GMRes is used, and the level of information of the linear
solver.

190 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

After solving the discrete system, the discrete solution (and mesh) is displayed.
The function solve() is called by adapt method stat() (compare Section 2.13.1).

static void solve(MESH *mesh)
{
FUNCNAME("solve");
static REAL tol = 1.e-8;
static int miter = 1000, info = 2, icon = 1, restart = 0;
static OEM_SOLVER solver = NoSolver;

if (solver == NoSolver)
{
tol = 1.e-8;
GET_PARAMETER(1, "solver", "%d", &solver);
GET_PARAMETER(1, "solver tolerance", "%f", &tol);
GET_PARAMETER(1, "solver precon", "%d", &icon);
GET_PARAMETER(1, "solver max iteration", "%d", &miter);
GET_PARAMETER(1, "solver info", "%d", &info);
if (solver == GMRes)
GET_PARAMETER(1, "solver restart", "%d", &restart);

}
oem_solve_s(matrix, f_h, nil, u_h, solver, tol, icon, restart, miter, info);

graphics(mesh, u_h, nil);
return;

}

3.1.8 Error estimation

The estimation of the error for an elliptic problem with constant coefficients in the second
order term is done by the library function ellipt est() (compare Section 2.14.1). This
function needs a pointer to a function for writing the local error indicators (the function
rw el est() described above in Section 3.1.4) and a function for the evaluation of the lower
order terms of the element residuals at quadrature nodes. For the Poisson equation, this
function has to return the negative value of the right hand side f at that node (which is
implemented in r()). Since we only have to evaluate the right hand side f , the init flag
r flag is zero. For an equation with lower order term this flag has to be INIT UH and/or
INIT GRD UH, if needed by r() (compare Example 2.14.1).

The function estimate() which is called by adapt method stat() first initializes param-
eters for the error estimator, like the estimated norm and constants in front of the residu-
als. On each call the error estimate is computed by ellipt est(). Additionally, the true
error is calculated by the function H1 err() or L2 err(), the ratio of the true and esti-
mated error is printed (which should be approximately constant). The experimental order
of convergence is calculated, which should be fe space->bas fcts->degree for the H1 and
fe space->bas fcts->degree+1 for the L2 norm when using global refinement with DIM
bisection refinements. Finally, the error indicators are displayed.

static REAL r(const EL_INFO *el_info, const QUAD *quad, int iq, REAL uh_iq,
const REAL_D grd_uh_iq)

{
FUNCNAME("r");
REAL_D x;
coord_to_world(el_info, quad->lambda[iq], x);
return(-f(x));

}

3.1. POISSON EQUATION 191

#define EOC(e,eo) log(eo/MAX(e,1.0e-15))/M_LN2

static REAL estimate(MESH *mesh, ADAPT_STAT *adapt)
{
FUNCNAME("estimate");
static int degree, norm = -1;
static REAL C[3] = {1.0, 1.0, 0.0};
static REAL est, est_old = -1.0, err, err_old = -1.0, max_e;
static const REAL_DD A = {{1.0,0.0}, {0.0,1.0}};
static FLAGS r_flag = 0; /* = (INIT_UH | INIT_GRD_UH), if needed by r() */

if (norm < 0)
{
norm = H1_NORM;
GET_PARAMETER(1, "error norm", "%d", &norm);
GET_PARAMETER(1, "estimator C0", "%f", &C[0]);
GET_PARAMETER(1, "estimator C1", "%f", &C[1]);
GET_PARAMETER(1, "estimator C2", "%f", &C[2]);

}
degree = 2*u_h->fe_space->bas_fcts->degree;
est = ellipt_est(u_h, adapt, rw_el_est, nil, degree, norm, C, A, r, r_flag);

MSG("estimate = %.8le", est);
if (est_old >= 0)
print_msg(", EOC: %.2lf\n", EOC(est,est_old));

else
print_msg("\n");

est_old = est;

if (norm == L2_NORM)
err = L2_err(u, u_h, nil, 0, nil, &max_e);

else
err = H1_err(grd_u, u_h, nil, 0, nil, &max_e);

MSG("||u-uh||%s = %.8le", norm == L2_NORM ? "L2" : "H1", err);
if (err_old >= 0)
print_msg(", EOC: %.2lf\n", EOC(err,err_old));

else
print_msg("\n");

err_old = err;
MSG("||u-uh||%s/estimate = %.2lf\n", norm == L2_NORM ? "L2" : "H1",

err/MAX(est,1.e-15));

graphics(mesh, nil, get_el_est);
return(adapt->err_sum);

}

3.1.9 The main program for the Poisson equation

The main program now becomes very simple: We first read a parameter file, initialize the
mesh, and read the macro triangulation (including an initial global refinement, if necessary).

For the adaptive procedure a pre–initialized data structure ADAPT STAT is accessed
by the function get adapt stat(); the members adapt->strategy, adapt->tolerance,
adapt->max iteration, and adapt->info are automatically initialized with values from the

192 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

parameter file described below in Section 3.1.10; other members can be also initialized by
adding similar lines for these members to the parameter file (compare Section 2.13.4).

After the access of the structure and the initialization of parameters, function pointers
for the problem dependent routines have to be set (adapt->estimate, adapt->get el est,
adapt->build after coarsen, adapt->solve). Since the assemblage is done in one step,
only the function pointer adapt->build after coarsen is adjusted, no assemblage is done
before refinement and before coarsening. The adaptive procedure is finally started by a call
of adapt method stat().

int main(int argc, char **argv)
{
FUNCNAME("main");
MESH *mesh;
int n_refine = 0;
static ADAPT_STAT *adapt;
char filename[100];

/**/
/* first of all, init parameters of the init file */
/**/

init_parameters(0, "INIT/ellipt.dat");

/**/
/* get a mesh, and read the macro triangulation from file */
/**/

mesh = GET_MESH("ALBERT mesh", init_dof_admin, init_leaf_data);
mesh->preserve_coarse_dofs = 0;
GET_PARAMETER(1, "macro file name", "%s", filename);
read_macro(mesh, filename, nil);
GET_PARAMETER(1, "global refinements", "%d", &n_refine);
global_refine(mesh, n_refine*DIM);
graphics(mesh, nil, nil);

/**/
/* init adapt structure and start adaptive method */
/**/

adapt = get_adapt_stat("ellipt", "adapt", 1, nil);
adapt->estimate = estimate;
adapt->get_el_est = get_el_est;
adapt->build_after_coarsen = build;
adapt->solve = solve;

adapt_method_stat(mesh, adapt);
WAIT_REALLY;
return(0);

}

3.1.10 The parameter file for the Poisson equation

The following parameter file INIT/ellipt.dat is used for the above described program:

macro file name: Macro/macro.stand
global refinements: 0

3.2. NONLINEAR POISSON EQUATION 193

polynomial degree: 3

graphic windows: 400 400 0

solver: 2 % 1: BICGSTAB 2: CG 3: GMRES 4: ODIR 5: ORES
solver max iteration: 1000
solver restart: 10 % only used for GMRES
solver tolerance: 1.e-8
solver info: 2
solver precon: 1 % 0: no precon 1: diag precon

error norm: 1 % 1: H1_NORM, 2: L2_NORM
estimator C0: 0.1 % constant of element residual
estimator C1: 0.1 % constant of jump residual
estimator C2: 0.0 % constant of coarsening estimate

adapt->strategy: 2 % 0: no adaption 1: GR 2: MS 3: ES 4:GERS
adapt->tolerance: 1.e-4
adapt->MS_gamma: 0.5
adapt->max_iteration: 10
adapt->info: 8

WAIT: 1

The file Macro/macro.stand storing data about the macro triangulation for Ω = (0, 1)d

can be found in Section 2.2.16 for 2d and 3d.
The solution and corresponding mesh for the above parameters are shown in Figure 3.1.

Figure 3.1: Solution of the linear Poisson problem and corresponding mesh. The pictures were
produced by GRAPE.

3.2 Nonlinear Poisson equation

In this section we discuss the implementation of the following nonlinear reaction–diffusion
equation:

−k∆u+ σ u4 = f + σ u4
ext in Ω, (3.1a)

u = g on ∂Ω. (3.1b)

For Ω ⊂ R2, this equation models the heat transport in a thin plate Ω, heated by an external
heat source f and which radiates heat. Here, k is the constant heat conductivity, σ the Stefan–
Bolzmann constant, g the temperature at the edges of the plate and uext the temperature of
the surrounding space (absolute temperature in ◦K).

194 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

The solver is applied to following data:

• For testing the solver in 2d and 3d we again use the ‘exponential peak’

u(x) = e−10 |x|2 , x ∈ Ω = (−1, 1)d, k = 1, σ = 1, uext = 0.

• In general (due to the nonlinearity), the problem is not uniquely solvable; depending on
the initial guess for the nonlinear solver at least two discrete solutions can be obtained
by using data

Ω = (0, 1)d, k = 1, σ = 1, f ≡ 1, g ≡ 0, uext = 0.

and the interpolant of

u0(x) = 4d U0

d∏
i=1

xi(1− xi) with U0 ∈ [−5.0, 1.0].

as initial guess for the discrete solution on the coarsest grid.

• The last application now addresses a physical problem in 2d with following data:

Ω = (−1, 1)2, k = 2, σ = 5.67e-8, g ≡ 300, uext = 273, f(x) =

{
150, ifx ∈ (−1

2 ,
1
2)2,

0, otherwise.

3.2.1 The Newton method

We use a Newton method for the solution of the nonlinear equation

uh ∈ gh + X̊h : F (uh) = 0 in X̊∗h,

where gh ∈ Xh is an approximation to boundary data g. The classical Newton method reads:
Start with an initial guess u0 ∈ gh + X̊h. For m ≥ 0 compute

dm ∈ X̊h : DF (um)dm = F (um) in X̊∗h

and set

um+1 = um − dm

until some suitable norm ‖dm‖ or ‖F (um+1)‖ is sufficiently small. Since the correction dm
satisfies dm ∈ X̊h, all Newton iterates um satisfy um ∈ gh + X̊h, m ≥ 0.

The solution of such a nonlinear problem, needs several assemblage and solve steps (in
each Newton step we have to assemble and solve a linearized system). Thus, we do not split
the assemble and solve routines in build() and solve() as in the solver for the Poisson
equation (compare Sections 3.1.6 and 3.1.7), but only set Dirichlet boundary values for the
initial guess in build() and solve the nonlinear equation (including the assemble of linearized
systems) in solve() (compare Sections 3.2.5 and 3.2.6).

3.2.2 Program organization and header file

The implementation is split into three source files:
nonlin.c: main program with all subroutines for the adaptive procedure; initializes DOFs,

leaf data and problem dependent data in main() and the solve() routine calls the non-
linear solver;

3.2. NONLINEAR POISSON EQUATION 195

nlprob.c: definition of problem dependent data;

nlsolve.c: implementation of the nonlinear solver.

Data structures used in all source files, and prototypes of functions are defined in the header
file nonlin.h, which includes the albert.h header file on the first line. This file is included
by all source files.

#include <albert.h>

typedef struct prob_data PROB_DATA;
struct prob_data
{
REAL k, sigma;

REAL (*g)(const REAL_D x);
REAL (*f)(const REAL_D x);

REAL (*u0)(const REAL_D x);

REAL (*u)(const REAL_D x);
const REAL *(*grd_u)(const REAL_D x);

};

/*--- file nlprob.c --*/
const PROB_DATA *init_problem(MESH *mesh);

/*--- file nlsolve.c ---*/
int nlsolve(DOF_REAL_VEC *, REAL, REAL, REAL (*)(const REAL_D));

/*--- file graphics.c --*/
void graphics(MESH *, DOF_REAL_VEC *, REAL (*)(EL *));

The data structure PROB DATA yields following information:

k: diffusion coefficient (constant heat conductivity);

sigma: reaction coefficient (Stefan–Bolzmann constant);

g: pointer to a function for evaluating boundary values;

f: pointer to a function for evaluating the right-hand side (f + σ u4
ext);

u0: pointer to a function for evaluating an initial guess for the discrete solution on the
macro triangulation, if not nil;

u: pointer to a function for evaluating the true solution, if not nil (only for test purpose);

grd u: pointer to a function for evaluating the gradient of the true solution, if not nil
(only for test purpose).

3.2.3 Global variables

In the main source file for the nonlinear solver nonlin.c we use the following global variables:

#include "nonlin.h"

static const FE_SPACE *fe_space; /* initialized by init_dof_admin() */
static DOF_REAL_VEC *u_h = nil; /* initialized by build() */
static const PROB_DATA *prob_data = nil; /* initialized by main() */

196 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

As in the solver for the linear Poisson equation, we have a pointer to the used fe space and
the discrete solution u h. In this file, we do not need a pointer to a DOF MATRIX for storing the
system matrix and a pointer to a DOF REAL VEC for storing the right hand side. The system
matrix and right hand side are handled by the nonlinear solver nlsolve(), implemented in
nlsolve.c. Data about the problem is handled via the prob data pointer.

3.2.4 Initialization of the finite element space and leaf data

The functions for initializing DOFs (init dof admin()), leaf data (init leaf data()), and
for accessing leaf data (rw el est(), get el est()) are exactly the same as in the solver for
the linear Poisson equation, compare Sections 3.1.3 and 3.1.4.

3.2.5 The build routine

As mentioned above, inside the build routine we only access one vector for storing the discrete
solution. On the coarsest grid, the discrete solution is initialized with zeros, or by interpolating
the function prob data->u0, which implements an initial guess for the discrete solution. On a
refined grid we do not initialize the discrete solution again. Here, we use the discrete solution
from the previous step, which is interpolated during mesh modifications, as an initial guess.

