Overview of Renal Function

Anatomy/Function of the Kidney

- Structure/Function
 - 1% of body mass
 - 25% of cardiac output
 - Passes total blood volume every 4-5 minutes
 - Filters 180 l per day and reabsorbs 178.5 l of it
 - Produces 1.5 l of acidic (pH~6) urine per day
 - 5% increase in filtration would generate 9 l urine per day!
 - Regulation of kidney ensures that this does not happen.
Nephron Structure

- Closed end of tubule forms a bowl for the glomerulus
- Glomerulus is extension of capillaries, creates ultrafiltrate of blood that passes to Bowman’s capsule
- Urine passes through collecting duct to renal pelvis
- Tubule
 - One-cell thick
 - Proximal tubule
 - Loop of Henle
 - Distal tubule
- 1 million nephrons/kidney

Osmoregulatory Organs: Prototypical Transport Systems and the Mammalian Kidney
Transport Systems: Prototype

External, Lumen (apical surface)

Internal, Interstitial space (basal surface)

Transport Systems: Specific Example

- ATPase removes Na⁺ and absorbs K⁺
- K⁺ diffuses and crosses into tubular lumen through special channels
- Net K transporter, driven by ATP-ase
Na⁺ Transport

![Diagram showing Na⁺ transport in the kidney](image)

- **Passive cotransport:** Na⁺ and glucose move together.
- **Active transport:** Na⁺ is transported against its concentration gradient using ATPase.
- Channels facilitate movement of ions.

H⁺ transport driven by Na⁺ transport

![Diagram showing H⁺ transport](image)

- **Passive Antiporter:** H⁺ and Na⁺ move together.
- **Proton Production:** H⁺ reacts with CO₂ and H₂O to form HCO₃⁻ and CO₂.
- **CA (carbonic anhydrase):** Catalyst for the proton reaction.
- **Basolateral membrane:** HCO₃⁻ moves to the basolateral side.

Bioengineering 6000 CV Physiology
Functional Overview

- **Contents:**
 - Water + urea, NaCL, KCL, phosphates, etc.
 - Color and odor product of diet, e.g., asparagus
- **Process:**
 - Filter everything out (and take back what is worth keeping)
 - Reabsorption of water and salts
 - Secretion of additional unwanted substances

Renal Circulation

- **Afferent arteriole**
- **Glomerulus**
 - 10% of blood crosses to tubule
 - 100 ml/minutes
- **Efferent arteriole**
- **Secondary capillaries**
 - Loops: vasa recta
- **Veins**
Nephron Functional Overview

- Most water and minerals taken out of the filtrate
- Each region of tubule has different function
- “Renal clearance”
 - Amount of plasma from which a substance is completely removed from the body [ml/min]
 - Function of filtration, reabsorption, and secretion

Example: Glucose Regulation

- Normal glucose clearance is zero (i.e., no net loss)
- Filtration is complete
- Reabsorption complete (to a limit of about 320 mg/min)
- Clearance increases for excess plasma glucose
- Diabetics have low reabsorption and can accumulate glucose in urine
Detailed Passage Through the Nephron

1. Glomerular (filtration)
2. Proximal (reabsorption)
3. Loop of Henle (concentration)
4. Distal (reabsorption/secretion)
5. Collecting Duct (reabsorption/secretion)

Glomerular Structure
Glomerular Filtration

- Filtrate excludes only red blood cells and large proteins
- Rate depends on:
 - Hydrostatic pressures
 - Colloid osmotic pressure
 - Hydraulic permeability
- Net pressure is +10 mm Hg
- Permeability very high
 - Capillaries fenestrated
 - Filtration slits in glomerulus

Regulation of Filtration

Goal: maintain constant filtration under variations in arterial pressure
- Myogenic autoregulation: rise in blood pressure causes first stretch, then contraction of afferent arteriole
- Osmotic autoregulation
 - Macula densa: Sensor cells for osmolarity and flow of distal tubule; release substances to control afferent arterial flow
 - Granular cells control smooth muscle by releasing renin
- Central regulation:
 - Sympathetic innervation of afferent arteriole
 - Responds to blood loss (constriction) and hypertension (dilation)
 - Also causes constriction of parts of glomerulus to further reduce filtration
 - Powerful mechanism, can override autoregulation
Renin-Angiotensin System

- Renin, enzyme released from the granular cells by
 - reduced renal blood pressure
 - reduced solute delivery to distal tubule
 - sympathetic stimulation
- Angiotensin I, released from the kidneys by
 - rise in Renin
- Angiotensin II, result of Angiotensin I cleavage by
 - ACE
- Angiotensin II causes
 - at low levels, constriction of efferent arterioles, raises glomerular filtration
 - at higher levels constriction of both efferent and afferent arterioles, reduces glomerular filtration
 - increase reabsorption of Na⁺ (and water) in distal tubule
 - release of aldosterone (adrenal cortex) and vasopressin (pituitary) which increases reabsorption of Na⁺ and water in distal tubule

