Bioeng 6460 Electrophysiology and Bioelectricity

Microstructural Basis of Conduction II Introduction to Experimental Studies

Frank B. Sachse fs@cvrti.utah.edu

Overview

Fibroblasts

- most numerous cells in myocardium
- primary producer of extracellular matrix proteins
- change of phenotype in response to pathological conditions, eg infarction, inflammation and injury
- chronic activation can lead to fibrosis, hypertrophy and heart failure
- spatial organization in tissue still topic of research
- role in electrical conduction is still not completely understood

Fibroblast Organization in Rat Neonatal Myocardium

Discoidin domain receptor (DDR) - Fibroblasts

Actin - Myocytes

Cx43 - Gap Junctions

Arrows indicate gap junctions of fibroblasts

(E. C. Goldsmith et al, Develop Dyn 2004)

Fibroblasts in Mouse Ventricular Myocardium

Fluorescent microsphere in blood vessels

DAPI – Nuclei

DDR - Fibroblasts

(Sounders et al, Circ Res, 2009)

Fibroblasts in Normal Rat Ventricular Tissue

WGA – Extracellular space DAPI – Nuclei Cx43 Vimentin - Fibroblasts

(M. Arp et al, Biomed Tech, 2011)

Fibroblasts in Rat Ventricular Tissue (Zoom)

Fibroblast Differentiation

Role of Fibroblasts in Electrophysiology

- electrically inexcitable
- passive role
 - septa due to fibrosis
 - reduced volume fraction of myocytes
 - reduced lateral coupling
- active role
 - electrical myocyte-fibroblast coupling via gap junction channels
 - electrical bridging of myocytes in culture: over distances up to 300μm (G. Gaudesius et al, Circ Res 2003)
 - additional sink or source for activation of myocytes
- role dependent on phenotype of fibroblast

(Jong et al, J Cardiovasc Pharm, 2011)

(Rook et al, Am J Physiol, 1992) BIOEN 6460 - Page 9

Group Work

Discuss effects of fibrosis on extracellular electrograms.

Speculate on effect in the near (interstitial space) and far field (ECG).

Electrical Signaling in the Heart

Experimental Studies of Cardiac Electrical Conduction

Measurement methods

- Electrode arrays: Extracellular voltages (similar ECG measurements on body surface) Sampling rate up to several kHz Channels up to 2000
- Optical: Transmembrane voltages CCD-camera Photodiode array

Preparations

- Cell strands Purkinje fibers
- Small muscles papillary muscle, trabeculae
- Sections wedge preparations from ventricles
- Atria/ventricle
- Whole heart

Color-coded visualization of extracellular voltages measured on surface of canine ventricles

in vivo/in vitro

Epicardial Electrical Mapping System for Mouse Heart

Electrical Mapping of Canine Ventricles

Optical Mapping System

Optical Mapping of Canine Ventricular Area

Isotropic/Anisotropic Propagation of Excitation (2D)

In-/Outflow of Currents during Excitation

In-/Outflow of Currents during Repolarization

Dipole Approximation and Surface ECG

One-Dimensional Cardiac Electrical Conduction

Species: Adult New Zealand White rabbits (1.5-3.0 kg)

- 1. Anti-coagulated with heparin and anesthetized with pentobarbital
- 2. Hearts are rapidly excised and moved to dissection tray
- 3. Retrograde perfusion via aorta with modified Tyrode solution
- 4. Opening of right ventricle
- Selection and excision of papillary muscle including onset of chordae tendinae
 Criteria: Small diameter, large length, unramified
- 6. Transfer to horizontal flow-through chamber
- 7. Fixation of muscle
- 8. Measurement

Measurement Results: Electrograms

Experimental Studies of Conduction in Cell Culture

Optical Mapping of Co-Culture of Rat Myocyte/Myofibroblast

(Zloicher et al, Biophys J, 2008)

Optical Mapping of Reentrant Arrhythmia

Group Work

Identify the major mechanisms of cardiac conduction! What would be an electrical engineering description of those?

Which other systems exhibit similar phenomena? List at least 10.

Overview