In each adaptive cycle, Dirichlet boundary values are set for the discrete solution. This
ensures u0 ∈ gh + X̊h for the initial guess of the Newton method.

static void build(MESH *mesh, U_CHAR flag)
{
FUNCNAME("build");

dof_compress(mesh);
MSG("%d DOFs for %s\n", fe_space->admin->size_used, fe_space->name);

if (!u_h) /* access and initialize discrete solution */
{
u_h = get_dof_real_vec("u_h", fe_space);
u_h->refine_interpol = fe_space->bas_fcts->real_refine_inter;
u_h->coarse_restrict = fe_space->bas_fcts->real_coarse_inter;
if (prob_data->u0)

interpol(prob_data->u0, u_h);
else

dof_set(0.0, u_h);
}
dirichlet_bound(prob_data->g, u_h, nil, nil); /* set boundary values */

return;
}

3.2.6 The solve routine

The solve() routine solves the nonlinear equation by calling the function nlsolve() which
is implemented in nlsolve.c and described below. After solving the discrete problem, the
new discrete solution is displayed via the graphics() routine.

static void solve(MESH *mesh)
{
nlsolve(u_h, prob_data->k, prob_data->sigma, prob_data->f);
graphics(mesh, u_h, nil);
return;

3.2. NONLINEAR POISSON EQUATION 197

}

3.2.7 The estimator for the nonlinear problem

The function r() which implements the lower order term changes due to the term σu4

in the differential operator. The right hand side f + σu4
ext is implemented in the function

prob data->f().
In the function estimate we have to initialize the diagonal of A with the heat conductivity

prob data->k and for the function r we need the values of uh at the quadrature node, thus
r flag = INIT UH is used. The true error is only computed for the first problem, where the
true solution in known (prob data->u() and prob data->grd u() are not nil). Finally, the
error indicator is displayed by graphics().

static REAL r(const EL_INFO *el_info, const QUAD *quad, int iq, REAL uh_iq,
const REAL_D grd_uh_iq)

{
REAL_D x;
REAL uhx2 = SQR(uh_iq);

coord_to_world(el_info, quad->lambda[iq], x);
return(prob_data->sigma*uhx2*uhx2 - (*prob_data->f)(x));

}

#define EOC(e,eo) log(eo/MAX(e,1.0e-15))/M_LN2

static REAL estimate(MESH *mesh, ADAPT_STAT *adapt)
{
FUNCNAME("estimate");
static int degree, norm = -1;
static REAL C[3] = {1.0, 1.0, 0.0};
static REAL est, est_old = -1.0, err = -1.0, err_old = -1.0;
static REAL_DD A = {{1.0,0.0},{0.0,1.0}};
static REAL r_flag = INIT_UH;

A[0][0] = A[1][1] = prob_data->k;
#if DIM_OF_WORLD == 3
A[2][2] = prob_data->k;

#endif

if (norm < 0)
{
norm = H1_NORM;
GET_PARAMETER(1, "error norm", "%d", &norm);
GET_PARAMETER(1, "estimator C0", "%f", C);
GET_PARAMETER(1, "estimator C1", "%f", C+1);
GET_PARAMETER(1, "estimator C2", "%f", C+2);

}
degree = 2*u_h->fe_space->bas_fcts->degree;
est = ellipt_est(u_h, adapt, rw_el_est, nil, degree, norm, C, A, r, r_flag);

MSG("estimate = %.8le", est);
if (est_old >= 0)
print_msg(", EOC: %.2lf\n", EOC(est,est_old));

else
print_msg("\n");

est_old = est;

198 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

if (norm == L2_NORM && prob_data->u)
err = L2_err(prob_data->u, u_h, nil, 0, nil, nil);

else if (norm == H1_NORM && prob_data->grd_u)
err = H1_err(prob_data->grd_u, u_h, nil, 0, nil, nil);

if (err >= 0)
{
MSG("||u-uh||%s = %.8le", norm == L2_NORM ? "L2" : "H1", err);
if (err_old >= 0)

print_msg(", EOC: %.2lf\n", EOC(err,err_old));
else

print_msg("\n");
err_old = err;
MSG("||u-uh||%s/estimate = %.2lf\n", norm == L2_NORM ? "L2" : "H1",

err/MAX(est,1.e-15));
}
graphics(mesh, nil, get_el_est);
return(adapt->err_sum);

}

3.2.8 The main program for the nonlinear reaction–diffusion equation

In the main program parameters are initialized from the file INIT/nonlin.dat, and param-
eters from the command line are added. For the definition of a parameter via the command
line we need for each parameter a pair of arguments: the key (without terminating ‘:’ and
the value.

nonlin "problem number" 1

will for instance overwrite the value of problem number in nonlin.dat with the value 1.
Secondly, the mesh with the used DOFs and leaf data is initialized, problem dependent

data, including the macro triangulation, are initialized by init problem(mesh) (see Sec-
tion 3.2.9), the structure for the adaptive method is filled and finally the adaptive method is
started.

int main(int argc, char **argv)
{
FUNCNAME("main");
MESH *mesh;
ADAPT_STAT *adapt;
int k;

/*--*/
/* first of all, init parameters from the init file and command line */
/*--*/
init_parameters(1, "INIT/nonlin.dat");
for (k = 1; k+1 < argc; k += 2)
ADD_PARAMETER(0, argv[k], argv[k+1]);

/*--*/
/* get a mesh with DOFs and leaf data */
/*--*/
mesh = GET_MESH("Nonlinear problem mesh", init_dof_admin, init_leaf_data);

/*--*/

3.2. NONLINEAR POISSON EQUATION 199

/* init problem dependent data and read macro triangulation */
/*--*/
prob_data = init_problem(mesh);

/*--*/
/* init adapt struture and start adaptive method */
/*--*/
adapt = get_adapt_stat("nonlin", "adapt", 1, nil);
adapt->estimate = estimate;
adapt->get_el_est = get_el_est;
adapt->build_after_coarsen = build;
adapt->solve = solve;

adapt_method_stat(mesh, adapt);

WAIT_REALLY;
return(0);

}

3.2.9 Initialization of problem dependent data

The file nlprob.c contains problem dependent data. On the first line nonlin.h is included
and then two global variables used by all functions are declared:

#include "nonlin.h"
static REAL k = 1.0, sigma = 1.0;

The following functions are used in the first example for testing the nonlinear solver
(Problem 0):

static REAL u_0(const REAL_D x)
{
REAL x2 = SCP_DOW(x,x);
return(exp(-10.0*x2));

}

static const REAL *grd_u_0(const REAL_D x)
{
static REAL_D grd;
REAL r2 = SCP_DOW(x,x);
REAL ux = exp(-10.0*r2);

grd[0] = -20.0*x[0]*ux;
grd[1] = -20.0*x[1]*ux;

#if DIM_OF_WORLD == 3
grd[2] = -20.0*x[2]*ux;

#endif

return(grd);
}

static REAL f_0(const REAL_D x)
{
REAL r2 = SCP_DOW(x,x), ux = exp(-10.0*r2), ux4 = ux*ux*ux*ux;
return(sigma*ux4 - k*(400.0*r2 - 20.0*DIM)*ux);

}

200 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

For the computation of a stable and an unstable solution, depending on the initial choice
of the discrete solution the following functions are used, which also use the global variable U0
(Problem 1):

static REAL U0 = 0.0;
static REAL g_1(const REAL_D x)
{
#if DIM_OF_WORLD == 2
return(16*U0*x[0]*(1.0-x[0])*x[1]*(1.0-x[1]));

#else
return(64*U0*x[0]*(1.0-x[0])*x[1]*(1.0-x[1])*x[2]*(1.0-x[2]));

#endif
}

static REAL f_1(const REAL_D x)
{
return(1.0);

}

The last example needs functions for boundary data and right hand side and variables for
the temperature at the edges, and σ u4

ext (Problem 2):

static REAL g2 = 300.0, sigma_uext4 = 0.0;
static REAL g_2(const REAL_D x)
{
return(g2);

}

static REAL f_2(const REAL_D x)
{
if (x[0] >= -0.25 && x[0] <= 0.25 && x[1] >= -0.25 && x[1] <= 0.25)
return(150.0 + sigma_uext4);

else
return(sigma_uext4);

}

The function init problem() initializes the entries of a PROB DATA structure, adjusts
the corresponding function pointers, reads the macro triangulation, performs some initial
refinement and returns a pointer to the filled PROB DATA structure.

const PROB_DATA *init_problem(MESH *mesh)
{
FUNCNAME("init_problem");
static PROB_DATA prob_data = {0};
int pn = 2, n_refine = 0;

GET_PARAMETER(1, "problem number", "%d", &pn);
switch (pn)
{
case 0: /*--- problem with known true solution -----------------------*/
k = 1.0;
sigma = 1.0;

prob_data.g = u_0;
prob_data.f = f_0;

prob_data.u = u_0;
prob_data.grd_u = grd_u_0;

3.2. NONLINEAR POISSON EQUATION 201

read_macro(mesh, "Macro/macro_big.stand", nil);
break;

case 1: /*--- problem for computing a stable and an unstable sol. ----*/
k = 1.0;
sigma = 1.0;

prob_data.g = g_1;
prob_data.f = f_1;

prob_data.u0 = g_1;
GET_PARAMETER(4, "U0", "%f", &U0);

read_macro(mesh, "Macro/macro.stand", nil);
break;

case 2: /*--- physical problem ---------------------------------------*/
k = 2.0;
sigma = 5.67e-8;
sigma_uext4 = sigma*273*273*273*273;

prob_data.g = g_2;
prob_data.f = f_2;
read_macro(mesh, "Macro/macro_big.stand", nil);
break;

default:
ERROR_EXIT("no problem defined with problem no. %d\n", pn);

}
prob_data.k = k;
prob_data.sigma = sigma;

GET_PARAMETER(1, "global refinements", "%d", &n_refine);
global_refine(mesh, n_refine*DIM);

return(&prob_data);
}

3.2.10 Implementation of the nonlinear solver

We use the Newton solvers described in Section 2.15.6 for solving F (uh) = 0 in X̊h for the
nonlinear Poisson equation (3.1). We start with an initial guess u0 ∈ gh+X̊h, where Dirichlet
boundary values are set in the build() routine (compare Section 3.2.5).

For v ∈ Xh the functional F (v) ∈ X̊∗h is defined by〈
F (v), ϕ

〉
X̊∗×X̊ =

∫
Ω
k∇ϕj∇v + σ ϕj v

4 dx−
∫

Ω
(f + u4

ext)ϕj dx for all ϕj ∈ X̊h, (3.2)

and the Frechet derivative DF (v) of F is given by〈
DF (v)ϕi, ϕj

〉
X̊∗×X̊ =

∫
Ω
k∇ϕj∇ϕi + 4σ v3 ϕj ϕi dx for all ϕi, ϕj ∈ X̊h. (3.3)

The Newton solvers need a function for assembling the right hand side vector of the
discrete system (3.2), and the system matrix of the linearized equation (3.3) for some given
v in Xh. The system matrix is always symmetric. It is positive definite, if v ≥ 0, and is then
solved by the conjugate gradient method. If v 6≥ 0 then BiCGStab is used. We choose the H1

semi–norm for problem dependent norm ‖.‖.

202 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

Problem dependent data structures for assembling and solving

Similar to the assemblage of the system matrix for the Poisson problem, we define a data
structure struct op info in order to pass information to the routines which describe the
differential operator. In the assembling of the linearized system around a given finite element
function v we additionally need the diffusion coefficient k and reaction coefficient σ. In general,
v is not constant on the elements, thus we have to compute the zero order term by numerical
quadrature on each element. For this we need access to the used quadrature for this term,
and a vector storing the values of v for all quadrature nodes.

struct op_info
{
REAL_D Lambda[DIM+1]; /* the gradient of the barycentric coordinates */
REAL det; /* |det D F_S| */

REAL k, sigma; /* diffusion and reaction coefficient */

const QUAD_FAST *quad_fast; /* quad_fast for the zero order term */
const REAL *v_qp; /* v at all quadrature nodes of quad_fast */

};

The general Newton solvers pass data about the actual problem by void pointers to the
problem dependent routines. Information that is used by these routines are collected in the
data structure NEWTON DATA

typedef struct newton_data NEWTON_DATA;
struct newton_data
{
const FE_SPACE *fe_space; /* used finite element space */

REAL k; /* diffusion coefficient */
REAL sigma; /* reaction coefficient */
REAL (*f)(const REAL_D); /* for evaluation f + sigma u_ext^4 */

DOF_MATRIX *DF; /* pointer to system matrix */

/*--- parameters for the linear solver -----------------------------------*/
OEM_SOLVER solver; /* used solver: CG (v >= 0) else GMRes */
REAL tolerance;
int max_iter;
int icon;
int restart;
int info;

};

All entries of this structure besides solver are initialized in the function nlsolve(). The
entry solver is set every time the linearized matrix is assembled.

The assembling routine

Denote by {ϕ0, . . . , ϕN̊} the basis of X̊h, by {ϕ0, . . . , ϕN} the basis of Xh. Let A be the
stiffness matrix, i.e.

Aij =

{∫
Ω k∇ϕj∇ϕi dx i = 0, . . . , N, j = 0, . . . , N̊
δij i = 0, . . . , N, j = N̊ + 1, . . . , N,

3.2. NONLINEAR POISSON EQUATION 203

and M = M(v) the mass matrix, i.e.

Mij =

{∫
Ω σ v

3 ϕj ϕi dx i = 0, . . . , N, j = 0, . . . , N̊
0 i = 0, . . . , N, j = N̊ + 1, . . . , N.

The system matrix L, representing DF (v), of the linearized equation is then given as

L = A+ 4M .

The right hand side vector F , representing F (v) is for all non–Dirichlet DOFs j given by

Fj =
∫

Ω
k∇v∇ϕj + σ v4 ϕj dx−

∫
Ω

(f + σu4
ext)ϕj dx

= (Av +M v)j −
∫

Ω
(f + σu4

ext)ϕj dx, (3.4)

where v denotes the coefficient vector of v. Thus, we want to use information assembled into
A and M for both system matrix and right hand side vector.

Unfortunately, this can not be done after assembling A+ 4M into the system matrix L
due to the different scaling of M in the system matrix (factor 4) and right hand side (factor
1). Storing both matrices A and M is too costly, since matrices are the objects in finite
element codes which need most memory.

The solution to this problem comes from the observation, that (3.4) holds also element-
wise for the element contributions of the right hand side and element matrices AS and MS

when replacing v by the local coefficient vector vS . Hence, on elements we compute the
element contributions of AS and MS , add them to the system matrix, and use them and the
local coefficient vector vS for adding the right hand side contribution to the load vector.

The resulting assembling routine is more complicated in comparison to the routine used for
the linear Poisson problem. On the other hand, using ALBERT routines for the computation
of element matrices, extracting local coefficient vectors, and boundary information the routine
is still rather easy to implement. The implementation still does not depend on the actually
used set of local basis functions.

The function update() which is now described in detail, can be seen as an example for
the flexible implementation of rather complex nonlinear and time dependent problems which
often show the same structure (compare the implementation of the assembling routine for
the time dependent heat equation, Section 3.3.6). The assemblage is still quite easy, whereas
the resulting code is quite efficient.

