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Ion Transport, Resting Potential, and Cellular Homeostasis 

Introduction 

These notes cover the basics of membrane composition, transport, resting potential, and cellular 
homeostasis.  After a brief introduction to the first two topics, we will spend most of our time on 
the 3rd and 4th.  We will discuss ions that are subject both to diffusion and to an electric field.  
Current flux in this case is described by a nonlinear partial differential equation (PDE), the 
Nernst-Planck equation.  Under equilibrium conditions (i.e., with no flux) the Nernst-Planck 
equation can be simplified to give the Nernst equation, a simple algebraic formula that we can 
use to calculate the value of membrane potential at which a given ion undergoes no net flux.  We 
will derive a circuit-theory-based model of steady-state, non-equilibrium conditions in multi-ion 
systems.  We will also discuss how ionic pumps can be accounted for mathematically. 

Because of limitations in time, we will not examine several important and interesting questions 
related to this material.  We will skip several classic and important derivations (e.g., derivations 
of conductance in semi-permeable membranes, and the time- and length-scales over which the 
condition of electroneutrality applies). 

Hille is a terrific book, but it does not cover this material that well.  The best detailed derivation 
of these results I have seen is in Weiss, Cellular Biophysics, Vol. 1, MIT Press. 

Composition of cell membranes 

1. The lipid bilayer, composed of phospholipids (polar heads, hydrophobic tails).  Bilayer is the 
most stable structure in a charged aqueous environment.  Lipids are mostly choline-
containing (phosphatidylcholine, sphingomyelin), with significant contributions from 
aminophospholipids (phosphatidylethanolaimine, phosphatidylserine).  Other components, 
small in number but structurally important, include inositol phospholipids.  Tails of all 
phospholipids are composed of long trains of hydrocarbons. 

   

Other important components of the lipid bilayer are not phospholipids.  These include 
cholesterol, which regulates the fluidity of the membrane, and glycolipids (lipids with 
attached carbohydrate chains), the carbohydrates of which typically protrude from the 
external surface of the cell, acting as receptors or antigens.  Many elements of the lipid 
bilayer (especially glycolipids) are preferentially distributed on the outer or inner face of the 
membrane. 
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2. Membrane proteins, including enzymes, transport proteins, ion channels, receptors.  Proteins 
can be integral (inserted in the membrane) or peripheral (on surface, bound by charge 
interactions with integral proteins). 

The distribution of membrane elements can often be well-described by a 2-dimensional diffusion 
model, with a reasonably fast time scale of diffusion and a slower time-scale of “flip-flopping” 
(i.e., changing from one face of the bilayer to another).  Many membrane elements, however, do 
not diffuse in the membrane because they are tethered by intracellular elements. 

For more on membrane composition, see Alberts, Bray, Lewis, Raff, Roberts, and Watson, 
Molecular Biology of the Cell, 3rd edition, Garland Publishing, New York, 1994. 

Membrane transport 

Lipid-rich membranes serve as permeability barriers.  Material can cross cell membranes in one 
of several ways: 

1. Endocytosis.  In this process, the cell membrane envelopes a particle (phagocytosis) or 
volume of extracellular fluid (pinocytosis).  
The enclosed particle or fluid is brought in 
within a membrane-bound vesicle.  
Endocytosis requires energy, in the form of 
ATP hydrolysis.  Endocytosis often occurs at 
specialized sites with receptors for a given 
protein.  Vesicles associated with receptor-
mediated endocytosis are often coated with 
“bristles” made of clathrin. 

 

2. Exocytosis.  A molecular entity is ejected from a vesicle that fuses with the cell membrane.  
Endocytosis in reverse.  This is the way that neurotransmitters are released. 

3. Diffusion through the lipid bilayer.  Driven by random thermal motion, described by Fick’s 
First Law: 

In general:   
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The diffusion coefficient Dn for a molecule depends on its lipid solubility (the more lipid-
soluble, the faster the diffusion) and its size (the smaller the molecule, the faster the 
diffusion).  Some very small water soluble molecules (MW < 200) can diffuse very quickly 
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through the membrane.  The most important example of this phenomenon is water itself, 
which equilibrates across the cell membrane reasonably rapidly.  In some cells (notably in 
the kidney), the diffusion of water is aided by water-selective channels called aquaporins. 

