Bioeng 6460 Electrophysiology and Bioelectricity

Modeling of Electrical Conduction in Cardiac Tissue IV

Frank B. Sachse fs@cvrti.utah.edu

Cellular Automaton: Application in ECG/BSPM Simulation

Simulation System: Overview

Example: ECG Simulation

Microscopic Imaging

Imaging-Based 3D Model of Cardiac Tissue

CAD-Based 3D Model of Cardiac Tissue

Microscopic Modeling of Conduction

Group Work

Compare discrete microscopic models with bidomain models. List model parameters and types of simulation results.

Mono- and Bidomain Models of Cardiac Conduction

Multidomain Modeling of Conduction

Cardiac tissue is composite of various cell types

- major cell type by volume: myocyte
- major cell type by number: fibroblast
- other types: endothelial, vascular smooth muscle and neuronal cells

Numbers of these cells vary

- for tissue types
- during development
- among species
- in disease

Common approaches for modeling of electrical conduction in tissue involve only myocytes

Fibroblasts

- fibroblasts are the most numerous cells in myocardium
- electrically inexcitable, but coupled via gap junction channels to myocytes and fibroblasts
- electrical bridging of myocytes over distances up to 300µm (G. Gaudesius et al, Circ Res 2003)

Fibroblast organization in rat neonatal tissue (E. C. Goldsmith et al, Develop Dyn 2004)

Discoidin domain receptor (DDR) - Fibroblasts

Actin - Myocytes

Cx43 - Gap Junctions

Arrows indicate gap junctions of fibroblasts

Multidomain Model: Schematics

- Multidomain model allows for description of electrophysiology in composite tissue
- Example: Fully coupled 3-domain model. Extension to n-domain model is straightforward

Fully Coupled 3-Domain Model

Methods: Conductivities - Assumptions

- Extracellular space occupies 20% of total tissue volume
- Conductivities in myocyte and fibroblast domains scale linearly with their volume ratio

Variation of volume ratios can be described by number of fibroblasts per myocyte (*n*):

$$\frac{Vol_{\rm myo}}{Vol} = \frac{80\%}{Vol_{\rm myo,single} + n \ Vol_{\rm fib,single}} Vol_{\rm myo,single}$$

$$\frac{Vol_{\text{fib}}}{Vol} = \frac{80\%}{Vol_{\text{myo,single}} + n \ Vol_{\text{fib,single}}} n \ Vol_{\text{fib,single}}$$

$$\sigma_{\rm myo} = \frac{Vol_{\rm myo}}{Vol} \bar{\sigma}_{\rm myo}$$
$$\sigma_{\rm fib} = \frac{Vol_{\rm fib}}{Vol} \bar{\sigma}_{\rm fib}$$

.

Domain	Symbol	Volume fraction (%)	Longitudinal conductivity (S/m)	Transversal conductivity (S/m)
Extracellular	σ_{e}	20	0.375	0.214
Intra-myocyte	$\bar{\sigma}_{mvo}$	100	0.469	0.047
	σ_{mvo}	60,, 80	0.281,, 0.375	0.028,, 0.038
Intra-fibroblast (no coupling)	σ_{fib}	0	0.000	0.000
	$\sigma_{\rm fib}$	0,, 20	0.000	0.000
Intra-fibroblast (high coupling)	$\sigma_{\rm fib}$	100	1.000	1.000
	σ_{fib}	0,, 20	0.000,, 0.200	0.000,, 0.200
Reference bidomain conductivities from Roth, Circ, 1991				

Numerical Solution and Implementation

Propagation in Tissue (1D)

Propagation in Thin Tissue Slice (2D)

Coupled Electro-Mechanics

Example: Electro-Mechanics of Myocardium

Array of myocytes

Volume:2³ mm³ Elements: 20³ with fiber orientation and lamination

Electrophysiology

Noble et al. 98 Bidomain model

Force Development

Six-state model of Rice et al. 99

Structure Mechanics

Constitutive law of Hunter et al. 95

(Sachse, Seemann, Werner, Riedel, and Dössel, CinC, 2001) BIOEN 6460 - Page 22

Example: Electro-Mechanics in Ventricular Model

Anatomy

Lattice of elements Volume: 273.6 mm³ Fiber orientation: -70°, 0°,70°

Electrophysiology

Noble et al. 98 Monodomain model Elements: 46x46x58 Step-length: 20 µs

Tension

Glänzel et al. 02 Elements: 46x46x58 Step-length: 20 μs

Structure Mechanics

Constitutive law of Guccione et al. 91 Elements: 23x23x29 Step-length: 5 ms

Example: Electro-Mechanics in Biventricular Model

Anatomy

Lattice of elements Volume: 273.6 mm³ Fiber orientation: -70°, 0°,70°

Electrophysiology

Noble et al. 98 Monodomain model Elements: 40x30x38 Step-length: 20 µs

Tension

Glänzel et al. 02 Elements: 40x30x38 Step-length: 20 μs

Structure Mechanics

Constitutive law of Guccione et al. 91 Elements: 20x15x19 Step-length: 5 ms

Group Work

List potential clinical applications of models of tissue electrophysiology. What will be necessary for this purpose?