Similar to the linear Poisson solver, we provide a function LALt() for the second order
term. Here we also need a function c() for the zero order term. This term is assembled
using element wise quadrature and thus needs information about the function v used in the
linearization at all quadrature nodes. Information for LALt() and c() is stored in the data
structure struct op info, see above. The members of this structure are initialized during
mesh traversal in update().

static const REAL (*LALt(const EL_INFO *el_info, const QUAD *quad,
int iq, void *ud))[DIM+1]

{
struct op_info *info = ud;
REAL fac = info->k*info->det;
int i, j, k;
static REAL LALt[DIM+1][DIM+1];

for (i = 0; i <= DIM; i++)

204 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

{
for (j = i; j <= DIM; j++)
{

for (LALt[i][j] = k = 0; k < DIM_OF_WORLD; k++)
LALt[i][j] += info->Lambda[i][k]*info->Lambda[j][k];

LALt[i][j] *= fac;
LALt[j][i] = LALt[i][j];

}
}
return((const REAL (*)[DIM+1]) LALt);

}

static REAL c(const EL_INFO *el_info, const QUAD *quad, int iq, void *ud)
{
struct op_info *info = ud;
REAL v3;

TEST_EXIT(info->quad_fast->quad == quad)("quads differ\n");
v3 = info->v_qp[iq]*info->v_qp[iq]*info->v_qp[iq];
return(info->sigma*info->det*v3);

}

As mentioned above, we use a general Newton solver and a pointer to the update()
routine is adjusted in the function nlsolve() in the data structure for this solver. Such a
solver does not have any information about the actual problem, nor information about the
ALBERT data structures for storing DOF vectors and matrices. This is also reflected in the
arguments of update():

static void update(void *ud, int dim, const REAL *v, int up_DF, REAL *F);

Here, dim is the dimension of the discrete nonlinear problem, v is a vector storing the co-
efficients of the finite element function which is used for the linearization, up DF is a flag
indicating that DF (v) should be assembled or not. If F is not nil, then F (v) should be
assembled and stored in the vector F. Information about the ALBERT finite element space, a
pointer to a DOF matrix, etc. can be passed to update() by the ud pointer. The declaration

NEWTON_DATA *data = ud;

converts the void * pointer into a pointer data to a structure NEWTON DATA which gives
access to all information, used for the assembling (see above). The structure is initialized in
nlsolve() before starting the Newton method.

The update() routine is split into three main parts: an initialization of the assembling
functions (only done on the first call), a conversion of the vectors that are arguments to the
routine into DOF vectors, and finally the assembling.

Initialization of the assembling functions The initialization of ALBERT functions for
the assembling is similar to the initialization in the build() routine of the linear Poisson
equation (compare Section 3.1.6). There are minor differences:

1. In addition to the assemblage of the 2nd order term (see the function LALt()), we now
have to assemble the zero order term too (see the function c()). The integration of the
zero order term has to be done by using an element wise quadrature which needs the
values of v3 at all quadrature nodes. The two element matrices are computed separately.
This makes it possible to use them for the system matrix and right hand side.

2. In the solver for the Poisson problem, we have filled an OPERATOR INFO structure
with information about the differential operator. This structure is an argument to

3.2. NONLINEAR POISSON EQUATION 205

fill matrix info() which returns a pointer to a structure EL MATRIX INFO. This
pointer is used for the complete assemblage of the system matrix by some ALBERT
routine. Here, we want to use only the function for computing the element matrices.
Thus, we only need the entries el matrix fct() and fill info of the EL MATRIX INFO
structure, which are used to compute the element matrix (fill info is the second ar-
gument to el matrix fct()). We initialize a function pointer fill a with data pointer
a info for the computation of the element matrix AS and a function pointer fill c
with data pointer c info for the computation MS .

All other information inside the EL MATRIX INFO structure is used for the automatic
assembling of element matrices into the system matrix by update matrix(). Such in-
formation can be ignored, since this is now done in update().

3. For the assembling of the element matrix into the system matrix and the element
contribution of the right hand side into the load vector we need information about the
number of local basis functions, n phi, how to access global DOFs from the elements,
get dof(). This function uses the DOF administration admin of the finite element
space. We also need information about the boundary type of the local basis functions,
get bound(), and for the computation of the values of v at quadrature nodes, we have
to extract the local coefficient vector from the global one, get v loc(). These functions
and the number of local basis functions can be accessed via the bas fcts inside the
data->fe space structure. The used admin is the admin structure in data->fe space.

Conversion of the vectors into DOF vectors The input vector v is a vector storing
the coefficients of the function used for the linearization. It is not a DOF vector, but AL-
BERT routines for extraction a local coefficient vector need a DOF vector. Thus, we have to
“convert” v into some DOF vector dof v. This is done by setting the members fe space,
size, and vec in the structure dof v to the used finite element space, data->fe space, the
size of the vector, dim, and the vector, v. In the assignment of the vector we have to use a
cast to (REAL *) since v is a const REAL * whereas the member dof v.vec is REAL * only.
Nevertheless, values of v must not be changed.

After this initialization, all ALBERT tools working on DOF vectors can be used. But this
vector is not linked to the list of DOF vectors of fe space->admin and are not administrated
by this admin (not enlarged during mesh modifications, e.g.)!

In the same way we have to convert F to a DOF vector dof F if F is not nil.

The assemblage of the linearized system If the system matrix has to be assembled,
then the DOF matrix data->DF is cleared and we check which solver can be used for solving
the linearized equation.

If the right hand side has to be assembled, then this vector is initialized with values

−
∫

Ω
(f + σu4

ext)ϕj dx.

For the assemblage of the element contributions we use the non–recursive mesh traversal
routines. On each element we access the local coefficient vector v loc, the global DOFs dof
and boundary types bound of the local basis functions.

Next, we initialize the Jacobian of the barycentric coordinates and compute the values
of v at the quadrature node by uh at qp() (then v3 can easily be calculated in c()). Now,
all members of struct op info are initialized, and we compute the element matrices AS by
the function fill a() and MS by the function fill c().

206 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

These contributions are added to the system matrix if up DF is not zero. Finally, the right
hand side contribution for all non Dirichlet DOFs are computed, and zero Dirichlet boundary
values are set for Dirichlet DOFs, if F is not nil.

static void update(void *ud, int dim, const REAL *v, int up_DF, REAL *F)
{
FUNCNAME("update");
static struct op_info *op_info = nil;
static const REAL **(*fill_a)(const EL_INFO *, void *) = nil;
static void *a_info = nil;
static const REAL **(*fill_c)(const EL_INFO *, void *) = nil;
static void *c_info = nil;

static const DOF_ADMIN *admin = nil;
static int n_phi;
static const REAL *(*get_v_loc)(const EL *, const DOF_REAL_VEC *, REAL *);
static const DOF *(*get_dof)(const EL *, const DOF_ADMIN *, DOF *);
static const S_CHAR *(*get_bound)(const EL_INFO *, S_CHAR *);

NEWTON_DATA *data = ud;
TRAVERSE_STACK *stack = get_traverse_stack();
EL_INFO *el_info;
FLAGS fill_flag;
DOF_REAL_VEC dof_v = {nil, nil, "v"};
DOF_REAL_VEC dof_F = {nil, nil, "F(v)"};

/*--*/
/* init functions for assembling DF(v) and F(v) */
/*--*/

if (admin != data->fe_space->admin)
{
OPERATOR_INFO o_info2 = {nil}, o_info0 = {nil};
const EL_MATRIX_INFO *matrix_info;
const BAS_FCTS *bas_fcts = data->fe_space->bas_fcts;
const QUAD *quad = get_quadrature(DIM, 2*bas_fcts->degree-2);

admin = data->fe_space->admin;
n_phi = bas_fcts->n_bas_fcts;
get_dof = bas_fcts->get_dof_indices;
get_bound = bas_fcts->get_bound;
get_v_loc = bas_fcts->get_real_vec;;

if (!op_info) op_info = MEM_ALLOC(1, struct op_info);

o_info2.row_fe_space = o_info2.col_fe_space = data->fe_space;

o_info2.quad[2] = quad;
o_info2.LALt = LALt;
o_info2.LALt_pw_const = true;
o_info2.LALt_symmetric = true;
o_info2.user_data = op_info;

matrix_info = fill_matrix_info(&o_info2, nil);
fill_a = matrix_info->el_matrix_fct;
a_info = matrix_info->fill_info;

3.2. NONLINEAR POISSON EQUATION 207

o_info0.row_fe_space = o_info0.col_fe_space = data->fe_space;

o_info0.quad[0] = quad;
o_info0.c = c;
o_info0.c_pw_const = false;
o_info0.user_data = op_info;

op_info->quad_fast = get_quad_fast(bas_fcts, quad, INIT_PHI);

matrix_info = fill_matrix_info(&o_info0, nil);
fill_c = matrix_info->el_matrix_fct;
c_info = matrix_info->fill_info;

}

/*--*/
/* make a DOF vector from input vector v_vec */
/*--*/

dof_v.fe_space = data->fe_space;
dof_v.size = dim;
dof_v.vec = (REAL *) v; /* cast needed; dof_v.vec isn’t const REAL * */

/* nevertheless, values are NOT changed */

/*--*/
/* make a DOF vector from F, if not nil */
/*--*/
if (F)
{
dof_F.fe_space = data->fe_space;
dof_F.size = dim;
dof_F.vec = F;

}

/*--*/
/* and now assemble DF(v) and/or F(v) */
/*--*/
op_info->k = data->k;
op_info->sigma = data->sigma;

if (up_DF)
{

/*--- if v_vec[i] >= 0 for all i => matrix is positive definite (p=1) ----*/
data->solver = dof_min(&dof_v) >= 0 ? CG : GMRes;
clear_dof_matrix(data->DF);

}

if (F)
{
dof_set(0.0, &dof_F);
L2scp_fct_bas(data->f, op_info->quad_fast->quad, &dof_F);
dof_scal(-1.0, &dof_F);

}

fill_flag = CALL_LEAF_EL|FILL_COORDS|FILL_BOUND;
el_info = traverse_first(stack, data->fe_space->mesh, -1, fill_flag);
while (el_info)

208 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

{
const REAL *v_loc = (*get_v_loc)(el_info->el, &dof_v, nil);
const DOF *dof = (*get_dof)(el_info->el, admin, nil);
const S_CHAR *bound = (*get_bound)(el_info, nil);
const REAL **a_mat, **c_mat;

/*--*/
/* initialization of values used by LALt and c */
/*--*/

op_info->det = el_grd_lambda(el_info, op_info->Lambda);
op_info->v_qp = uh_at_qp(op_info->quad_fast, v_loc, nil);

a_mat = fill_a(el_info, a_info);
c_mat = fill_c(el_info, c_info);

if (up_DF) /*--- add element contribution to matrix DF(v) ----------*/
{

/*--*/
/* add a(phi_i,phi_j) + 4*m(u^3*phi_i,phi_j) to matrix */
/*--*/

add_element_matrix(data->DF, 1.0, n_phi, n_phi, dof, dof, a_mat, bound);
add_element_matrix(data->DF, 4.0, n_phi, n_phi, dof, dof, c_mat, bound);

}

if (F) /*--- add element contribution to F(v) --------------------*/
{

int i, j;
/*--*/
/* F(v) += a(v, phi_i) + m(v^4, phi_i) */
/*--*/

for (i = 0; i < n_phi; i++)
{
if (bound[i] < DIRICHLET)
{

REAL val = 0.0;
for (j = 0; j < n_phi; j++)
val += (a_mat[i][j] + c_mat[i][j])*v_loc[j];

F[dof[i]] += val;
}
else

F[dof[i]] = 0.0; /*--- zero Dirichlet boundary conditions! ------*/
}

}

el_info = traverse_next(stack, el_info);
}

free_traverse_stack(stack);

return;
}

The linear sub–solver

For the solution of the linearized problem we use the oem solve s() function, which is also
used in the solver for the linear Poisson equation (compare Section 3.1.7). Similar to the

3.2. NONLINEAR POISSON EQUATION 209

update() function, we have to convert the right hand side vector F and the solution vector d
to DOF vectors. Information about the system matrix, parameters for the solver are passed
by ud. The member data->solver is initialized in update().

static int solve(void *ud, int dim, const REAL *F, REAL *d)
{
NEWTON_DATA *data = ud;
int iter;
DOF_REAL_VEC dof_F = {nil, nil, "F"};
DOF_REAL_VEC dof_d = {nil, nil, "d"};

/*--*/
/* make DOF vectors from F and d */
/*--*/
dof_F.fe_space = dof_d.fe_space = data->fe_space;
dof_F.size = dof_d.size = dim;
dof_F.vec = (REAL *) F; /* cast needed ... */
dof_d.vec = d;

iter = oem_solve_s(data->DF, &dof_F, nil, &dof_d, data->solver,
data->tolerance, data->icon, data->restart,
data->max_iter, data->info);

return(iter);
}

The computation of the H1 semi norm

The H1 semi norm can easily be calculated by converting the input vector v into a DOF
vector and then calling the ALBERT routine H1 norm uh() (compare Section 2.10).

static REAL norm(void *ud, int dim, const REAL *v)
{
NEWTON_DATA *data = ud;
DOF_REAL_VEC dof_v = {nil, nil, "v"};

dof_v.fe_space = data->fe_space;
dof_v.size = dim;
dof_v.vec = (REAL *) v; /* cast needed ... */

return(H1_norm_uh(nil, &dof_v));
}

The nonlinear solver

The function nlsolve() initializes the structure NEWTON DATA with problem dependent in-
formation. Here, we have to allocate a DOF matrix for storing the system matrix (only on
the first call), and initialize parameters for the linear sub–solver and problem dependent data
(like heat conductivity k, etc.)

The structure NLS DATA is filled with information for the general Newton solver (rou-
tines update(), solve(), and norm()). All problem dependent routines use the same struc-
ture NEWTON DATA for problem dependent information. For getting access to the definition of
NLS DATA and prototypes for the Newton solvers, we have to include the nls.h header file.

The dimension of the discrete equation is

210 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

dim = u0->fe_space->admin->size_used;

where u0 is a pointer to a DOF vector storing the initial guess. Note, that after
the dof compress() in the build() routine, dim holds the true dimension of the dis-
crete equation. Without a dof compress() there may be holes in the DOF vector, and
u0->fe_space->admin->size_used bigger than the last used index, and again dim is the
dimension of the discrete equation for the Newton solver. The ALBERT routines do not oper-
ate on unused indices, whereas the Newton solver do operate on unused indices too, because
it does not know about used and unused indices. In this situation, all unused DOFs have to
be cleared for the initial solution u0 by

FOR_ALL_FREE_DOFS(u0->fe_space->admin, u0->vec[dof] = 0.0);

The same applies to the vector storing the right hand side in update(). The dof set()
function only initializes used indices.

Finally, we reallocate the workspace used by the Newton solvers (compare Section 2.15.6)
and start the Newton method.