Fick’s First Law and the principle of conservation of matter lead to the diffusion equation: 

 

Dn
! 2cn
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= !cn (x, t)
!t

.  Green’s function {the response to a space-time impulse, "(x,t)} for this 

equation, assuming an infinitely long path of diffusion, is 
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e
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4Dt  (see figure 

below).  The fact that the width of this function grows proportionally t-0.5 justifies the 
statement by B&L that diffusion works well over short distances, but poorly over long 
distances. 
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4. Protein-mediated transport.  Many water-soluble substances are transported by intrinsic 
proteins called carriers or channels.  Mediated transport exhibits several hallmark traits, 
including saturation (see the figure), chemical specificity, competitive inhibition, and the 
potential for inhibition by compounds that affect the transport protein.  There are two broad 
classes of protein-mediated transport: 

 

a. Active transport.  Requires the expenditure of energy derived from the hydrolysis of 
ATP.  This expenditure can be direct (primary active transport, in which ATP is 
hydrolyzed by the transport molecule) or indirect (secondary active transport, in which an 
electrochemical gradient previously established by primary active transport is used to 
drive an additional transport process).  A crucial property of active transport is that it can 
drive the net flux of a molecule against an electrochemical gradient. 
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Primary active transporters include the Na+-K+-ATPase, which will come up many times 
in this course, and the Ca2+-ATPase which cells use to accumulate Ca2+ in the 
endoplasmic reticulum.  Secondary active transporters include the transporters used by 
cells to take up neutral amino acids and sugars 
(figure).  These transport processes are 
powered by a gradient in Na+ concentration, 
established by the Na+-K+-ATPase. 

b. Facilitated transport.  In facilitated transport, a 
protein speeds the diffusion process.  No 
energy is required, and the net movement of 
substances is only down an electrochemical 
gradient.  Sugars and neutral amino acids are transported from intestinal and renal 
epithelia into the bloodstream via facilitated transport (figure). 

For many examples of active and passive transport, read Chapter 1 of Berne and Levy. 

Diffusion with an external force in a frictional system 

From Fick’s first law, we know that the (1D, s-s) molar flux due to pure diffusion of particle n is 

dx
dc

D n
nDn !=" )( .  Now, let’s add an external force that acts to induce an additional flux term: 

!n(F)  = cn vn, where vn [=] m/s is the drift velocity of species n 

If f is the force per mole, and we assume that collisions between particles make the system 
frictional, the system acts like a dashpot, with velocity proportional to force: 

v = un f, where un [=] (m mol)/(N s) is the molar mechanical mobility of n. 

The total steady-state flux is the sum of the fluxes due to diffusion and the force: 
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Let’s specify that the force f is induced by an electrical field 
dx
d!"=# , where " [=] V is 

potential.  Remember from freshman physics that 1 V = 1 J/C (energy/charge), implying that # is 
a measure of force per charge (N/C).  We convert from force per charge to force per mole by 
multiplying by znF, where zn is the valence of the particle and F = 9.65#104 C/mol. 

 

f = !znF = "znF
d#
dx

 

Thus, for a charged species n in a 1-dimensional electric field and with a 1-dimensional 
concentration gradient, we get a net steady-state flux: 
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Note: This is a steady-state version of a very famous partial differential equation called the 
Nernst-Planck equation.  Solving the Nernst-Planck equation is very difficult in general, but easy 
for specific cases (like the steady-state equilibrium case we will treat below).  . 

Steady-state equilibrium for a single ion 

We will look at this problem for a membrane of width d under steady-state equilibrium, with 1-
dimensional effects only (in the direction of x).  This condition implies that the net flux = 0. 
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Integrate both sides of this equation over the interval [0,d]: 
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This is the Nernst equation.  It gives the value of membrane potential Vn at which the ion n is in 
steady-state equilibrium.  In other words, at this value of Vn, the electrostatic energy per mole 
(inside - outside): 

znFVn [=] J/mol 

is exactly counterbalanced by the chemical energy per mole (inside - outside): 

RT
c
c
n
o

n
iln  [=] J/mol 

Because the energies counterbalance, the fluxes caused by these energies counterbalance as well, 
giving a net flux Jn = 0.  The value of Vn is independent of the concentration or voltage profile 
within the membrane! 

We often find it convenient to write the Nernst equation in terms of log10: 
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The term 
RT
z F en

1
log

 has units of voltage and depends only on T and zn; all other factors are 

constants.  For T = 24°C, 
RT
F e

1
log

$ 59 mV.  At this temperature, for a monovalent cation 

(zn = 1) or anion (zn = -1), Vn changes approximately 59 mV for every 10-fold change in internal 
or external concentration.  The sign of the change depends on zn.  For T = 37°C, 
RT
F e

1
log

 $ 61 mV. 

