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Overview

e Experimental preparations

. In vivo heart
. Langendorff perfused heart
. Isolated right atrial and right ventricle preparation

. Cell cultures
. Isolated myocyes
. Zebrafish heart

e Experimental techniques

. ECG

. Extracellular K* concentration

. Myocardial tissue electrical impedance
. Extracellular potentials

. Fluorescent probes and their application to optical mapping of excitation and
[Ca™];



Ventricular fibrillation

Evolution of Ventricular Fibrillation in a patient
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Ventricular fibrillation: Fast
and rapidly changing electrical
rhythm of the ventricles which
precludes adequate pumping
of the blood and thus causes
an immediate systemic failure
unless reverted. Success of
defibrillation decreases
markedly as the time since the
onset of VF increases.
Wiggers (Am Heart J 1930)
was the first to describe the
gross changes of rhythm that
occur during the evolution of
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and classified them into four
stages: 1) undulatory or
tachysystolic (1-2s); 2)
convulsive incoordination (15-
40s); 3) tremolous
incoordination (2-3min); 4)
atonic fibrillation (>3min).




How do we go about studying
arrnythmia mechanisms?



Experimental preparations

In vivo

Langendorff perfused heart Zebra fish heart

A
v

Isolated tissue

Patterned cultures

A
v

Cell culture

Isolated cell



In vivo heart

There are various in vivo
procedures. One common a
approach is to access the
heart via a thoracotomy
performed once the animal is
under the effect of anesthesia.
The pericardium is incised and
Is sutured to the margins to
form a cradle. The anterior wall
of the ventricles can be easily
accessed to insert electrodes
or measuring devices.




Langendorff perfused heart
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In the Langendorff heart preparation
tissular perfusion is achived by
retrograde circulation of the perfusion
fluid. The two major modalities are a
constant pressure or a constant
flow Langendorff system. The
perfusate is commonly a crystalline
solution containing ions which closely
mimic the physiological range.
Alternatively, blood can be used for
perfusion. In this preparation it is
Important to constantly monitor
pressure and/or flow to ensure
adequacy of perfusion. The heart is
usually kept at a physiologocal
temperature, and ideally it is
submerged in fluid though this is not
strictly necessary




Langendorff perfused heart
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Some common components which
form part of the Langendorff system
are a set of peristaltic pumps,
oxygenators, fluid reservoirs, heat
exchanger, bubble trap, and
pressure and temperature
transducers. Additionally, the heart is
usually placed in a custom designed
chamber which allows continuous
perfusion of the heart and easy
access in order to perform the
various physiological measurements
for the experiment.




|solated right atria

Epicardial view
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Figure 1. Isolated right atrium. Left, Epicardial
view. RAA indicates right atrial appendage;
SVC, superior vena cava, and ST, sulcus ter-
minalis. Point J indicates the junction betweean
BE and the ST. Right, Endocardial view. CT
indicates crista terminalis; MC, inferior vena
cava. The network of pectinate muscles [PM)
is outlined for clanty. Black amows indicate 5
bipolar electrode recording sites (se2 Figurs
4G balow); RBE, right afrial end of BE;
SupFW, superior aspect of the RA free wall
FAY MidRA, middle of the RA FW, InfFv,
inferior FW; and DistCT, distal edge of CT.

Following excision of the heart, the right coronary artery is cannulated and the non-perfused
areas of the heart are removed. The isolated preparation includes the right atria and the right
ventricle, and can be placed in a frame or an appropriate fixture in order to perform experiment.
In some cases, especially with smaller hearts, the atria can be maintained by superfusion of the
tissue alone because the reduced thickness of the tissue wall allows diffusion of the perfusate
through the tissue. RAA- right atrial appendage, SVC- superior vena cava, BB- bundle branch,
CT- crista terminalis, ST- sulcus terminalis, TV- tricuspid valve, PM- pectinate muscle.

Berenfeld et al Circ Res 2002




Isolated right ventricle
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Fig. 5. Typical nght ventricular preparation showing the epicardial surface of
the right ventricular free wall. Dashed line demarcates the atrioventricular
groove and the course of the right coronary artery. Right atria and appendix
(RA) is below this line. whereas the right ventricle (RV) is above it. The
imaging line {(dotted vellow rectangle) is located 1-1.5 cm below and parallel
to the atrioventricular groove, The stimulating electrode is placed close to the
imaging line.

Iravanian et al AJP 2007

The right coronary is cannulated and
the tissue dissected following a
similar approach as that described
for the isolated right atrial
preparation. Tip: the use of food
coloring or other types of colorants is
helpful in determine the perfused and
non-perfused areas.