#include <nls.h>

int nlsolve(DOF_REAL_VEC *u0, REAL k, REAL sigma, REAL (*f)(const REAL_D))
{
FUNCNAME("nlsolve");
static NEWTON_DATA data = {nil, 0, 0, nil, nil, CG, 0, 500, 2, 10, 1};
static NLS_DATA nls_data = {nil};
int iter, dim = u0->fe_space->admin->size_used;

if (!data.fe_space)
{

/*--*/
/*-- init parameters for newton --*/
/*--*/

nls_data.update = update;
nls_data.update_data = &data;
nls_data.solve = solve;
nls_data.solve_data = &data;
nls_data.norm = norm;
nls_data.norm_data = &data;

nls_data.tolerance = 1.e-4;
GET_PARAMETER(1, "newton tolerance", "%e", &nls_data.tolerance);
nls_data.max_iter = 50;
GET_PARAMETER(1, "newton max. iter", "%d", &nls_data.max_iter);
nls_data.info = 8;
GET_PARAMETER(1, "newton info", "%d", &nls_data.info);
nls_data.restart = 0;
GET_PARAMETER(1, "newton restart", "%d", &nls_data.restart);

/*--*/
/*-- init data for update and solve --------------------------------------*/
/*--*/

data.fe_space = u0->fe_space;
data.DF = get_dof_matrix("DF(v)", u0->fe_space);

data.tolerance = 1.e-2*nls_data.tolerance;
GET_PARAMETER(1, "linear solver tolerance", "%f", &data.tolerance);

3.2. NONLINEAR POISSON EQUATION 211

GET_PARAMETER(1, "linear solver max iteration", "%d", &data.max_iter);
GET_PARAMETER(1, "linear solver info", "%d", &data.info);
GET_PARAMETER(1, "linear solver precon", "%d", &data.icon);
GET_PARAMETER(1, "linear solver restart", "%d", &data.restart);

}
TEST_EXIT(data.fe_space == u0->fe_space)("can’t change f.e. spaces\n");

/*--*/
/*-- init problem dependent parameters -----------------------------------*/
/*--*/

data.k = k;
data.sigma = sigma;
data.f = f;

/*--*/
/*-- enlarge workspace used by newton(_fs), and solve by Newton ----------*/
/*--*/

if (nls_data.restart)
{
nls_data.ws = REALLOC_WORKSPACE(nls_data.ws, 4*dim*sizeof(REAL));
iter = nls_newton_fs(&nls_data, dim, u0->vec);

}
else
{
nls_data.ws = REALLOC_WORKSPACE(nls_data.ws, 2*dim*sizeof(REAL));
iter = nls_newton(&nls_data, dim, u0->vec);

}

return(iter);
}

Figure 3.2: Graph of the unstable solution with corresponding mesh of the nonlinear Poisson
problem in 3d on the clipping plane z = 0.5. The pictures were produced by the gltools.

212 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

Figure 3.3: Graph of the solution to the physical problem with corresponding mesh of the
nonlinear Poisson problem in 2d. The pictures were produced by the gltools.

3.2.11 The parameter file for the nonlinear Poisson equation

The following parameter file INIT/nonlin.dat is read by main().

problem number: 2
global refinements: 2
polynomial degree: 2

U0: -5.0 % height of initial guess for Problem 1

graphic windows: 300 300 300 % size of graphic windows

newton tolerance: 1.e-6 % tolerance for Newton
newton max. iter: 50 % maximal number of iterations of Newton
newton info: 6 % information level of Newton
newton restart: 10 % number of iterations for step size control

linear solver max iteration: 1000
linear solver restart: 10 % only used for GMRES
linear solver tolerance: 1.e-8
linear solver info: 0
linear solver precon: 1 % 0: no precon 1: diag precon

error norm: 1 % 1: H1_NORM, 2: L2_NORM
estimator C0: 0.1 % constant of element residual
estimator C1: 0.1 % constant of jump residual
estimator C2: 0.0 % constant of coarsening estimate

adapt->strategy: 2 % 0: no adaption 1: GR 2: MS 3: ES 4:GERS
adapt->tolerance: 1.e-8
adapt->MS_gamma: 0.9
adapt->max_iteration: 8
adapt->info: 4

3.3. HEAT EQUATION 213

WAIT: 1

The unstable solution for Problem 1 in 3d is shown in Figure 3.2 and the solution to the
physical problem is shown in Figure 3.3.

3.3 Heat equation

In this section we describe a model implementation for the (linear) heat equation

∂tu−∆u = f in Ω ⊂ Rd × (0, T),
u = g on ∂Ω× (0, T),
u = u0 on Ω× {0}.

We describe here only differences to the implementation of the linear Poisson problem.
For common (or similar) routines we refer to Section 3.1.

3.3.1 Global variables

Additionally to the finite element space fe space, the matrix matrix and the vectors u h
and f h, we need a vector for storage of the solution Un from the last time step. This one is
implemented as a global variable, too. All these global variables are initialized in main().

static DOF_REAL_VEC *u_old = nil; /* initialized by main() */

A global pointer to the ADAPT INSTAT structure is used for access in the build() and
estimate() routines, see below.

static ADAPT_INSTAT *adapt_instat = nil; /* initialized by main() */

3.3.2 Functions for leaf data

For time dependent problems, mesh adaption usually also includes coarsening of previously
(for smaller t) refined parts of the mesh. For storage of local coarsening error estimates, the
leaf data structure is enlarged by a second REAL. Functions rw el estc() and get el estc()
are provided for access to that storage location.

struct heat_leaf_data
{
REAL estimate; /* one real for the element indicator */
REAL est_c; /* one real for the coarsening indicator */

};

static REAL *rw_el_estc(EL *el)
{
if (IS_LEAF_EL(el))
return(&((struct heat_leaf_data *)LEAF_DATA(el))->est_c);

else
return(nil);

}

static REAL get_el_estc(EL *el)
{
if (IS_LEAF_EL(el))
return(((struct heat_leaf_data *)LEAF_DATA(el))->est_c);

else

214 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

return(0.0);
}

3.3.3 Data of the differential equation

Data for the heat equation are the initial values u0, right hand side f , and boundary values
g. When the true solution u is known, it can be used for testing the error between discrete
and exact solution.

The sample problem is defined such that the exact solution is

u(x, t) = sin(πt)e−10|x|2 on (0, 1)d × [0, 1].

All library subroutines which evaluate a given data function (for integration, e.g.) are
defined for space dependent functions only and do not know about a time variable. Thus, such
a ‘simple’ space dependent function fspace(x) has to be derived from a space–time dependent
function f(x, t). We do this by keeping the time in a global variable, and setting

fspace(x) := f(x, t).

static REAL eval_time_u = 0.0;
static REAL u(const REAL_D x)
{
return(sin(M_PI*eval_time_u)*exp(-10.0*SCP_DOW(x,x)));

}

static REAL u0(const REAL_D x)
{
eval_time_u = adapt_instat->start_time;
return(u(x));

}

static REAL eval_time_g = 0.0;
static REAL g(const REAL_D x) /* boundary values, not optional */
{
eval_time_u = eval_time_g;
return(u(x));

}

static REAL eval_time_f = 0.0;
static REAL f(const REAL_D x) /* u_t - Delta u, not optional */
{
REAL r2 = SCP_DOW(x,x), ux = sin(M_PI*eval_time_f)*exp(-10.0*r2);
REAL ut = M_PI*cos(M_PI*eval_time_f)*exp(-10.0*r2);
return(ut - (400.0*r2 - 20.0*DIM)*ux);

}

As indicated, the times for evaluation of boundary data and right hand side may be chosen
independent of each other. This will be used in the time discretization scheme presented in
the next section.

3.3.4 Time discretization

The model implementation uses a variable time discretization scheme. Initial data is inter-
polated on the initial mesh,

U0 = I0u0.

3.3. HEAT EQUATION 215

For θ ∈ [0, 1], the solution Un+1 ≈ u(·, tn+1) is given by Un+1 ∈ In+1g(·, tn+1) + X̊n+1 such
that

1
τn+1

(Un+1,Φ) + θ(∇Un+1,∇Φ) =
1

τn+1
(In+1Un,Φ) + (1− θ)(∇In+1Un,∇Φ) (3.5)

+ (f(·, tn + θτn+1),Φ) for all Φ ∈ X̊n+1.

For θ = 0, this is the forward (explicit) Euler scheme, for θ = 1 the backward (implicit) Euler
scheme. For θ = 0.5, this is the Cranck–Nicholson scheme, which is of second order in time.
For θ ∈ [0.5, 1.0], the scheme is unconditionally stable, while for θ < 0.5 stability is only
guaranteed if the time step size is small enough.

3.3.5 Initial data interpolation

Initial data u0 is just interpolated on the initial mesh, thus the solve() entry in
adapt instat->adapt initial will point to a routine interpol u0() which implements
this by the library interpolation routine. No build() routine is needed by the initial mesh
adaption procedure.

static void interpol_u0(MESH *mesh)
{
dof_compress(mesh);
interpol(u0, u_h);

return;
}

3.3.6 The assemblage of the discrete system

Using a matrix notation, the discrete problem (3.5) can be written as(1
τn+1

M + θA
)
Un+1 =

(1
τn+1

M + (1− θ)A
)
Un + F n+1.

Here, M = (Φi,Φj) (up to Dirichlet boundary nodes) denotes the mass matrix and A =
(∇Φi,∇Φj) the stiffness matrix. The system matrix on the left hand side is (for θ 6= 0.5) not
the same as the one applied to the old solution on the right hand side, but both can be easily
evaluated when both M and A are known. To calculate the product with Un, it is sufficient
to know (and sum) the local contributions from single elements.

A simple application of the matrix assemblage routines of Section 2.12.2 gives no access
to the matrix during assemblage, thus an additional calculation would be needed for the right
hand side. Thus, for efficiency reasons, we use the more general techniques of Section 2.12.1,
which allow for a combined assemblage of the system matrix and the right hand side.

The subroutine assemble() generates both the system matrix and the right hand side.
The mesh elements are visited via the non-recursive mesh traversal routines. On every leaf
element, both the element mass matrix c mat and the element stiffness matrix a mat are
calculated using the el matrix fct() provided by fill matrix info(). For this purpose,
two different operators (the mass and stiffness operators) are defined and applied on each
element. The stiffness operator uses the same LALt() function for the second order term
as described in Section 3.1.6; the mass operator implements only the constant zero order
coefficient c = 1/τn+1, which is passed in struct op info and evaluated in the function c().
The L2 product with the right hand side f and the handling of Dirichlet boundary values are
included in the single mesh traversal, too.

216 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

struct op_info
{
REAL_D Lambda[DIM+1]; /* the gradient of the barycentric coordinates */
REAL det; /* |det D F_S| */
REAL tau_1; /* 1/timestepsize */

};

static REAL c(const EL_INFO *el_info, const QUAD *quad, int iq, void *ud)
{
struct op_info *info = ud;

return(info->tau_1*info->det);
}

static void assemble(DOF_REAL_VEC *u_old, DOF_MATRIX *matrix, DOF_REAL_VEC *fh,
DOF_REAL_VEC *u_h, REAL theta, REAL tau,
REAL (*f)(const REAL_D), REAL (*g)(const REAL_D))

{
FUNCNAME("assemble");
static struct op_info *op_info = nil;
static const REAL **(*fill_a)(const EL_INFO *, void *) = nil;
static void *a_info = nil;
static const REAL **(*fill_c)(const EL_INFO *, void *) = nil;
static void *c_info = nil;

static const DOF_ADMIN *admin = nil;
static int n;
static const REAL *(*get_u_loc)(const EL *, const DOF_REAL_VEC *, REAL *);
static const DOF *(*get_dof)(const EL *, const DOF_ADMIN *, DOF *);
static const S_CHAR *(*get_bound)(const EL_INFO *, S_CHAR *);

TRAVERSE_STACK *stack = get_traverse_stack();
EL_INFO *el_info;
FLAGS fill_flag;
const REAL **a_mat, **c_mat;
REAL *f_vec;
const QUAD *quad;
int i, j;

quad = get_quadrature(DIM, 2*u_h->fe_space->bas_fcts->degree);

/**/
/* init functions for matrix assembling */
/**/

if (admin != u_h->fe_space->admin)
{
OPERATOR_INFO o_info2 = {nil}, o_info0 = {nil};
const EL_MATRIX_INFO *matrix_info;
const BAS_FCTS *bas_fcts = u_h->fe_space->bas_fcts;

admin = u_h->fe_space->admin;

n = bas_fcts->n_bas_fcts;
get_dof = bas_fcts->get_dof_indices;
get_bound = bas_fcts->get_bound;

3.3. HEAT EQUATION 217

get_u_loc = bas_fcts->get_real_vec;

if (!op_info)
op_info = MEM_ALLOC(1, struct op_info);

o_info2.row_fe_space = o_info2.col_fe_space = u_h->fe_space;

o_info2.quad[2] = quad;
o_info2.LALt = LALt;
o_info2.LALt_pw_const = true;
o_info2.LALt_symmetric = true;
o_info2.user_data = op_info;

matrix_info = fill_matrix_info(&o_info2, nil);
fill_a = matrix_info->el_matrix_fct;
a_info = matrix_info->fill_info;

o_info0.row_fe_space = o_info0.col_fe_space = u_h->fe_space;

o_info0.quad[0] = quad;
o_info0.c = c;
o_info0.c_pw_const = true;
o_info0.user_data = op_info;

matrix_info = fill_matrix_info(&o_info0, nil);
fill_c = matrix_info->el_matrix_fct;
c_info = matrix_info->fill_info;

}

op_info->tau_1 = 1.0/tau;

/**/
/* and now assemble the matrix and right hand side */
/**/

clear_dof_matrix(matrix);
dof_set(0.0, fh);
f_vec = fh->vec;

fill_flag = CALL_LEAF_EL|FILL_COORDS|FILL_BOUND;
el_info = traverse_first(stack, u_h->fe_space->mesh, -1, fill_flag);
while (el_info)
{
const REAL *u_old_loc = (*get_u_loc)(el_info->el, u_old, nil);
const DOF *dof = (*get_dof)(el_info->el, admin, nil);
const S_CHAR *bound = (*get_bound)(el_info, nil);

/**/
/* initialization of values used by LALt and c */
/**/

op_info->det = el_grd_lambda(el_info, op_info->Lambda);

a_mat = fill_a(el_info, a_info);
c_mat = fill_c(el_info, c_info);

/**/

218 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

/* add theta*a(psi_i,psi_j) + 1/tau*m(4*u^3*psi_i,psi_j) */
/**/

if (theta) add_element_matrix(matrix, theta, n, n, dof, dof, a_mat, bound);
add_element_matrix(matrix, 1.0, n, n, dof, dof, c_mat, bound);

/**/
/* f += -(1-theta)*a(u_old,psi_i) + 1/tau*m(u_old,psi_i) */
/**/

if (1.0 - theta)
{

REAL theta1 = 1.0 - theta;
for (i = 0; i < n; i++)
{
if (bound[i] < DIRICHLET)
{

REAL val = 0.0;
for (j = 0; j < n; j++)
val += (c_mat[i][j] - theta1*a_mat[i][j]) * u_old_loc[j];

f_vec[dof[i]] += val;
}

}
}
else
{
for (i = 0; i < n; i++)
{
if (bound[i] < DIRICHLET)
{
REAL val = 0.0;
for (j = 0; j < n; j++)
val += c_mat[i][j]*u_old_loc[j];

f_vec[dof[i]] += val;
}

}
}
el_info = traverse_next(stack, el_info);

}

free_traverse_stack(stack);

L2scp_fct_bas(f, quad, fh);
dirichlet_bound(g, fh, u_h, nil);

return;
}

The build() routine for one time step of the heat equation just calls the assemble()
routine described above, with evaluation times for right hand side and boundary values set
according to the time discretization parameter theta.

static REAL theta = 0.5;
static void build(MESH *mesh, U_CHAR flag)
{
FUNCNAME("build");

3.3. HEAT EQUATION 219

dof_compress(mesh);

INFO(adapt_instat->adapt_space->info, 3)
("%d DOFs for %s\n", fe_space->admin->size_used, fe_space->name);

eval_time_f = adapt_instat->time - (1-theta)*adapt_instat->timestep;
eval_time_g = adapt_instat->time;
assemble(u_old, matrix, f_h, u_h, theta, tau, f, g);

return;
}

The resulting linear system is solved by calling the oem solve s() library routine. This
is done via the solve() subroutine described in Section 3.1.7.