Modeling resting potential: the Bernstein and Gibbs-Donnan models 

Almost all cells have voltage gradients across their plasma membranes.  Membrane potential has 
been known for many years to depend on concentrations of ions, particularly K+.  One of the first 
mathematical models proposed to explain the resting membrane potential of cells was the 
Bernstein model, which argued that cells at rest are permeable to K+ only.  Thus, the cell’s 
resting potential is simply the K+ Nernst potential, VK (also known as the K+ equilibrium 
potential).  This model predicts that a resting cell should follow the VK as we manipulate cK

o or 
cK

i.  This turns out not to be true.  Real cells often act like “K+ electrodes” only for high 
concentrations of external K+. 

Another model that has been considered is a model in which several ions are in equilibrium 
simultaneously.  This condition, known as Gibbs-Donnan equilibrium, requires a very specific 
relationship among ratios of internal and external concentrations and is not seen in practice: 
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The Gibbs-Donnan equilibrium is also problematic in that it leads to osmotic imbalances.  See 
Berne and Levy, Chapter 2. 

Steady-state, non-equilibrium 

Real cells exist in a multi-ion steady-state, non-equilibrium condition, implying that while all 
partial derivatives with respect to time = 0, each molar flux !n or current flux Jn = znF!n need not 
be zero.  Instead, we will impose the condition that the sum of all fluxes is zero (e.g., for a 
system with Na+, K+, and Cl-, JNa + JK + JCl = 0).  The total current flux across the membrane 

(we’ll call it J Jm n
n

N

=
=
!
1

) must equal zero to keep Vm constant. 

This condition was first handled by Goldman, Hodgkin, and Katz (GHK).  They derived the 
steady-state, non-equilibrium value of membrane potential Vm under two assumptions: (1) the 
assumption of a semi-permeable membrane (as we have assumed so far); and (2) a constant 
electrical field (implying a linear change in Vm) across the membrane.  The GHK equation, also 
called the constant-field equation, looks like this for a system including Na+, K+, and Cl- (see 
Weiss, Cellular Biophysics, Vol. 1, MIT Press, for a derivation): 
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In this equation, the terms PNa, PK, and PCl refer to the permeabilities of the membrane to each of 
these ions.  For each ion n, Pn = Dn/d.  (This definition of Pn assumes that concentrations of ion n 
are continuous at the boundaries.) 

In the GHK formulation, we think of ions as diffusing through a continuous, semi-permeable 
membrane.  We now know that the lipid bilayer is essentially impermeable to ions, and that ions 
travel through specific ion channels.  To a first approximation, most ion channels are permeable 
only to one biologically relevant ion.  Populations of ion channels are well modeled as 
conductances in series with batteries, where the conductances represent the summed 
conductances of a population of open channels in parallel, and the battery is the Nernst 
(equilibrium) potential for the ions in question: 

This formulation is very useful for both steady-state and non-steady-state conditions.  For 
example, it allows us to look at the steady-state current fluxes in membranes using simple 
electrical circuit theory.  A system with three permeant ions (Na+, K+, and Cl-), would look like 
this in the steady-state: 

The conventions we impose here (Vm = Vin - Vout, outward 
currents positive) will are standards and will hold for the entire 
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course; remember them!  Under resting (steady-state) conditions, we can impose the condition 
that Jm = JNa + JK + JCl = 0.  This is Kirchoff’s current law for membranes! 

It is easy to solve a circuit like this for resting potential Vm
0: 
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Gm is the resting conductance  of the cell. 

Away from resting potential, we have a Thevenin equivalent relationship: 
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Modifications of the steady-state membrane model 

In our steady-state membrane model, the total membrane flux Jm = 0, but, because the membrane 
does not sit at the equilibrium potential of any ion (in general), each flux is non-zero.  These 
ongoing fluxes slowly erode the electrochemical gradients underlying the Nernst potentials. 

Real cells overcome this problem of run-down by expending energy to maintain their 
concentration gradients.  Ions are moved up their electrochemical gradients, in a process called 
active transport.  The most famous example of active transport is the sodium-potassium pump 
(Na+-K+ ATPase): 

The Na+-K+-ATPase is an example of an electrogenic pump, 
because it causes a net electrical current.  (In this case, the net 
flow of positive charge is outward; it is a net positive current in 
our sign convention.) 