Proximal Tube Reabsorption

- 70% of salts reabsorbed
 - Active pumping (via K/Na pump on basolateral)
 - Water and Cl⁻ follow Na⁺ passively (and perhaps co-transport)
 - Glucose and amino acids follow in co-transport
 - Other substances concentrated in filtrate
- By loop of Henle
 - 75% of filtrate reabsorbed
 - Iso-osmotic with cells/plasma (300 mosm/L)
 - Phosphates, Ca²⁺, and other electrolytes reabsorbed as needed
Proximal Tube Secretion

- Organic anions (OA\(^{-}\))
 - K/Na pump creates Na\(^+\) gradient for exchanger
 - Non-specific mechanism for many OA's, both endogenous and exogenous
 - Drugs can alter transport through competitive binding
 - Co-administration of secreted ions with a drug can slow secretion (removal) of the drug because they can compete with the drug.

Loop of Henle

Concentration of Urine

- Descending limb
 - High passive H\(_2\)O transport
 - Interstitial osmolarity climbs (see below)
 - Thin cells
 - Almost no active salt transport, low salt permeability
- Thin ascending segments
 - Highly permeable to NaCl
 - Very low permeability to H\(_2\)O
 - No active salt transport
- Thick ascending limb
 - Active transport of NaCl
 - Low H\(_2\)O permeability
 - Reduces osmolarity
Distal tubule

Adjustment of urine content

- **Reabsorption:**
 - Na^+, Cl^-, HCO_3^-
 - Active transport of NaCl
 - Water follows salts (permeability controlled by ADH)

- **Secretion:**
 - H^+, NH_3, K^+
 - K^+
 - Occurs when elevated in the body
 - Na/K pumps into tubular cells, leaks into tubule through channels

- **Regulation/Feedback**
 - Distal tubule is close to glomerulus so regulation based on osmolarity in tubule
 - Concentrates urine
 - Salt transport under endocrine control
 - Aldosterone: enhanced Na$^+$ reabsorption and K$^+$ secretion

Collecting Duct

Final concentrating of urine

- **Water permeable**
 - Permeability controlled by ADH through cAMP signaling that increases aquaporin formation
 - Interstitial space is hypertonic (mostly from NaCl and urea)

- **Secretion of K^+, H^+, NH_3**

- **Reabsorption of Na^+, Cl^-, HCO_3^-**
 - Na^+ by active transport
 - Regulated by aldosterone
 - Determines water movement and urine concentration

- **Reabsorption of urea**
 - End of duct very permeable to urea
 - Regulated by ADH by increase in urea transporters
Concentration of Urine

- Ability to concentrate urine depends on
 - Length of loop of Henle (kangaroo rat has very long one)
 - Gradient of osmolarity
 - Countercurrent mechanisms to maintain osmotic gradient (see below)
- Salt glands (e.g., marine birds)
 - Active salt transport via Na⁺/K⁺ pump and Na⁺/Cl⁻ cotransport
 - 2-3 times blood osmolarity

Aldosterone and ADH

- Aldosterone:
 - Releases from adrenal cortex
 - Increases Na⁺ reabsorption
- Antidiuretic Hormone (ADH)
 - Also called vasopressin
 - Released from pituitary in response to angiotensin II, osmotic and blood pressures
 - Increase water reabsorption
- Atrial Natriuretic peptide (ANP)
 - Released from atrium in response to pressure
 - Inhibits release of renin and ADH to increase urine production
Countercurrent Multiplier

Active
- Loop with active transporters between the arms loops
- Leads to cumulative concentration increase
- Requires:
 - Active Transport between arms
 - Constant flow into loop
- Concentration gradient along the entire arm is greater than between arms.

Passive
- Passive system reduces the gradient, e.g., reducing heat loss to the heat sink.

Countercurrents in the Kidney

1) Active transport of salt
 - Increased osmolarity
 - Lower water permeability
2) Osmotic passive transport of water
 - Low NaCl, urea permeability
3) Passive diffusion of urea
 - Only place with high urea permeability
4) Osmotic diffusion of water
 - Produces high osmolarity filtrate and bottom of loop
5) Diffusion of salt
 - Low water permeability
 - Produces low osmolarity filtrate at top of loop
 - Overall effect is concentration of urine
Counter Currents: Role of Vasa Recta

- Vasa recta parallel to loop
- Counter current mechanism plays key role in maintaining strong blood flow without disrupting osmolarity gradient

Urine Production Summary

- Contents:
 - Water + urea, NaCl, KCl, phosphates, etc.
 - Color and odor product of diet, e.g., asparagus

- Process:
 - Filter everything out (and take back what is worth keeping)
 - Reabsorption of water and salts
 - Secretion of additional unwanted substances