Electrophysiology and Bioelectricity

Organization

- Instructors:
- Rob MacLeod (macleod@cvrti.utah.edu)
- John Bridge (bridge@cvrti.utah.edu)
- Derek Dosdall (derek.dosdall@carma.utah.edu)
- Alonso Moreno (moreno@cvrti.utah.edu)
- Frank Sachse (fs@cvrti.utah.edu)
- Ravi Ranjan (ravi.ranjan@hsc.utah.edu)
- Mark Warren (warren@cvrti.utah.edu)
- Web page: http://www.cvrti.utah.edu/~macleod/be6460
- Grading:
- Homework assignments (short essays, problems, and computer simulations)

Resource Material

- Text: Plonsey and Barr (3rd edition)
- www.cvrti.utah.edu/~macleod/be6460
- Notes: will be available on the web site in pdf format.
- Additional references: see web site
- Assigned readings: distributed in class or via web
- Computation: Matlab, see web page for links to tutorials

Class Scheduling

Laboratory Scheduling

- Multielectrode Measurement Lab
- Tentative: in situ heart or tissue measurements
-2-3 lab groups
- 2-3 hours lab time
- Arrhythmia Lab
- ECG Lab
- Clinical ECG measurement and interpretation
- MEB 1480?

Goals of the Course

- Develop intermediate level understanding of electrophysiological principles
- Apply principles to cardiac and nervous system cells and organs
- Develop quantitative approaches to bioelectric sources, media, and fields
- Make use of available expertise

Outline of the Course

- Mathematical and biophysical basics
- Review of cellular electrophysiology
- Cell to cell coupling (gap junctions)
- Propagation of activation
- Extracellular fields and volume conductor problems, bioelectric forward and inverse problems