Pump currents can be modeled reasonably well as ideal current 
sources (i.e, current sources with a very large parallel resistance), 

as long as they have reasonable amounts of their preferred ions to work with.  For a system 
including Na+ and K+ ions, the new circuit would look like this: 

where JNa
a and JK

a are pump current fluxes and Jin 
represents current from an external source (e.g., an 
electrode that one has inserted into the cell).  If we 
know that JNa

q and JK
a are due to the Na+-K+-ATPase 

only, we can apply the constraint 3 JNa
a = -2 JK

a.  
Pumps have been studied quantitatively and have been 
found in general to obey the following 
phenomenological equations: 
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In these equations, %Na and %K are number of molecules of Na+ and K+ pumped per molecule of 
ATP hydrolyzed; $ATP(t) is the time-varying pump rate; $max is the maximal value of the pump 
rate; and KATP

i, KNa
i, and KK

o are dissociation constants.  In this model, the internal concentration 
of ATP, the internal concentration of Na+, and the external concentration of K+ control the pump 
rate.  For large concentrations (c >> K), the square-bracketed terms act like constants; for small 
concentrations (c << K), the square-bracketed terms have linear dependence on concentration. 

Cellular homeostasis 

Pumps serve the crucial function of keeping the concentration gradients of vital ions from 
“running down.”  Thus, over time, the passive fluxes through conductances should be exactly 
canceled by opposing active fluxes.  This is a form of cellular homeostasis, which we define here 
as the study of the mechanisms by which cells maintain a constant intracellular environment. 

Think of the world as a very tough neighborhood.  A given excitable cell has to maintain 
energetically unfavorable electrochemical gradients for signaling purposes.  It can be subjected 
to large changes in the osmolarity of its environment, particularly in animals like sea slugs that 
allow the osmolarity of their internal environment to change with that of the external 
environment (osmoconformers), but also in osmoregulators such as ourselves. 

The mathematical equations of homeostasis fall into two general categories.  First, some 
equations describe the ion channels, pumps, chemical buffering systems, and other properties 
that pertain to a specific population of cells.  The equations we have discussed for pumps and 
channels fall into this category.  Second, some equations describe rules of conservation.  These 
equations apply to all conditions. 

Conservation of solute 

Consider a cell with time-varying membrane surface area A(t).  The law of conservation of solute 
is a continuity equation stating that any ionic fluxes into or out of the cell must affect the 
concentrations within the cell.  It amounts to conservation of matter: 

 

dnn
i

dt
= !A(t) "n

j (t)
j
#  
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In this equation, nn
i(t) is the number of molecules of ionic species n inside the cell; !n

j(t) is the 
flux of ionic species n due to membrane mechanism j.  Different membrane mechanisms would 
include flow through ion channels pumps.  If the species n is bound by intracellular buffers, the 
influence of the buffers would be added to the right side of the equation (see Weiss, Vol. 1, p. 
577).  The negative sign comes from our sign convention, in which a positive flux is defined as 
an outward flow of the ion. 

Conservation of volume 

If a cell is subjected to different external and internal pressures, its volume will change to 
compensate.  More importantly in practice, as the osmolarity of internal and external solutions 
changes, these osmotic changes change cellular volume through the effects of osmotic pressure.  
Differences in osmotic pressure across a membrane can be described very simply by van’t Hoff’s 
Law: 

 

! i "! o = RT #ncn
i " #ncn

o

n
$

n
$
% 

& 
' 

( 

) 
*  

where R is the molar gas constant; T is absolute temperature; &n is the osmotic coefficient, which 
is a measure of how well the particles of n act independently at a given concentration and 
temperature (&n = 1 for very small concentrations; it is near 1 for most physiological solutes 
under physiological conditions); and cn

i and cn
o are the internal and external concentrations of 

species n.  In the sums, all solute species must be accounted for, including impermeant ones. 

Please note: in comparing the equation above with equation 1-2 from B&L, there is a tricky 
ambiguity in notation.  My terms cn

i and cn
o refer to the concentration of the dissolved ionic 

species, while B&L use c to stand for the concentration of the solute before it is dissolved, and 
use the factor i to account for the fact that the ion may dissolve into multiple particles.  For 
example, consider a solution of 1 M CaCl2.  In my notation, cCa = 1M, cCl = 2 M.  In the notation 
of B&L, 

2CaClc = 1 M and i=3. 