3.3.7 Error estimation

The initial error ‖U0 − u0‖L2(Ω) is calculated exactly (up to quadrature error) by a call to
L2 err(). Local error contributions are written via rw el est() to the estimate value in
struct heat leaf data. The err max and err sum of the ADAPT STAT structure (which will
be adapt instat->adapt initial, see below) are set accordingly.

static REAL est_initial(MESH *mesh, ADAPT_STAT *adapt)
{
adapt->err_sum = L2_err(u, u_h, nil, 0, rw_el_est, &adapt->err_max);
return(adapt->err_sum);

}

In each time step, error estimation is done by the library routine heat est() which
generates both time and space discretization indicators, compare Section 3.3.7. Local ele-
ment indicators are stored to the estimate or est c entries of struct heat leaf data via
rw el est() and rw el estc(). The err max and err sum entries of adapt->adapt space
are set accordingly. The temporal error indicator is the return value by heat est() and is
stored in a global variable for later access by get time est(). For known exact solution,
the true error ‖u(·, tn+1) − Un+1‖L2(Ω) is calculated additionally. After each time step (in
close timestep()), maxima (over time steps) of estimate and error are calculated and com-
pared.

static REAL time_est = 0.0;

static REAL get_time_est(MESH *mesh, ADAPT_INSTAT *adapt)
{
return(time_est);

}

static REAL err_L2 = 0.0;

static FLAGS r_flag = 0; /* = (INIT_UH | INIT_GRD_UH), if needed by r() */

static REAL r(const EL_INFO *el_info, const QUAD *quad, int iq, REAL t,
REAL uh_iq, const REAL_D grd_uh_iq)

{
REAL_D x;
coord_to_world(el_info, quad->lambda[iq], x);
eval_time_f = t;
return(-f(x));

}

220 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

static REAL estimate(MESH *mesh, ADAPT_STAT *adapt)
{
FUNCNAME("estimate");
static int degree;
static REAL C[4] = {-1.0, 1.0, 1.0, 1.0};
static const REAL_DD A = {{1.0,0.0}, {0.0,1.0}};

eval_time_u = adapt_instat->time;

if (C[0] < 0)
{
C[0] = 1.0;
GET_PARAMETER(1, "estimator C0", "%f", &C[0]);
GET_PARAMETER(1, "estimator C1", "%f", &C[1]);
GET_PARAMETER(1, "estimator C2", "%f", &C[2]);
GET_PARAMETER(1, "estimator C3", "%f", &C[3]);

}

degree = 2*u_h->fe_space->bas_fcts->degree;
time_est = heat_est(u_h, adapt_instat, rw_el_est, rw_el_estc,

degree, C, u_old, A, r, r_flag);
err_L2 = L2_err(u, u_h, nil, 0, nil, nil);

INFO(adapt_instat->info, 2)
("time=%.4le ||u-uh||L2 = %.8le\n", adapt_instat->time, err_L2);

INFO(adapt_instat->info, 2)
("time=%.4le estimate = %.8le, max^2=%.3le\n", adapt_instat->time,
adapt_instat->adapt_space->err_sum, adapt_instat->adapt_space->err_max);

return(adapt_instat->adapt_space->err_sum);
}

3.3.8 Time steps

As described in Section 2.13.3, time dependent problems are calculated step by step in single
time steps. Each time step is initialized by a call to init timestep(), where the discrete
solution u h from the old time step (or from interpolation of initial data) is copied to u old.

static void init_timestep(MESH *mesh, ADAPT_INSTAT *adapt)
{
dof_copy(u_h, u_old);
return;

}

One or several iterations with time step adjustment, solution of the discrete time step prob-
lem, and mesh adaption may follow. The problem dependent routines (build(), solve(),
estimate()) were already described above. As time and time step size information are di-
rectly accessed through the global adapt instat pointer, the set time() routine which is
usually thought to give such information, is not used here. When a time step is finished, the
close timestep() routine calculates the global (in time) error and error estimator by taking
the maximum over the local errors (estimators). Current error maxima are printed if output
is requested by adapt instat->info. Finally, a graphic output of the solution and the mesh
is generated via the graphics() routine described in Section 3.1.1.

static REAL err_Max = 0.0; /* max space-time error */

3.3. HEAT EQUATION 221

static REAL est_Max = 0.0; /* max space-time estimate */

static void close_timestep(MESH *mesh, ADAPT_INSTAT *adapt)
{
FUNCNAME("close_timestep");

err_Max = MAX(err_Max, err_L2);

est_Max = MAX(est_Max, adapt_instat->adapt_space->err_sum + time_est);

INFO(adapt_instat->info, 3)
("time=%.4le: time_est = %.4le, timestep = %.4le\n",
adapt_instat->time, time_est, adapt_instat->timestep);

INFO(adapt_instat->info, 3)
("time=%.4le: Max error = %.8le\n", adapt_instat->time, err_Max);

INFO(adapt_instat->info, 3)
("time=%.4le: Max est. = %.8le, ratio=%.3le\n", adapt_instat->time,
est_Max, err_Max/(est_Max+1.0E-20));

graphics(mesh, u_h, get_el_est);
return;

}

3.3.9 The main program for the heat equation

The main purposes of the main program are to read program parameters, generate a mesh and
finite element space, generate the DOF matrix and vectors, and allocate and fill the parameter
structure ADAPT INSTAT for the adaptive method for time dependent problems. The (initial)
time step size, read from parameter file, is reduced when an initial global mesh refinement is
performed. This reduction is automatically adapted to the order of time discretization (2nd
order when θ = 0.5, 1st order otherwise). The complete numerical simulation is then done by
a call to adapt method instat().

/**/
/* main program */
/**/

int main(int argc, char **argv)
{
FUNCNAME("main");
MESH *mesh;
int n_refine = 0, k;
char filename[100];
REAL fac = 1.0;

/**/
/* first of all, init parameters of the init file */
/**/

init_parameters(0, "INIT/heat.dat");
for (k = 1; k+1 < argc; k += 2)
ADD_PARAMETER(4, argv[k], argv[k+1]);

/**/
/* get a mesh, and read the macro triangulation from file */
/**/

222 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

mesh = GET_MESH("ALBERT mesh", init_dof_admin, init_leaf_data);
mesh->preserve_coarse_dofs = 0;
GET_PARAMETER(1, "macro file name", "%s", filename);
read_macro(mesh, filename, nil);
GET_PARAMETER(1, "global refinements", "%d", &n_refine);
global_refine(mesh, n_refine*DIM);
graphics(mesh, nil, nil);
GET_PARAMETER(4, "theta", "%e", &theta);
if (theta < 0.5)
{
WARNING("You are using an explicit scheme\n");
WARNING("Use a sufficiently small time step size!!!\n");
fac = 1.0e-3;

}
MSG("theta = %lf\n", theta);

matrix = get_dof_matrix("A", fe_space);
f_h = get_dof_real_vec("f_h", fe_space);
u_h = get_dof_real_vec("u_h", fe_space);
u_h->refine_interpol = fe_space->bas_fcts->real_refine_inter;
u_h->coarse_restrict = fe_space->bas_fcts->real_coarse_inter;
u_old = get_dof_real_vec("u_old", fe_space);
u_old->refine_interpol = fe_space->bas_fcts->real_refine_inter;
u_old->coarse_restrict = fe_space->bas_fcts->real_coarse_inter;
dof_set(0.0, u_h); /* initialize u_h ! */

/**/
/* init adapt structure and start adaptive method */
/**/

adapt_instat = get_adapt_instat("heat", "adapt", 1, adapt_instat);
if (theta == 0.5)
adapt_instat->timestep *= fac*pow(2, -n_refine);

else
adapt_instat->timestep *= fac*pow(2, -n_refine*DIM);

adapt_instat->start_time = 0.0;
adapt_instat->end_time = 1.0;

adapt_instat->adapt_initial->estimate = est_initial;
adapt_instat->adapt_initial->solve = interpol_u0;
adapt_instat->adapt_initial->get_el_est = get_el_est;

adapt_instat->adapt_space->get_el_est = get_el_est;
adapt_instat->adapt_space->get_el_estc = get_el_estc;
adapt_instat->adapt_space->estimate = estimate;
adapt_instat->adapt_space->build_after_coarsen = build;
adapt_instat->adapt_space->solve = solve;

adapt_instat->init_timestep = init_timestep;
adapt_instat->get_time_est = get_time_est;
adapt_instat->close_timestep = close_timestep;

adapt_method_instat(mesh, adapt_instat);

3.3. HEAT EQUATION 223

MSG("space-time Max error: %.8le\n", err_Max);
MSG("space-time estimate: %.8le, ratio=%.3le\n",

est_Max, err_Max/(est_Max+1.0E-20));

WAIT_REALLY;
return(0);

}

3.3.10 The parameter file for the heat equation

Figure 3.4: Time step size (left) and number of 2d mesh elements (right) over time.

Figure 3.5: Time step size (left) and number of 3d mesh elements (right) over time.

Figures 3.4 and 3.5 show the variation of time step sizes and number of mesh elements over
time, automatically generated by the adaptive method in two and three space dimensions,
with prescribed error tolerance 0.01. Parameters for the program were given by the following
data in INIT/heat.dat.

macro file name: Macro/macro.stand
global refinements: 1
polynomial degree: 2

graphic windows: 300 300

solver: 2 % 1: BICGSTAB 2: CG 3: GMRES 4: ODIR 5: ORES
solver max iteration: 1000

224 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

solver restart: 10 % only used for GMRES
solver tolerance: 1.e-8
solver info: 2
solver precon: 1 % 0: no precon 1: diag precon

adapt->tolerance: 0.01
adapt->timestep: 0.01
adapt->rel_initial_error: 0.5
adapt->rel_space_error: 0.5
adapt->rel_time_error: 0.5
adapt->strategy: 1 % 0=explicit, 1=implicit
adapt->max_iteration: 1
adapt->info: 3

adapt->initial->strategy: 2 % 0=none, 1=GR, 2=MS, 3=ES, 4=GERS
adapt->initial->max_iteration: 10
adapt->initial->info: 2

adapt->space->strategy: 3 % 0=none, 1=GR, 2=MS, 3=ES, 4=GERS
adapt->space->ES_theta: 0.9
adapt->space->ES_theta_c: 0.05
adapt->space->max_iteration: 2
adapt->space->coarsen_allowed: 1 % 0|1
adapt->space->info: 2

estimator C0: 1.0
estimator C1: 1.0
estimator C2: 1.0
estimator C3: 1.0

theta: 1.0
WAIT: 0

3.4 File organization, ALBERT libraries, and Makefiles

3.4.1 File organization

Using the ALBERT library, the dimension enters in an application only by the parameters DIM
and DIM OF WORLD. Thus, the code is usually the same for 2d and 3d simulations. Neverthe-
less, the object files do depend on the dimension, since DIM and DIM OF WORLD are symbolic
constants (which define the length of vectors, e.g.). Hence, all object files have to be re-
built, when changing the dimension. To make sure that this is done automatically we use the
following file organization.

For an application we use three sub–directories

./2d ./3d ./Common

The directory Common contains all source files and header files that do not (or only slightly)
depend on the dimension. All files from Common are the linked to the 2d and 3d directories (by
ln -s ../Common/* ., executed in ./2d and ./3d). These directories may also hold some
source files which strongly depend on the dimension (usually, there are none of these files!).
In the 2[3]d directory the 2[3]d macro triangulations, init files for the 2[3]d simulations, the
2[3]d-Makefile, and the object files for 2[3]d are located. The source files are still the same
for 2d and 3d (those located in Common) and changes in one directory will be detected by

3.4. FILE ORGANIZATION, ALBERT LIBRARIES, AND MAKEFILES 225

the Makefile in the other directory, too. On the other hand, the object files are different for
2d and 3d (they are not located in Common!).

3.4.2 ALBERT libraries

The ALBERT libraries not only depend on the dimension, but on the values of the symbolic
constants NEIGH IN EL and EL INDEX too. Additionaly, the object files in the library may
depend on some machine defined optimization flag (like the -mips2 or -mips4 flag for SGI).
For the organization of the ALBERT libraries we use the follwoing convention: the name of
an ALBERT library is

libALBERT(DIM)(DIM_OF_WORLD)$(NEIGH_IN_EL)$(EL_INDEX)$(DEBUG)$(MOFLAG).a

where DEBUG is a variable which may be 0 or 1, referring to a library with or without debugging
information, and MOFLAG is a string storing the machine optimization flag or an empty string.

The matching ALBERT library is chosen automatically by the Makefile described below.

3.4.3 Makefiles

The Makefile used for the compilation of the above described problems in 2d is the following.
For the three applications ellipt, nonlin, and heat the corresponding object files are defined
in the last part of the file. A default target for the Makefile can be defined by the variable
DEFAULT.

##
Sample ALBERT Makefile for 2d
##

DEFAULT = ellipt

delete line, if ALBERT_LIB_PATH is an environment variable
ALBERT_LIB_PATH = /usr/people/kunibert/ALBERT-1.0/lib
include $(ALBERT_LIB_PATH)/Makefile

uncomment line, for using GRAPE library
#GRAPE_LIB = /usr/people/kunibert/ALBERT-1.0/lib

MOFLAG is machine dependent OFLAG -mips2-4 on SGIs, e.g.
#MOFLAG = -mips4
default compile flags
#CFLAGS = -xansi
default optimization flags
#OFLAG = -O3
uncomment line for debugging
#OFLAG = -g
uncomment line for using the debug library
#DEBUG = 1

##
DFLAGS: DIM, DIM_OF_WORLD, NEIGH_IN_EL, EL_INDEX
##
DIM = 2
DIM_OF_WORLD = 2
EL_INDEX = 1
NEIGH_IN_EL = 0

226 CHAPTER 3. IMPLEMENTATION OF MODEL PROBLEMS

##
and now the user’s files
##

ELLIPT_OFILES = ellipt.o graphics.o

ellipt: $(ELLIPT_OFILES)
$(LD) $(MOFLAG) -o $@ $(ELLIPT_OFILES) $(LIBS)

NONLIN_OFILES = nonlin.o nlprob.o nlsolve.o graphics.o
$(NONLIN_OFILES): nonlin.h

nonlin: $(NONLIN_OFILES)
$(LD) $(MOFLAG) -o $@ $(NONLIN_OFILES) $(LIBS)

HEAT_OFILES = heat.o graphics.o

heat: $(HEAT_OFILES)
$(LD) $(MOFLAG) -o $@ $(HEAT_OFILES) $(LIBS)

The Makefile for 3d simulations only differs in the following lines

##
DFLAGS: DIM, DIM_OF_WORLD, NEIGH_IN_EL, EL_INDEX
##
DIM = 3
DIM_OF_WORLD = 3
EL_INDEX = 1
NEIGH_IN_EL = 0

The most important variable inside the Makefile is ALBERT LIB PATH which contains the
path, where the ALBERT libraries are installed. This variable may also be defined as an
environment variable.