Cell cultures

In this study the authors used
neonatal rat ventricular myocytes
obtained using a standard trypsin-
collagenase digestion protocol. The
cells were then plated on a 25 mm
laminin coated coverslip and kept
under standard culture conditions. By
the third day the cells form
interconnected confluent networks
that exhibit rhythmic, spontaneous
contractions. In particular this figure
shows various heterogeneities
occurring throughout the culture.

Agladze et al. AJP 2007



Patterned cell cultures
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Fig. 1. Patterng uezad in the study. Thres dif-
ferent patterns provided a variety of 100- to
1580-pm-wide strands of cells in various eombi-
nations of straight line and semicircular seg-
ments.

Rohr et al Circ Res 1991 (upper) and Tung and Kleber AJP 2000 (lower)



Isolated cells

To isolate the myocytes the excised heart is placed on a Langendorff perfusion system and a
series of solutions containing zero calcium and enzymes such as collagenase a and protease
are delivered to the heart in order to initiate digestion of the intracellular and collagen matrixes
which hold the myocytes in the myocardium. Once isolated the cells may be used for diverse
purposes ranging from electrical recordings using the patch clamp technique, or the
measurement of various cellular parameters via the use of fluorescent probes.




Embryonic zebrafish heart

ventricle
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Experimental preparation

- Embryonic Zebrafish heart
- Blebbistatin

- Di-4-ANBDOBS




Group work

1- Identify advantages and disadvantages of the various experimental
preparations that we have just reviewed.

2- Can you think of any other preparation that was missed out?



Experimental techniques

Now that we have the cardiac
preparation ready, lets measure
something!!

(Measurement of physiological data)



ECG
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ECG (continued..)
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In an in vivo model of regional ischemia induced by ligation of the left anterior descending
coronary artery (LAD), the incidence of ventricular premature beats following occlusion has a
distinct and reproducible distribution which is characterized by two arrhythmic peaks named
phase-la and phase-lb. A number of studies have been directed to understanding the
mechanisms underlying these arrhythmia given the potential clinical relevance of this
experimental model.

Cinca et al. Circulation 1997




ECG (continued..)
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Group Work: What arrhythmic phase is more vulnerable to the incidence of VF?

Cinca et al. Circulation 1997



Extracellular potassium concentration
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Extracellular potassium concentration (continued..)

In this model the authors created a
spatial gradient of extracellular K* by
local cannulation of an artery which
was infused with solutions of varying
K* concentration. The relationship
between the susceptibility to initiation
of extrasystoles and arrhythmia and
the K* concentration was biphasic,
reaching a maximum susceptibility at
10 mM concentration. These results
provide some mechanistic evidence
regarding the role of K™ gradients in
the genesis of phase-la arrhythmias.
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Electrical impedance for measurement of the tissue passive electrical properties
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Injection of a sub-threshold current and measurement of the resulting voltage response can
yield information regarding the passive electrical properties of the tissue. Given that cell
membranes have capacitative and resistive properties, the tissue electrical impedance is a
complex number and therefore an accurate description of the voltage response requires
providing two parameters describing the change in magnitude and in phase angle.




Electrical impedance for measurement of the tissue passive electrical properties
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This study showed that changes in the myocardial passive electrical properties occurring during
regional ischemia and ischemia-and-preconditioning correlate well with the peak incidence of
ventricular premature beats (VPBSs) occurring during the arrhythmic phase-Ib.

Cinca et al. Circulation 1997



Frequency response of biological electrical impedance
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Frequency response of biological electrical impedance
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Electrical impedance of the myocardial infarct scar
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Normal tissue and 1-month old
infarcted scar tissue have distinct
electrical impedance frequency
responses. The infarcted scar has
low resistivity and does not exhibit
a capacitative response in the 1-
1000 Hz range.

Cinca et al. Cardiovasc Res 1998




Detection of the 1-month old myocardial infarct scar via electrical impedance measurements
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Group work

1- What role do you think the low resistivity of the myocardial infarct scar
can have in the genesis of arrhythmias?

2- What is the benefit of being capable of detecting myocardial scar
tissue by means of a catheter?



Extracellular potentials and cardiac mapping




Extracellular potentials and cardiac mapping

EPI

RV

Group Work: Can we learn anything regarding VF from these
extracellular potential recordings obtained from a single

transmural needle inserted in the RV?