Flux of water caused by pressure-driven fluxes of water are described by the equation: 

Internal
solution

External
solution

Semipermeable
membrane

Piston

po = 0



BIOEN 6003 Lecture Notes 11 

[ ] [ ][ ]

[ ] !
"

#
$
%

&
!"
#

$%
& '('+(=

(+(=

) )
n n

o
nn

i
nnnioV

oinioVw

ccRTppL

ppLV

*

++*!

 

In this equation, LV [=] m/(Pa s) is the hydraulic conductivity of the membrane.  The reflection 
coefficient 'n represents the ability of the membrane to filter out the solute dissolved in the 
water.  A perfectly impermeant solute has 'n=1; conversely, a solute that passes through the 
membrane as easily as water has 'n=0 and generates no net osmotic flow.  In practice, we often 
assume 'n=1.  Usually, the hydraulic pressure gradient po - pi = 0, implying that the internal and 
external osmotic pressures must remain equal to meet the condition of conservation of volume. 

Notes on notation and other issues.  In general, I’ve used the notation from another, much more 
thorough text on this subject (Weiss, Cellular Biophysics, Vol. 1, MIT Press, 1996).  Here, I use 
the notation of Berne and Levy for the osmotic coefficient.  The osmotic coefficient of solute n 
(&n) should not be confused with the molar flux of solute n (!n).  Sorry for the notational 
ambiguities, but it makes no sense to develop an entirely new set of notation to work around the 
poorly-developed notation of Berne and Levy.  In comparing my version of van’t Hoff’s Law 
with that of Berne and Levy, there is the important difference that my notation tracks the 
concentration of an individual ion, whereas theirs does not.  This is only a notational issue. 

Important summary points about osmosis: 

1. The steady-state volume of the cell is determined the concentrations of impermeant ions. 

2. Permeant solutes redistribute according to the rules of electrodiffusion, and hence only 
transiently affect the volume of the cell.  The more permeant the solute, the more transient its 
effects on volume, because more permeant ions will redistribute more quickly.  This behavior 
can be understood in terms of the reflection coefficient 'n.  For 'n < 1, some solute passes 
through the membrane along with the water, implying a molar flux that is proportional to the 
flux of water with constant of proportionality (1-'n).  Thus, the solute will redistribute itself 
until the system reaches a new equilibrium. 

Cellular homeostasis: an example 

The condition of cellular homeostasis implies that, while each flux !n
j(t) may be non-zero, the 

sum of fluxes (and buffering reactions, if they are present) of a given ion should be zero to make 
dn
dt
n
i

= 0.   Also, under homeostasis, the volume is unchanging, implying that c cn
i

n
o

nn
=!! if 

po = pi, as is usually the case and we assume that the osmotic coefficient &n = 1 for each solute.  
The cell is said to be in osmotic equilibrium if the internal and external osmotic pressures are 
equal.  Finally, the condition of electroneutrality must be met, implying that for both the inside 
and outside of the cell, positive and negative ions must be present in equal numbers. 



BIOEN 6003 Lecture Notes 12 

Consider the implications of cellular homeostasis for a simple 3-ion model: 
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We’ll take outer concentrations cNa
o = 120 mM, cK

o = 5 mM, and cCl
o = 125 mM; internal 

impermeant anions present at a concentration cA
i = 121mM; and conductance values GNa = 0.01 

mS/cm2, GK = 0.05 mS/cm2, and GCl = 0.01 mS/cm2.  Let’s see under what conditions we can get 
a homeostatic solution. 

In this case, with only one flux per ion, our quasi-equilibrium solution, if it exists, is a true 
equilibrium solution: JNa

p = JK
p = JCl

p = 0 ( Vm
0 = VNa = VK = VCl.  This is the Donnan 

equilibrium condition, which implies that concentration ratios are equal for the three ions:  
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With the values listed above, we get cNa
i = 191.4 mM, -75.2 mM.  We will neglect the negative 

solution, because it is physically impossible. cNa
i = 191.4 mM ( VNa = -12.1 mV, cK

i = 7.97 
mM, and cCl

i = 78.37. 

We have determined this putative quasi-equilibrium state without accounting for the condition of 
osmotic equilibrium.  Have we gotten a solution that meets this last condition? 

c cn
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n
n
o

n
! != + + + = " = + + =1914 7 97 78 37 121 398 74 120 5 125 250. . . .  mM  mM  
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No.  This solution does not obey the condition of osmotic equilibrium.  For this system, there is 
no quasi-equilibrium condition!  We would have to add other elements to the circuit (e.g., 
pumps) to make the quasi-equilibrium state possible. 