The variables DIM, DIM OF WORLD, EL INDEX, and NEIGH IN EL are the symbolic constants
defining the dimension of the triangulation, etc. They are not defined by a #define statement
in albert.h, but defined via the C-preprocessor. Hence, a special rule for compiling ALBERT
source is needed.

Such a rule and the matching library are defined in a master Makefile, located in the
ALBERT LIB PATH and is included, after the definition of the library path. In that makefile, all
libraries used are collected in the variable LIBS which is used on the link line for all targets.
Default values are set for MOFLAG, CFLAGS, OFLAG (depending on the compilers), and DEBUG
is set to 0.

Finally, targets for removing object files (cleano), object files and backup files from emacs
(clean), and a target for recompiling all source files for the default target (new) are defined.

For a Linux environment with GNU compilers and the BLAS library installed in
/usr/local/lib/libblas.a, this master Makefile reads:

##
C and FORTRAN compilers and loader
##

CC = gcc
FC = g77
LD = gcc

##

3.4. FILE ORGANIZATION, ALBERT LIBRARIES, AND MAKEFILES 227

default settings
##

MOFLAG =
CFLAGS = -pedantic -Wall
OFLAG = -O3
DEBUG = 0

##
used libraries
##

BLAS_LIB = -L/usr/local/lib -lblas
GLTOOLS_LIB = -lgltools$(MOFLAG)
PLOT_LIB = -lPLOTansi$(MOFLAG)
GRAPE_LIB =
GLX11_LIB = -lGL -L/usr/X11R6/lib -lX11 -lXext -rdynamic -ldl

##
define flags and compile commands
##

DFLAGS = -DDIM=$(DIM) -DDIM_OF_WORLD=$(DIM_OF_WORLD)\
-DNEIGH_IN_EL=$(NEIGH_IN_EL) -DEL_INDEX=$(EL_INDEX)

.c.o:
$(CC) -c $(MOFLAG) $(OFLAG) $(CFLAGS) $(DFLAGS) -I$(ALBERT_LIB_PATH) $<

.f.o:
$(FC) -c $(MOFLAG) $(FFLAGS) $(OFLAG) $<

##
the ALBERT library and libraries used by ALBERT
##

ALBERT_LIB =\
-lALBERT(DIM)(DIM_OF_WORLD)$(NEIGH_IN_EL)$(EL_INDEX)$(DEBUG)$(MOFLAG)

LIBS = -L$(ALBERT_LIB_PATH) $(ALBERT_LIB) -lcsolver$(MOFLAG) $(BLAS_LIB)\
$(GLTOOLS_LIB) $(PLOT_LIB) $(GRAPE_LIB) $(GLX11_LIB) -lm

##
some often used targets
##

default: $(DEFAULT)

.PHONY: clean cleano new
clean:

-rm *.o *~

cleano:
-rm *.o

new: cleano default

Bibliography

[1] I. Babuška and W. Rheinboldt, Error estimates for adaptive finite element compu-
tations, SIAM J. Numer. Anal., 15 (1978), pp. 736–754.

[2] E. Bänsch, Local mesh refinement in 2 and 3 dimensions, IMPACT Comput. Sci. En-
grg., 3 (1991), pp. 181–191.

[3] , Adaptive finite element techniques for the Navier–Stokes equations and other tran-
sient problems, in Adaptive Finite and Boundary Elements, C. A. Brebbia and M. H.
Aliabadi, eds., Computational Mechanics Publications and Elsevier, 1993, pp. 47–76.

[4] E. Bänsch and K. G. Siebert, A posteriori error estimation for nonlinear problems
by duality techniques. Preprint 30, Universität Freiburg, 1995.

[5] J. Bey, Tetrehedral grid refinement. Report 18, SFB 382 Tübingen, 1995.

[6] F. A. Borneman, An adaptive multilevel approach to parabolic equations I, IMPACT
Comput. Sci. Engrg., 2 (1990), pp. 279–317.

[7] , An adaptive multilevel approach to parabolic equations II, IMPACT Comput. Sci.
Engrg., 3 (1990), pp. 93–122.

[8] , An adaptive multilevel approach to parabolic equations III, IMPACT Comput. Sci.
Engrg., 4 (1992), pp. 1–45.

[9] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, 1987.

[10] R. Cools and P. Rabinowitz, Monomial cubature rules since ”‘Stroud”’: a compila-
tion, J. Comput. Appl. Math., 48 (1993), pp. 309–326.

[11] L. Demkowicz, J. T. Oden, W. Rachowicz, and O. Hardy, Toward a universal h–
p adaptive finite element strategy, Part 1 – Part 3, Comp. Methods Appl. Mech. Engrg.,
77 (1989), pp. 79–212.

[12] J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson, An extended set of
Fortran Basic Linear Algebra Subprograms, ACM Trans. Math. Softw., 14 (1988), pp. 1–
32.

[13] W. Dörfler, FORTRAN–Bibliothek der Orthogonalen Fehler–Methoden, Manual,
Mathematische Fakultät Freiburg, 1995.

[14] W. Dörfler, A robust adaptive strategy for the nonlinear poisson equation, Computing,
55 (1995), pp. 289–304.

[15] , A convergent adaptive algorithm for poisson’s equation, SIAM J. Numer. Anal., 33
(1996), pp. 1106–1124.

228

BIBLIOGRAPHY 229

[16] , A time- and spaceadaptive algorithm for the linear time-dependent Schrödinger
equation, Numer. Math., 73 (1996), pp. 419–448.

[17] D. Dunavant, High degree efficient symmetrical Gaussian quadrature rules for the tri-
angle, Int. J. Numer. Methods Eng., 21 (1985), pp. 1129–114.

[18] G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math., 58 (1991), pp. 603 –
611.

[19] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems
I: A linear model problem, SIAM J. Numer. Anal., 28 (1991), pp. 43–77.

[20] J. Fröhlich, J. Lang, and R. Roitzsch, Selfadaptive finite element computations
with smooth time controller and anisotropic refinement. Preprint SC 96-16, ZIB Berlin,
1996.

[21] J. Fuhrmann and H. Langmach, gltools: OpenGL based online visualization. Software:
http://www.wias-berlin.de/\~gltools.

[22] K. Gatermann, The construction of symmetric cubature formulas for the square and
the triangle, Computing, 40 (1988), pp. 229–240.

[23] H. Jarausch, On an adaptive grid refining technique for finite element approximations,
SIAM J. Sci. Stat. Comput., 7 (1986), pp. 1105–1120.

[24] H. Kardestuncer, ed., Finite Element Handbook, McGraw-Hill, New York, 1987.

[25] R. Kornhuber and R. Roitzsch, On adaptive grid refinement in the presence of
internal or boundary layers, IMPACT Comput. Sci. Engrg., 2 (1990), pp. 40–72.

[26] I. Kossaczký, A recursive approach to local mesh refinement in two and three dimen-
sions, J. Comput. Appl. Math., 55 (1994), pp. 275–288.

[27] C. Lawson, R. Hanson, D. Kincaid, and F. Krough, Basic Linear Algebra Sub-
programs for Fortran usage, ACM Trans. Math. Softw., 5 (1979), pp. 308–325.

[28] J. M. Maubach, Local bisection refinement for n-simplicial grids generated by reflection,
SIAM J. Sci. Comput., 16 (1995), pp. 210–227.

[29] W. Mitchell, A comparison of adaptive refinement techniques for elliptic problems,
ACM Trans. Math. Softw., 15 (1989), pp. 326–347.

[30] P. Morin, R. H. Nochetto, and K. G. Siebert, Data oscillation and convergence
of adaptive FEM. Preprint 17/99 Freiburg, 1999. To appear in SINUM.

[31] R. H. Nochetto, M. Paolini, and C. Verdi, An adaptive finite element method
for two-phase Stefan problems in two space dimensions. Part II: Implementation and
numerical experiments, SIAM J. Sci. Stat. Comput., 12 (1991), pp. 1207–1244.

[32] A. Schmidt and K. G. Siebert, A posteriori estimators for the h–p version of the
finite element method in 1d. Preprint 35/97 Freiburg, 1997.

[33] J. Schoeberl, NETGEN: An advancing front 2D/3D-mesh generator based on abstract
rules., Comput. Vis. Sci., 1 (1997), pp. 41–52.

[34] SFB 256, GRAPE – GRAphics Programming Environment Manual, Version 5.0, Bonn,
1995.

230 BIBLIOGRAPHY

[35] J. R. Shewchuk, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator, in Applied Computational Geometry: Towards Geometric Engineering,
M. C. Lin and D. Manocha, eds., vol. 1148 of Lecture Notes in Computer Science,
Springer-Verlag, May 1996, pp. 203–222. From the First ACM Workshop on Applied
Computational Geometry.

[36] K. G. Siebert, A posteriori error estimator for anisotropic refinement, Numer. Math.,
73 (1996), pp. 373–398.

[37] A. H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, Englewood
Cliffs, NJ, 1971.

[38] R. Verfürth, A posteriori error estimates for nonlinear problems: Finite element dis-
cretization of elliptic equations, Math. Comp., 62 (1994), pp. 445–475.

[39] , A posteriori error estimation and adaptive mesh–refinement techniques, J. Comp.
Appl. Math., 50 (1994), pp. 67–83.

[40] O. C. Zienkiewicz, D. W. Kelly, J. Gago, and I. Babuška, Hierarchical finite
element approaches, error estimates and adaptive refinement, in The mathematics of
finite elements and applications IV, J. Whiteman, ed., Academic Press, 1982, pp. 313–
346.

Index

ABS(), 49
ADAPT INSTAT, 159
adapt mesh(), 157
adapt method instat(), 159, 160
adapt method stat(), 157
adapt method stat(), 154
ADAPT STAT, 154
adaptive methods, 39–48, 154–163

ADAPT INSTAT, 159
adapt mesh(), 157
adapt method instat(), 159, 160
adapt method stat(), 154
adapt method stat(), 157
ADAPT STAT, 154
adaptive strategy, 40
coarsening strategies, 43
equidistribution strategy, 41
estimate(), 156
get adapt instat(), 162
get adapt stat(), 162
get el est(), 156
get el estc(), 156
guaranteed error reduction strategy, 42
marking strategies, 40
maximum strategy, 41
one timestep(), 161
stationary problems, 39
strategies for time dependent prob-

lems, 45
time and space adaptive strategy, 47
time dependent problems, 45
time step size control, 46

add element d vec(), 133
add element matrix(), 133
add element vec(), 133
ADD PARAMETER(), 57
add parameter(), 57
ALBERT libraries, 230
albert alloc(), 53
albert calloc(), 53
albert free(), 53
albert matrix(), 54

albert realloc(), 53
assemblage of discrete system, 36–39

load vector, 36
system matrix, 37

assemblage tools, 132–154
add element d vec(), 133
add element matrix(), 133
add element vec(), 133
dirichlet bound(), 152
dirichlet bound d(), 152
EL MATRIX INFO, 135
EL VEC D INFO, 149
EL VEC INFO, 149
fill matrix info(), 140
get q00 psi phi(), 148
get q01 psi phi(), 146
get q10 psi phi(), 148
get q11 psi phi(), 145
interpol(), 153
interpol d(), 153
L2scp fct bas(), 151
L2scp fct bas d(), 151
OPERATOR INFO, 137
Q00 PSI PHI, 148
Q01 PSI PHI, 146
Q10 PSI PHI, 147
Q11 PSI PHI, 144
update matrix(, 136
update real d vec(), 150
update real vec(), 150

ball project(), 76
barycentric coordinates, 26–28

coord to world(), 121
el grd lambda(), 121
world to coord(), 121

BAS FCT, 101
BAS FCTS, 101
bisection

newest vertex, 15
procedure of Kossaczký, 15

BOUNDARY, 62

231

232 INDEX

CALL EL LEVEL, 77
CALL EVERY EL INORDER, 77
CALL EVERY EL POSTORDER, 77
CALL EVERY EL PREORDER, 77
CALL LEAF EL, 77
CALL LEAF EL LEVEL, 77
CALL MG LEVEL, 77
change error out(), 52
change msg out(), 52
check and get mesh(), 71
clear dof matrix(), 89
clear workspace(), 55
close gltools window(), 183
coarse restrict(), 88, 100
coarsen(), 100
coarsening

algorithm, 19
atomic coarsening operation, 19
coarsening algorithm, 20
interpolation of DOF vectors, 22, 33,

100
restriction of DOF vectors, 22, 32, 100

coarsening strategies, 43
conforming triangulation, 13
coord to world(), 121
curved boundary, 62

D2 BAS FCT, 101
D2 uh at qp(), 129
D2 uh d at qp(), 129
data types

ADAPT INSTAT, 159
ADAPT STAT, 154
BAS FCT, 101
BAS FCTS, 101
BOUNDARY, 62
D2 BAS FCT, 101
DOF, 83
DOF ADMIN, 83
DOF FREE UNIT, 83
DOF INT VEC, 85
DOF MATRIX, 89
DOF REAL D VEC, 85
DOF REAL VEC, 85
DOF SCHAR VEC, 85
DOF UCHAR VEC, 85
EL, 64
EL INFO, 65
EL MATRIX INFO, 135
EL VEC D INFO, 149

EL VEC INFO, 149
FE SPACE, 119
FLAGS, 49
GLTOOLS WINDOW, 183
GRAPH RGBCOLOR, 180
GRAPH WINDOW, 180
GRD BAS FCT, 101
LEAF DATA INFO, 68
MACRO EL, 63
MATRIX ROW, 88
MESH, 70
MULTI GRID INFO, 173
NLS DATA, 177
OEM DATA, 168
OEM SOLVER, 171
OPERATOR INFO, 137
PARAMETRIC, 71
PRECON, 173
Q00 PSI PHI, 148
Q01 PSI PHI, 146
Q10 PSI PHI, 147
Q11 PSI PHI, 144
QUAD, 122
QUAD FAST, 124
RC LIST EL, 69
REAL, 49
REAL D, 60
REAL DD, 60
S CHAR, 49
TRAVERSE STACK, 80
U CHAR, 49
WORKSPACE, 54

