

- Structure/Function
 - 1% of body mass
 - 25% of cardiac output
 - Passes total blood volume every 4-5 minutes
 - Filters 180 I per day and reabsorbs 178.5 I of it
 - Produces 1.5 l of acidic (pH~6) urine per day
 - 5% increase in filtration would generate 9 I urine per day!
 - Regulation of kidney ensures that this does not happen.

Osmoregulatory Organs: Prototypical Transport Systems and the Mammalian Kidney

Transport Systems: Specific Example

Example: Glucose Regulation

- Normal glucose clearance is zero (i.e., no net loss)
- Filtration is complete
- Reabsorption complete (to a limit of about 320 mg/ min)
- Clearance increases for excess plasma glucose
- Diabetics have low reabsorption and can accumulate glucose in urine

Regulation of Filtration

Kidnev

Goal: maintain constant filtration under variations in arterial pressure

- Myogenic autoregulation: rise in blood pressure causes first stretch, then contraction of afferent arteriole
- Osmotic autogregulation
 - Macula densa: Sensor cells for osmolarity and flow of distal tubule; release substances to control afferent arterial flow
 - Granular cells control smooth muscle by releasing renin
- Central regulation:
 - Sympathetic innervation of afferent arteriole
 - Responds to blood loss (constriction) and hypertension (dilation)
 - Also causes constriction of parts of glomerulus to further reduce filtration
 - Powerful mechanism, can override autoregulation

Renin-Angiotensin System Renin, enzyme released from the granular cells by (a) reduced renal blood pressure Aldosterone Increased Na+ - reduced solute delivery to distal tubule reabsorption - sympathetic stimulation Distal 2 Angiotensin I, released from the kidneys by tubule Adrena - rise in Renin cortex .IGA Angiotensin II, result of Angiotensin I cleavage by General systemic - ACE vasoconstriction Angiotensin II Angiotensin II causes Angiotensinogenconverting - at low levels, constriction of efferent arterioles, raises enzyme glomerular filtration Angiotensin - at higher levels constriction of both efferent and afferent Angiotensinogen arterioles, reduces glomerular filtration (from liver) - increase reabsorption of Na⁺ (and water) in distal tubule - release of aldosterone (adrenal cortex) and vasopressin (pituitary) which increases reabsorption of Na⁺ and water in distal tubule Kidney Bioengineering 6000 CV Physiology

Proximal Tube Reabsorption

70% of salts reabsorbed

- Active pumping (via K/Na pump on basolateral)
- Water and Cl⁺ follow Na⁺ passively (and perhaps cotransport)
- Glucose and amino acids follow in co-transport
- Other substances concentrated in filtrate

· By loop of Henle

- 75% of filtrate reabsorbed
- Iso-osmotic with cells/plasma (300 mosm/L)
- Phosphates, Ca²⁺, and other electrolytes reabsorbed as needed

Collecting Duct

Final concentrating of urine

- Water permeable
 - Permeability controlled by ADH through cAMP signaling that increases aquaporin formation
 - Interstitial space is hypertonic (mostly from NaCl and urea)
- Secretion of K⁺, H⁺, NH₃
- Reabsorption of Na⁺, Cl⁻, HCO₃⁻
 - Na⁺ by active transport
 - Regulated by aldosterone
 - Determines water movement and urine concentration
- Reabsorption of urea
 - End of duct very permeable to urea
 - Regulated by ADH by increase in urea transporters

Angiotensin II

ACE

Kidnev

Inhibitors

Angiotensinogen-

converting enzyme Angiotensin I

- response to angiotensin II, osmotic and blood pressures
- Increase water reabsorption
- Atrial Natriuretic peptide (ANP)
 - Released from atrium in response to pressure
 - Inhibits release of renin and ADH to increase urine production

Bioengineering 6000 CV Physiology

Angiotensinogen

(from liver)

reabsorption

Active

- Loop with active transporters between the arms loops
- Leads to cumulative concentration increase
- Requires:
 - Active Transport between arms
 - Constant flow into loop
- Concentration gradient along the entire arm is greater than between arms.

Passive

 Passive system reduces the gradient, e.g., reducing heat loss to the heat sink.

Countercurrents in the Kidney

- 1) Active transport of salt
 - Increased osmolarity
 - Lower water permeability
- 2) Osmotic passive transport of water
 - Low NaCl, urea permeability
- 3) Passive diffusion of urea
 - Only place with high urea permeability
- 4) Osmotic diffusion of water
 - Produces high osmolarity filtrate and bottom of loop
- 5) Diffusion of salt
 - Low water permeability
 - Produces low osmolarity filtrate at top of loop
 - Overall effect is concentration of urine

Urine Production Summary

- Contents:
 - Water + urea, NsCL, KCL, phosphates, etc.
 - Color and odor product of diet, e.g., asparagus
- Process:
 - Filter everything out (and take back what is worth keeping)
 - Reabsorption of water and salts
 - Secretion of additional unwanted substances