Venable et al. AJP 2010



Extracellular potentials and cardiac mapping
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Kleber Cardiovasc Res 2000



Extracellular potentials and cardiac mapping
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Fluorescent probes- voltage sensitive dyes
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Optical mapping system
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Optical mapping- imaging cardiac excitation
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Optical mapping- Time-space-plots (TSP)
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Fluorescent probes- calcium sensitive probes Fluo-3/Fluo-4
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Optical mapping- dual imaging of excitation and [Ca*™]; ‘

Blood-perfused pig heart Dual optical mapping
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Optical mapping- dual imaging of excitation and [Ca*™];

RH-237 and Rhod-2 fluorescence
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See text for detail.
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Imaging excitation and [Ca**], in isolated myocytes
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Exercise #1 (activation rate heterogeneity)
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1- Determine the approximate excitation rate in the epicardium and the endocardium in each of
the three regions. Choose one of the regions, and compare the rate in epi. and endo. in control
and after 10 min of ischemia.
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grouped by wall type
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‘ Exercise #2 (temporal and spatial changes of AP)

Time-space-plots (TSP) Optical action potentials (OAP)

» ARG - o

S

1s 1s

1- Determine the approximate excitation rate in each of the three experimental conditions.

2- Determine the approximate action potential duration (APD) and amplitude (APA) of four
consecutive activations. What differences do you see between the three experimental

conditions?
3- Match the TSP with its corresponding OAP



Fast Fourier Transform (FFT) = Power Spectrum Individual AP Analysis

Power at the Dominant Frequency
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Phase angle Time-space-plots FFT
and (TSP) and
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Exercise #3 (activation map -homework)




Algorithm

For each single pixel recording out of 64x64 pixels:

1- Determine the time at which the absolute maximum value of fluorescence occurs (t. ). If the
maximum value is achieved at various instances of time, select the earliest.

2- Determine the time at which the minimum value of fluorescence prior to the maximum value
determined in 1) occurs (t

min)'

3- Determine the amplitude of the action potential (AP) by calculating the difference between the max
and min values of fluorescence determined in 1) and 2).

4- For a given threshold value (expressed as a percentage) determine the value of fluorescence
between the min and max values calculated in 1) and 2) which represents this number (F,).

5- For a given threshold value, the activation time is the time betweent . andt__ at which the
fluorescent signal first attains or surpasses F,,.
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Abnormal calcium events




Abnormal calcium events
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Exercise #4 (abnormal calcium events)

t© FR 100-700

O Lone Ca O Ca block Ca breakthrough



Exercise #4 (abnormal calcium events)
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Exercise #4 (abnormal calcium events)

t© FR 100-700

O Lone Ca O Ca block Ca breakthrough



Exercise #4 (abnormal calcium events)
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- Lone CaT at CB

|:| Lone AP at CB

[:| AP/CaT crossover at CB
F:j Lone AP

CaT Breakthrough
|:| APICaT crossover

AP-phase CaT-phase AP-CaT
Phase difference
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Phase analysis




Phase analysis
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Exercise #5 (singularity points/wave-break)

Experimental condition #1 Experimental condition #2

F(t




Exercise #5 (singularity points/wave-break)
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Exercise #5 (singularity points/wave-break)

A Baseline
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Exercise #5 (singularity points/wave-break)

A
Experimental condition #1 Experimental condition #2 o \

t




Exercise #5 (singularity points/wave-break) ‘
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Exercise #5 (singularity points/wave-break)

A Baseline
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Exercise #6 (progression of phase) ‘
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Exercise #6 (progression of phase)

Block of wave-front with wave-talil T

i A
Collision with base / Drift out of field

P
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Some standard terminology: spiral wave; rotor; core; filament; wavelet; wave-break;
singularity points; chirality of a spiral wave; pivoting point of reentry; counter-rotating
spirals (also known as figure of 8); breakthrough; wave-front; wave-tail; conduction block;
conduction failure.
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Homework *

1- A) Perform a literature search to determine experimental values of conduction velocity (CV) and of
action potential duration (APD) and/or effective refractory period (ERP) in the human and guinea pig
myocardium. B) If possible find values of the aforementioned parameters for more than one cycle
length. C) Calculate the wave wavelength associated to these values. D) Does the wavelength
depend on the cycle length and how; on the species and how. E) Provide details regarding the type of
tissue (i.e. atrial, ventricular, etc), regarding the types of heart (for ex. if they had disease, age, etc),
as well as the experimental conditions under which measures were taken (for ex. cycle length or type
of protocol used for the measure). F) Provide the reference/s and the keywords used for the search.

2- Construct an activation map from the movie of Di-4-ANEPPS fluorescence depicting one cycle of a
reentrant excitation wave measured in the guinea pig anterior ventricular wall during perfusion with a
high potassium solution. The 64x64 pixel and 45 frame long movie was recorded at a temporal
resolution of 600 frames/s. Use a threshold of 50% as indicative of activation. Try one additional
threshold value of your choice and observe the differences in the resulting activation map.

3- Describe as precisely as possible the sequence of events shown in the phase snapshots (see
below). Suggest a possible mechanism by which the singularity points/wavebreaks were
extinguished.

* Exercises 1 and 3 should be done individually. Exercise 2 can be optionally done in pairs.
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