DIM, 60
DIM OF WORLD, 60
DIRICHLET, 62
Dirichlet boundary, 62
dirichlet bound(), 152
dirichlet bound d(), 152
DIST DOW(), 60
div uh d at qp(), 129
DOF, 83
DOF ADMIN, 83
dof asum(), 92
dof axpy(), 92
dof axpy d(), 92
dof compress(), 85
dof copy(), 92
dof copy d(), 92
dof dot(), 92
dof dot d(), 92

INDEX 233

dof gemv(), 92
DOF INT VEC, 85
DOF MATRIX, 89

ENTRY NOT USED(), 88
ENTRY USED(), 88
MATRIX ROW, 88
NO MORE ENTRIES, 88
ROW LENGTH, 88
UNUSED ENTRY, 88

dof max(), 92
dof min(), 92
dof mv(), 92
dof mv d(), 92
dof nrm2(), 92
dof nrm2 d(), 92
DOF REAL D VEC, 85
DOF REAL VEC, 85
dof scal(), 92
dof scal d(), 92
DOF SCHAR VEC, 85
dof set(), 92
dof set d(), 92
DOF UCHAR VEC, 85
dof xpay(), 92
dof xpay d(), 92
degree of freedom (DOFs), 24
DOFs, 24–26, 82–92

adding and removing of DOFs, 97–99,
100

boundary type, 62
entries in the el structure, 90
entries in the mesh structure, 91
FOR ALL DOFS, 90
FOR ALL FREE DOFS, 90
DOFs
get dof indices(), 92

init dof admin(), 120
initialization of DOFs on a mesh, 72
relation global and local DOFs, 29

EL, 64
el det(), 121
el grd lambda(), 121
EL INDEX, 61
EL INFO, 65
EL MATRIX INFO, 135
EL TYPE(), 67
EL VEC D INFO, 149
EL VEC INFO, 149
el volume(), 121

element indices, 61
ellipt est(), 163
enlarge dof lists(), 85
equidistribution strategy, 41
error estimators, 163–167

ellipt est(), 163
heat est(), 166

ERROR(), 51
ERROR EXIT(), 51
estimate(), 156
eval D2 uh(), 126
eval D2 uh d(), 126
eval D2 uh d fast(), 128
eval D2 uh fast(), 128
eval div uh d(), 126
eval div uh d fast(), 128
eval grd uh(), 126
eval grd uh d(), 126
eval grd uh d fast(), 128
eval grd uh fast(), 128
eval uh(), 126
eval uh d(), 126
eval uh d fast(), 128
eval uh fast(), 128
evaluation of derivatives, 30
evaluation of finite element functions, 29

D2 uh at qp(), 129
D2 uh d at qp(), 129
div uh d at qp(), 129
eval D2 uh(), 126
eval D2 uh d(), 126
eval D2 uh d fast(), 128
eval D2 uh fast(), 128
eval div uh d(), 126
eval div uh d fast(), 128
eval grd uh(), 126
eval grd uh d(), 126
eval grd uh d fast(), 128
eval grd uh fast(), 128
eval uh(), 126
eval uh d(), 126
eval uh d fast(), 128
eval uh fast(), 128
grd uh at qp(), 129
grd uh d at qp(), 129
uh at qp(), 129
uh d at qp(), 129

f at qp(), 123
f d at qp(), 123

234 INDEX

false, 49
FE SPACE, 119
file organization, 229–230
FILL BOUND, 78
FILL COORDS, 78
fill elinfo(), 78
fill macro info(), 78
fill matrix info(), 140
FILL NEIGH, 78
FILL NOTHING, 78
FILL OPP COORDS, 78
FILL ORIENTATION, 78
find el at pt(), 82
finite element discretization, 34–39
finite element spaces, 28–29
FLAGS, 49
FOR ALL DOFS, 90
FOR ALL FREE DOFS, 90
free albert matrix(), 54
free dof dof vec(), 86
free dof int vec(), 86
free dof matrix(), 89
free dof real d vec(), 86
free dof real vec(), 86
free dof schar vec(), 86
free dof uchar vec(), 86
free int dof vec(), 86
free mesh(), 72
free traverse stack(), 80
free workspace(), 55
FUNCNAME(), 50

get adapt instat(), 162
get adapt stat(), 162
get bas fcts, 106
GET BOUND(), 62
get bound()

entry in BAS FCTS structure, 103
get bound()

for linear elements, 108
get diag precon d(), 173
get diag precon s(), 173
get dof dof vec(), 86
get dof indices()

entry inBAS FCTS structure, 103
get dof indices()

for linear elements, 107
for quadratic elements, 110

get dof int vec(), 86
get dof matrix(), 89

get dof real d vec(), 86
get dof real vec(), 86
get dof schar vec(), 86
get dof uchar vec(), 86
GET DOF VEC(), 86
get el est(), 156
get el estc(), 156
get fe space(), 119
get HB precon d(), 173
get HB precon s(), 173
get int dof vec(), 86
get int vec()

for linear elements, 105
get lagrange, 119
GET MESH(), 71
get mesh(), 71
GET PARAMETER(), 58
get parameter(), 58
get q00 psi phi()), 148
get q01 psi phi()), 146
get q10 psi phi()), 148
get q11 psi phi()), 145
get quad fast(), 125
get quadrature(), 122
get traverse stack(), 80
global coarsen(), 100
global refine(), 95
gltools graphics, 81
gltools drv(), 183
gltools drv d(), 183
gltools est(), 183
gltools mesh(), 183
GLTOOLS WINDOW, 183
GRAPE graphic, 80
GRAPE graphics, 81
graph clear window(), 180
graph close window(), 180
graph el est(), 182
graph level(), 181
graph level d(), 182
graph levels(), 181
graph levels d(), 182
graph mesh(), 181
graph open window(), 180
GRAPH RGBCOLOR, 180
graph values(), 182
graph values d(), 182
graph vec(), 182
GRAPH WINDOW, 180
graphics routines, 179–184

INDEX 235

close gltools window(), 183
gltools drv(), 183
gltools drv d(), 183
gltools est(), 183
gltools mesh(), 183
GLTOOLS WINDOW, 183
graph clear window(), 180
graph close window(), 180
graph el est(), 182
graph level(), 181
graph level d(), 182
graph levels(), 181
graph levels d(), 182
graph mesh(), 181
graph open window(), 180
GRAPH RGBCOLOR, 180
graph values(), 182
graph values d(), 182
graph vec(), 182
GRAPH WINDOW, 180
NO WINDOW, 180
open gltools window(), 183
rgb black, 180
rgb blue, 180
rgb cyan, 180
rgb green, 180
rgb grey50, 180
rgb magenta, 180
rgb red, 180
rgb white, 180
rgb yellow, 180

grd f at qp(), 123
GRD BAS FCT, 101
grd f d at qp(), 123
grd uh at qp(), 129
grd uh d at qp(), 129
guaranteed error reduction strategy, 42

H1 err(), 131
H1 err d(), 131
H1 norm uh(), 130
H1 norm uh d(), 130
Heat equation

implementation, 217
heat est(), 166
hierarchical mesh, 22

implementation of model problems, 185–
233

Heat equation, 217
nonlinear Poisson equation, 197

Poisson equation, 185
include files

albert.h, 49, 231
albert util.h, 49
nls.h, 177
oem.h, 168

INDEX(), 68
INFO(), 51
INIT D2 PHI, 124
init dof admin(), 120
init dof admins(), 72
init element(), 138

Example, 142
INIT GRD PHI, 124
init leaf data(), 72
init mat vec d(), 172
init mat vec s(), 172
init parameters(), 56
init parameters cpp(), 56
INIT PHI, 124
initialization of meshes, 71
integrate std simp(), 122
INTERIOR, 62
interior node, 62
interpol(d)

entry in BAS FCTS structure, 103
interpol(), 153
interpol() for linear elements, 108
interpol d(), 153
interpolation, 87
interpolation and restriction of DOF vec-

tors, 31–34
interpolation of DOF vectors, 22, 32, 33
IS DIRICHLET(), 62
IS INTERIOR(), 62
IS LEAF EL(), 69
IS NEUMANN(), 62

L2 err(), 131
L2 err d(), 131
L2 norm uh(), 130
L2 norm uh d(), 130
L2scp fct bas(), 151
L2scp fct bas d(), 151
LALt(), 138

Example, 142
leaf data, 24

transformation during coarsening, 100
transformation during refinement, 97

LEAF DATA(), 69

236 INDEX

LEAF DATA INFO, 68
linear solver

NLS DATA, 177
OEM DATA, 168
OEM SOLVER, 171

linear solvers, 168–177
oem bicgstab(), 169
oem cg(), 169
oem gmres(), 169
oem odir(), 169
oem ores(), 169
oem solve d(), 171
oem solve s(), 171
sor d(), 171
sor s(), 171
ssor d(), 171
ssor s(), 171

local numbering
edges, 63
faces, 63
neighbours, 63
vertices, 15

macro triangulation, 14
example of a macro triangulation in

2d/3d, 75, 76
macro triangulation file, 72
read macro(), 73
reading macro triangulations, 72
write macro(), 77
writing macro triangulations, 77

MACRO EL, 63
Makefile, 230–233
marking strategies, 40
MAT ALLOC(), 54
MAT FREE(), 54
mat vec d(), 172
mat vec s(), 172
MAX(), 49
max err at qp(), 131
max err at qp d(), 131
max quad points(), 126
maximum strategy, 41
MEM ALLOC(), 53
MEM CALLOC(), 53
MEM FREE(), 53
MEM REALLOC(), 53
memory (de–) allocation, 53–55

albert alloc(), 53
albert calloc(), 53

albert free(), 53
albert matrix(), 54
albert realloc(), 53
clear workspace(), 55
free albert matrix(), 54
free workspace(), 55
MAT ALLOC(), 54
MAT FREE(), 54
MEM ALLOC(), 53
MEM CALLOC(), 53
MEM FREE(), 53
MEM REALLOC(), 53
REALLOC WORKSPACE(), 55
realloc workspace(), 54

MESH, 70
mesh coarsening, 19–20, 100
mesh refinement, 14–19, 95–100
mesh refinement and coarsening, 12–22
mesh traversal, 77–82
mesh traverse(), 79
messages, 50
MG(), 174
mg s(), 176
mg s exit(), 176
mg s init(), 176
mg s solve(), 176
MIN(), 49
MSG(), 50
msg info, 51
MULTI GRID INFO, 173

N EDGES, 61
N FACE, 61
N NEIGH, 61
N VERTICES, 61
NEIGH(), 67
NEIGH IN EL, 61
neighbour information, 61
NEUMANN, 62
Neumann boundary, 62
new bas fcts, 105
nil, 49
NLS DATA, 177
nls newton(), 178
nls newton ds(), 178
nls newton fs(), 178
NO WINDOW, 180
nonlinear Poisson equation

implementation, 197
nonlinear solvers, 177–179

INDEX 237

nls newton(), 178
nls newton ds(), 178
nls newton fs(), 178

NORM DOW(), 60
numerical quadrature, 36

D2 uh at qp(), 129
D2 uh d at qp(), 129
div uh d at qp(), 129
get quad fast(), 125
get quadrature(), 122
grd uh at qp(), 129
grd uh d at qp(), 129
INIT D2 PHI, 124
INIT GRD PHI, 124
INIT PHI, 124
integrate std simp(), 122
max quad points(), 126
QUAD, 122
QUAD FAST, 124
uh at qp(), 129
uh d at qp(), 129

oem bicgstab(), 169
oem cg(), 169
OEM DATA, 168
oem gmres(), 169
oem odir(), 169
oem ores(), 169
oem solve d(), 171
oem solve s(), 171
OEM SOLVER, 171
one timestep(), 161
open error file(), 52
open gltools window(), 183
open msg file(), 52
OPERATOR INFO, 137
OPP VERTEX(), 67

param bound(), 62
ball project(), 76

parameter file, 55
parameter handling, 55–60

ADD PARAMETER(), 57
add parameter(), 57
GET PARAMETER(), 58
get parameter(), 58
init parameters(), 56
init parameters cpp(), 56
save parameters(), 58

PARAMETRIC, 71
parametric simplex, 13

Poisson equation
implementation, 185

PRECON, 173
preconditioner

diagonal, 171, 173
hierarchical basis, 171, 173

preserve coarse dofs, 99
print dof int vec(), 87
print dof matrix(), 89
print dof real d vec(), 87
print dof real vec(), 87
print dof schar vec(), 87
print dof uchar vec(), 87
PRINT INFO(), 51
print msg(), 50

Q00 PSI PHI, 148
Q01 PSI PHI, 146
Q10 PSI PHI, 147
Q11 PSI PHI, 144
QUAD, 122
QUAD FAST, 124

RC LIST EL, 69, 96
read dof int vec(), 94
read dof int vec xdr(), 94
read dof real d vec(), 94
read dof real d vec xdr(), 94
read dof real vec(), 94
read dof real vec xdr(), 94
read dof schar vec(), 94
read dof schar vec xdr(), 94
read dof uchar vec(), 94
read dof uchar vec xdr(), 94
read macro(), 73
read mesh(), 94
read mesh xdr(), 94
REAL, 49
real coarse restr()

for linear elements, 109
REAL D, 60
REAL DD, 60
real refine inter()

for quadratic elements, 113
real refine inter()

for linear elements, 109
for quadratic elements, 111

REALLOC WORKSPACE(), 55
realloc workspace(), 54
reference element, 67
refine(), 95

238 INDEX

refine interpol(), 88, 99
refinement

algorithm, 14
atomic refinement operation, 15
bisection, 14
DOFs

handed from parent to children, 97
newly created, 98
removed on the parent, 99

edge, 14
interpolation of DOF vectors, 22, 32,

99
local numbering

edges, 63
faces, 63
neighbours, 63
vertices, 15

recursive refinement algorithm, 18
restriction, 87
restriction of DOF vectors, 22, 32
rgb black, 180
rgb blue, 180
rgb cyan, 180
rgb green, 180
rgb grey50, 180
rgb magenta, 180
rgb red, 180
rgb white, 180
rgb yellow, 180

save parameters(), 58
SCP DOW(), 60
SET VAL DOW(), 60
simplex, 13
sor d(), 171
sor s(), 171
SQR(), 49
ssor d(), 171
ssor s(), 171
standard simplex, 13
strategies for time dependent problems, 45

TEST(), 51
TEST EXIT(), 51
time and space adaptive strategy, 47
time step size control, 46
traverse first(), 80
traverse neighbour(), 81
traverse next(), 80
TRAVERSE STACK, 80
triangulation, 13

true, 49

S CHAR, 49
U CHAR, 49
uh at qp(), 129
uh d at qp(), 129
update matrix(), 136
update real d vec(), 150
update real vec(), 150

WAIT, 60
WAIT, 52
WAIT REALLY, 52
WARNING(), 52
WORKSPACE, 54
world to coord(), 121
write dof int vec(), 94
write dof int vec xdr(), 94
write dof real d vec(), 94
write dof real d vec xdr(), 94
write dof real vec(), 94
write dof real vec xdr(), 94
write dof schar vec(), 94
write dof schar vec xdr(), 94
write dof uchar vec(), 94
write dof uchar vec xdr(), 94
write macro(), 77
write mesh(), 94
write mesh xdr(), 94

