Bioeng 6460 Electrophysiology and Bioelectricity

Modeling of Electrical Conduction in Cardiac Tissue I

Frank B. Sachse fs@cvrti.utah.edu

Overview

Transmembrane Voltages Measured at Different Positions

Models of Cellular Electrophysiology

Models describe cellular electrophysiology by set of ordinary differential equations. Equations are assigned to the cell membrane and some of its compartments.

Noble-Kohl-Varghese-Noble Model 1998

Mathematical description of ionic currents and concentrations, transmembrane voltage, and conductivities of guinea-pig ventricular myocytes

Models of Electrical Conduction

• Macroscopic

Reaction diffusion systems

• **Simplified** (FitzHugh-Nagumo 61, Rogers-McCulloch 1994, ...)

Biophysically Detailed

monodomain

(Rudy 1989, Virag-Vesin-Kappenberger 1998, ...

• bidomain (Henriquez-Plonsey 1989, Sepulveda-Wikswo 1994, ...)

multidomain

(Sachse-Seemann-Moreno-Abildskov 2009)

• Rule based / cellular automata

(Moe 1962, Eifler-Plonsey 1975, ...)

Microscopic

(Spach 1981, Roberts-Stinstra-Henriquez 2008)

Reaction Diffusion System: Cable Model

Cable Model: Steady State Response to Non-Excitatory Current

Length constant λ describes spatial distance between two points:

- 1. Position of electrode for injection of current causing voltage step ΔV_m .
- 2. Position at which the voltage $\Delta V_m/e$ is interpolated from measurements.

 $\Delta V_{m}(\lambda) = 0.368 \Delta V_{m}(0)$

Length constant λ is determined by intra-, extracellular and membrane resistances, $r_{i},\,r_{o},\,and\,r_{m}$:

$$\lambda = \sqrt{\frac{r_m}{r_i + r_o}} \approx \sqrt{\frac{r_m}{r_i}}$$

Assumption: r_m is constant

CVRT

Monodomain Cable (1D) Model of Electrical Conduction

Monodomain Modeling of Electrical Conduction in 2D

Monodomain Model for Electrical Conduction in 2/3D

m

si

ß

$$\nabla(\sigma_{i}\nabla\Phi_{m}) = \beta I_{m} - I_{s}$$

Coupling with cell model Numerical Procedure

 $\Phi_{\rm m}({\bf x},t)$ is unknown

$$I_{i} = \nabla \left(\sigma_{i} \nabla \Phi_{m} \right) + I_{si}$$
$$\frac{\partial \Phi_{m}}{\partial t} = \frac{1}{C_{m}} \left(\frac{I_{i}}{\beta} - I_{ion} \right)$$

 $\Phi_{\rm M}$ Transmembrane voltage

Transmembrane current

External intracellular current

OIntracellular conductivity tensor
(includes conductivity of gap junctions)

Surface-volume ratio of cell

 \mathbf{I}_{ion} Current through ion channels

Group Work

```
Assume an electrical field \Phi(x,y,z)=x 4 V/m in a cube 1 m x 1 m x 1 m
```

Determine the gradient ∇ of the electrical field.

How would create this field?

2D-Simulation

Bidomain Model: Motivation

Inclusion of extracellular conduction relevant for modeling of:

- anisotropic propagation of excitation
- stimulation with extracellular current sources
- body surface potential maps (BSPM) and electrocardiograms (ECG)

Problem

Realistic cell-based modeling of tissue

- complex geometry of cells
- large number of cells

Idea "Bidomain Model"

- division of space in two domains
- separated calculation

Bidomain Modeling of Electrical Conduction in 2D

Bidomain Model: Basics

Bidomain Model: Basics

Bidomain Model: Intracellular Space

Bidomain Model: Extracellular Space

Bidomain Model: Relationships

$$J = J_{i} + J_{e} = -\sigma_{i}\nabla\phi_{i} - \sigma_{e}\nabla\phi_{e}$$
with $\phi_{m} = \phi_{i} - \phi_{e}$:
$$J = -\sigma_{i}\nabla\phi_{m} - \sigma_{i}\nabla\phi_{e} - \sigma_{e}\nabla\phi_{e}$$
with $\sigma_{H} = \sigma_{i} + \sigma_{e}$:
$$J = -\sigma_{i}\nabla\phi_{m} - \sigma_{H}\nabla\phi_{e}$$
with $\nabla \cdot J = 0$:
$$\nabla \cdot (\sigma_{H}\nabla\phi_{e}) = -\nabla \cdot (\sigma_{i}\nabla\phi_{m})$$
Generalized
Poisson's Equation

Bidomain Model: Numerical Solution

Current Flow in 3D-Model of Electrical Conduction

Anisotropic Monodomain Model

64 x 64 x 128 elements with electrophysiology of ventricular myocytes (Noble-Varghese-Kohl-Noble)

Stimulus at center of plane (Z=0) at time t=0 ms

Fiber orientation parallel to Z-axis

Duration of simulation: 500ms

Colour-coded voltages and streamlines at time t=10 ms in plane (Z=0). Colour indicates transmembrane voltage.

Simulation of Electrophysiology in Myocardial Area

Myocyte cluster in left ventricular free wall

128 x 128 x 128 elements with electrophysiology of ventricular myocytes (Noble-Varghese-Kohl-Noble)

> Inclusion of wall depth dependent • myocyte orientation • current I_{to}

Element coupling via bidomain model

Transmembrane Voltage in Static Myocardial Area

Calcium Concentration in Static Myocardial Area

Group Work

What are the limitations of bidomain modeling? List 5 limitations.

Identify and describe other applications for (non-electrical) multidomain models in

- physics
- biology
- • •

What might be the domains of a tridomain model of cardiac electrophysiology?

Summary

CVRT