XDR, 94

Data types, symbolic constants,
functions, and macros

List of data types

ADAPT INSTAT, 157
ADAPT STAT, 152
BAS FCTS, 101
BAS FCT, 100
BOUNDARY, 63
D2 BAS FCT, 100
DOF ADMIN, 83
DOF FREE UNIT, 83
DOF INT VEC, 85
DOF MATRIX, 89
DOF REAL D VEC, 85
DOF REAL VEC, 85
DOF SCHAR VEC, 85
DOF UCHAR VEC, 85
DOF, 83
EL INFO, 66
EL MATRIX INFO, 133
EL VEC D INFO, 147
EL VEC INFO, 147
EL, 65
FE SPACE, 118
FLAGS, 50
GLTOOLS WINDOW, 179
GRAPH RGBCOLOR, 177
GRAPH WINDOW, 177
GRD BAS FCT, 100
LEAF DATA INFO, 68
MACRO EL, 64
MATRIX ROW, 88
MESH, 70
MULTI GRID INFO, 171
NLS DATA, 174
OEM DATA, 165
OEM SOLVER, 168
OPERATOR INFO, 136
PARAMETRIC, 71
PRECON, 170
Q00 PSI PHI, 146

Q01 PSI PHI, 144
Q10 PSI PHI, 145
Q11 PSI PHI, 142
QUAD FAST, 123
QUAD, 121
RC LIST EL, 69
REAL, 50
REAL D, 61
REAL DD, 61
S CHAR, 50
TRAVERSE STACK, 80
U CHAR, 50
WORKSPACE, 55

List of symbolic constants

CALL EL LEVEL, 77
CALL EVERY EL INORDER, 77
CALL EVERY EL POSTORDER, 77
CALL EVERY EL PREORDER, 77
CALL LEAF EL LEVEL, 77
CALL LEAF EL, 77
CALL MG LEVEL, 77
CENTER, 84
DIM OF WORLD, 61
DIM, 61
DIRICHLET, 62
EDGE, 84
EL INDEX, 62
FACE, 84
false, 50
FILL BOUND, 78
FILL COORDS, 78
FILL NEIGH, 78
FILL NOTHING, 78
FILL OPP COORDS, 78
FILL ORIENTATION, 78
GRAPH MESH BOUNDARY, 178
GRAPH MESH ELEMENT INDEX, 178
GRAPH MESH ELEMENT MARK, 178

239

240 DATA TYPES, SYMBOLIC CONSTANTS, FUNCTIONS, AND MACROS

GRAPH MESH VERTEX DOF, 178
INIT D2 PHI, 123
INIT GRD PHI, 123
INIT GRD UH, 163
INIT UH, 163
INTERIOR, 62
NEIGH IN EL, 62
NEUMANN, 62
nil, 50
NO MORE ENTRIES, 88
NO WINDOW, 177
N EDGES, 61
N FACES, 61
N NEIGH, 61
N VERTICES, 61
ROW LENGTH, 88
true, 50
UNUSED ENTRY, 88
VERTEX, 84

List of functions

adapt mesh(), 155
adapt method instat(), 156
adapt method stat(), 152
add element d vec(), 131
add element matrix(), 131
add element vec(), 131
add parameter(), 58
albert alloc(), 53
albert calloc(), 53
albert free(), 53
albert matrix(), 54
albert realloc(), 53
change error out(), 53
change msg out(), 53
check and get mesh(), 72
clear dof matrix(), 89
clear workspace(), 56
close gltools window(), 179
coarsen(), 99
coord to world(), 120
D2 uh at qp(), 127
D2 uh d at qp(), 127
dirichlet bound(), 150
dirichlet bound d(), 150
div uh d at qp(), 127
dof asum(), 92
dof axpy(), 92
dof axpy d(), 92
dof compress(), 84

dof copy(), 92
dof copy d(), 92
dof dot(), 92
dof dot d(), 92
dof gemv(), 92
dof max(), 92
dof min(), 92
dof mv(), 92
dof mv d(), 92
dof nrm2(), 92
dof nrm2 d(), 92
dof scal(), 92
dof scal d(), 92
dof set(), 92
dof set d(), 92
dof xpay(), 92
dof xpay d(), 92
el det(), 120
el grd lambda(), 120
el volume(), 120
ellipt est(), 162
enlarge dof lists(), 85
estimate(), 154
eval D2 uh(), 125
eval D2 uh d(), 125
eval D2 uh d fast(), 126
eval D2 uh fast(), 126
eval div uh d fast(), 126
eval div uh d(), 125
eval grd uh(), 125
eval grd uh d(), 125
eval grd uh d fast(), 126
eval grd uh fast(), 126
eval uh(), 125
eval uh d(), 125
eval uh d fast(), 126
eval uh fast(), 126
f at qp(), 121
f d at qp(), 121
fill elinfo(), 78
fill macro info(), 78
fill matrix info(), 138
find el at pt(), 81
free albert matrix(), 54
free dof dof vec(), 86
free dof int vec(), 86
free dof matrix(), 89
free dof real d vec(), 86
free dof real vec(), 86
free dof schar vec(), 86

DATA TYPES, SYMBOLIC CONSTANTS, FUNCTIONS, AND MACROS 241

free dof uchar vec(), 86
free int dof vec(), 86
free mesh(), 72
free traverse stack(), 80
free workspace(), 56
get HB precon d(), 170
get HB precon s(), 170
get adapt instat(), 159
get adapt stat(), 159
get bas fcts(), 105
get diag precon d(), 170
get diag precon s(), 170
get dof dof vec(), 86
get dof int vec(), 86
get dof matrix(), 89
get dof real d vec(), 86
get dof real vec(), 86
get dof schar vec(), 86
get dof uchar vec(), 86
get el estc(), 154
get el est(), 154
get fe space(), 118
get int dof vec(), 86
get lagrange(), 116
get mesh(), 72
get parameter(), 59
get q00 psi phi(), 146
get q01 psi phi(), 144
get q10 psi phi(), 146
get q11 psi phi(), 143
get quad fast(), 124
get quadrature(), 121
get traverse stack(), 80
global coarsen(), 99
global refine(), 95
gltools drv(), 179
gltools drv d(), 179
gltools est(), 179
gltools mesh(), 179
graph clear window(), 177
graph close window(), 177
graph el est(), 179
graph level(), 178
graph level d(), 179
graph levels(), 178
graph levels d(), 179
graph mesh(), 178
graph open window(), 177
graph values(), 179
graph values d(), 179

graph vec(), 179
grd f at qp(), 121
grd f d at qp(), 121
grd uh at qp(), 127
grd uh d at qp(), 127
H1 err(), 129
H1 err d(), 129
H1 norm uh(), 129
H1 norm uh d(), 129
heat est(), 164
init dof admin(), 118
init mat vec d(), 170
init mat vec s(), 170
init parameters cpp(), 57
init parameters(), 57
integrate std simp(), 121
interpol(), 151
interpol d(), 151
L2 err(), 129
L2 err d(), 129
L2 norm uh(), 129
L2 norm uh d(), 129
L2scp fct bas(), 149
L2scp fct bas d(), 149
max err at qp(), 129
max err at qp d(), 129
mesh traverse(), 79
MG(), 172
marking(), 156
mat vec d(), 170
mat vec s(), 170
max quad points(), 124
mg s(), 173
mg s exit(), 174
mg s init(), 174
mg s solve(), 174
new bas fcts(), 105
nls newton(), 175
nls newton ds(), 175
nls newton fs(), 175
oem bicgstab(), 167
oem cg(), 167
oem gmres(), 167
oem odir(), 167
oem ores(), 167
oem solve d(), 168
oem solve s(), 168
one timestep(), 159
open error file(), 53
open gltools window(), 179

242 DATA TYPES, SYMBOLIC CONSTANTS, FUNCTIONS, AND MACROS

open msg file(), 53
print dof int vec(), 87
print dof matrix(), 89
print dof real d vec(), 87
print dof real vec(), 87
print dof schar vec(), 87
print dof uchar vec(), 87
print msg(), 51
read dof int vec(), 94
read dof int vec xdr(), 94
read dof real d vec(), 94
read dof real d vec xdr(), 94
read dof real vec(), 94
read dof real vec xdr(), 94
read dof schar vec(), 94
read dof schar vec xdr(), 94
read dof uchar vec(), 94
read dof uchar vec xdr(), 94
read macro(), 74
read mesh(), 92
read mesh xdr(), 94
realloc workspace(), 55
refine(), 95
save parameters(), 58
sor d(), 169
sor s(), 169
ssor d(), 169
ssor s(), 169
traverse first(), 80
traverse neighbour(), 81
traverse next(), 80
uh at qp(), 127
uh d at qp(), 127
update matrix(), 134
update real d vec(), 148
update real vec(), 148
world to coord(), 120
write dof int vec(), 94
write dof int vec xdr(), 94
write dof real d vec(), 94
write dof real d vec xdr(), 94
write dof real vec(), 94
write dof real vec xdr(), 94
write dof schar vec(), 94
write dof schar vec xdr(), 94
write dof uchar vec(), 94
write dof uchar vec xdr(), 94
write macro(), 77
write mesh(), 92
write mesh xdr(), 94

List of macros

ABS(), 50
ADD PARAMETER(), 58
DIST DOW(), 61
EL TYPE(), 67
ENTRY NOT USED(), 88
ENTRY USED(), 88
ERROR EXIT(), 52
ERROR(), 52
FOR ALL DOFS(), 89
FOR ALL FREE DOFS(), 89
FUNCNAME(), 51
GET BOUND(), 63
GET DOF VEC(), 86
GET MESH(), 72
GET PARAMETER, 59
INDEX(), 68
INFO(), 52
IS DIRICHLET(), 63
IS INTERIOR(), 63
IS LEAF EL(), 69
IS NEUMANN(), 63
LEAF DATA(), 69
MAT ALLOC(), 55
MAT FREE(), 55
MAX(), 50
MEM ALLOC(), 54
MEM CALLOC(), 54
MEM FREE(), 54
MEM REALLOC(), 54
MIN(), 50
MSG(), 51
NEIGH(), 67
NORM DOW(), 61
OPP VERTEX(), 67
PRINT INFO(), 52
REALLOC WORKSPACE(), 55
SCP DOW(), 61
SET VAL DOW(), 61
SQR(), 50
TEST EXIT(), 52
TEST(), 52
WAIT REALLY, 53
WAIT, 53
WARNING(), 53

	Concepts and abstract algorithms
	Mesh refinement and coarsening
	Refinement algorithms for simplicial meshes
	Coarsening algorithm for simplicial meshes
	Operations during refinement and coarsening

	The hierarchical mesh
	Degrees of freedom
	Finite element spaces and finite element discretization
	Barycentric coordinates
	Finite element spaces
	Evaluation of finite element functions
	Interpolation and restriction during refinement and coarsening
	Discretization of 2nd order problems
	Numerical quadrature
	Finite element discretization of 2nd order problems

	Adaptive Methods
	Adaptive method for stationary problems
	Mesh refinement strategies
	Coarsening strategies
	Adaptive methods for time dependent problems

	Data structures and implementation
	Basic types, utilities, and parameter handling
	Basic types
	Message macros
	Memory allocation and deallocation
	Parameters and parameter files
	Parameters used by the utilities

	Data structures for the hierarchical mesh
	Constants describing the dimension of the mesh
	Constants describing the elements of the mesh
	Neighbour information
	Element indices
	The BOUNDARY data structure
	The local indexing on elements
	The MACRO_EL data structure
	The EL data structure
	The EL_INFO data structure
	The NEIGH, OPP_VERTEX and EL_TYPE macros
	The INDEX macro
	The LEAF_DATA_INFO data structure
	The RC_LIST_EL data structure
	The MESH data structure
	Initialization of meshes
	Reading macro triangulations
	Writing macro triangulations
	Mesh traversal routines

	Administration of degrees of freedom
	The DOF_ADMIN data structure
	Vectors indexed by DOFs: The DOF_VEC data structures
	Interpolation and restriction of DOF vectors during mesh refinement and coarsening
	The DOF_MATRIX data structure
	Access to global DOFs: Macros for iterations using DOF indices
	Access to local DOFs on elements
	BLAS routines for DOF vectors and matrices
	Reading and writing of meshes and vectors

	The refinement and coarsening implementation
	The refinement routines
	The coarsening routines

	Implementation of basis functions
	Data structures for basis functions
	Lagrange finite elements
	Linear finite elements
	Quadratic finite elements
	Cubic finite elements
	Quartic finite elements
	Access to Lagrange elements

	Implementation of finite element spaces
	The finite element space data structure
	Access to finite element spaces

	Routines for barycentric coordinates
	Data structures for numerical quadrature
	The QUAD data structure
	The QUAD_FAST data structure

	Functions for the evaluation of finite elements
	Calculation of norms for finite element functions
	Calculation of errors of finite element approximations
	Tools for the assemblage of linear systems
	Updating of matrices and right hand sides
	Data structures and function for matrix assemblage
	Data structures for storing pre--computed integrals of basis functions
	Data structures and functions for vector update
	Dirichlet boundary conditions
	Interpolation into finite element spaces

	Data structures and procedures for adaptive methods
	ALBERT adaptive method for stationary problems
	Standard ALBERT marking routine
	ALBERT adaptive method for time dependent problems
	Initialization of data structures for adaptive methods

	Implementation of error estimators
	Error estimator for elliptic problems
	Error estimator for parabolic problems

	Solver for linear and nonlinear systems
	General linear solvers
	Linear solvers for DOF matrices and vectors
	Access of functions for matrix--vector multiplication
	Access of functions for preconditioning
	Multigrid solvers
	Nonlinear solvers

	Graphics output
	Two dimensional graphics subroutines
	gltools interface
	GRAPE interface

	Implementation of model problems
	Poisson equation
	Graphical output of the discrete solution and error estimate
	Include file and global variables
	Initialization of the finite element space
	Functions for leaf data
	Data of the differential equation
	The assemblage of the discrete system
	The solution of the discrete system
	Error estimation
	The main program for the Poisson equation
	The parameter file for the Poisson equation

	Nonlinear Poisson equation
	The Newton method
	Program organization and header file
	Global variables
	Initialization of the finite element space and leaf data
	The build routine
	The solve routine
	The estimator for the nonlinear problem
	The main program for the nonlinear reaction--diffusion equation
	Initialization of problem dependent data
	Implementation of the nonlinear solver
	The parameter file for the nonlinear Poisson equation

	Heat equation
	Global variables
	Functions for leaf data
	Data of the differential equation
	Time discretization
	Initial data interpolation
	The assemblage of the discrete system
	Error estimation
	Time steps
	The main program for the heat equation
	The parameter file for the heat equation

	File organization, ALBERT libraries, and Makefiles
	File organization
	ALBERT libraries
	Makefiles

