

• Lymph system

Structure of the Capillary System

- Most porous of the caps
- Paracellular gaps and no vesicles.
- Liver, bone marrow, spleen, lymph nodes.
- Plasma and interstitial fluid in equilibrium.

Microcirculation

Interstitium and Interstitial Fluid

- 12 liters (1/6th of the body)
- Collagen bundles
 - provide structure, tension
- Proteoglycan filaments
 - thin, coiled shape (small)
 - "brush pile" of the interstitium
- · Interstitial fluid
 - ultrafiltrate of plasma
 - trapped by proteoglycan filaments -> gel
 - slow flow through the gel
 - fast diffusion of water and electrolytes
- Free liquid
 - small rivulets along collagen and cell edges
 - water reservoir for interchange with capillaries
 - increases drastically in edema

Other Interstitial Spaces

Microcirculation

Fluid Balance

- Goal: what is the overall purpose of the system
 - Maintain correct amount of fluid in blood, interstitium, (and body)
- Process Steps: the set of steps that produce something – How is water controlled?
- Points of Regulation: where can we alter the process? – Where is are fluid levels controlled?
- Sensor types and locations: the measurement system(s)?
 How do we sense fluid levels?
- Feedback mechanisms: how do sensors communicate with points of regulation to alter the process?

- What connects sensors, regulation, process?

Fluid Ba	alance Example		
	Hydrostatic Pressure	mm Hg	
	Capillary	30	
	Interstitial	-5.3	
	Subtotal (positive = outwards)	35.3	
Arterial End	Osmotic Pressure		
	Capillary	-28	
	Interstitial	-6	
	Subtotal (positive = outwards)	-22	
	Total (positive = outwards)	13.3	
	Hydrostatic Pressure	mm Hg	
	Capillary	10	
Venous End	Interstitial	-5.3	
	Subtotal (positive = outwards)	15.3	
	Osmotic Pressure		
	Capillary	-28	
	Interstitial	-6	
	Subtotal (positive = outwards)	-22	
	Total (positive = outwards)	-6.7	
-h	Microcirculation	Bioengineerii	ng 6000 CV Physiology

Fluid	Balance	Exampl	е
			-

- Starling Equilibrium
 - 0.3 mm Hg net outward pressure
 - -2 ml/min net outflow
 - Difference goes to lymphatics

Hydrostatic Pressure		mm Hg
	Capillary	17
	Interstitial	-5.3
Subtotal (positive = outwards)		22.3
Osmotic Pressure		
	Capillary	-28
	Interstitial	-6
Subtotal (positive = outwards)		-22
Total (positive = outwards)		0.3

Example of Imbalance: Starvation and fluid balance

- reduction in blood protein
- drop in capillary osmotic pressure
- water leaves blood and gathers in abdomen

Microcirculation

Microcirculation

Bioengineering 6000 CV Physiology

<section-header><image><image>

- · Goal: what is the overall purpose of the system
 - Maintain correct amount of fluid in blood, interstitium, (and body)
- Process Steps: the set of steps that produce something
 - Diffusion across capillaries
 - Removal of water from tissue (lymphatics) and body (kidney)
- Points of Regulation: where can we alter the process?
 - Blood pressure
 - Colloid pressure (osmotic forces)
 - Kidney
- Sensor types and locations: the measurement system(s)?
 Numerous (stay tuned)
- Feedback mechanisms: how do sensors communicate with points of regulation to alter the process?
 - Numerous, involving both nervous and endocrine and local

Pulmonary Edema

Causes:

- Increase in pulmonary capillary pressure (e.g., reduced left ventricular function).
- Increased permeability of pulmonary capillaries (e.g., exposure to noxious gases or chemicals).
- Decrease in plasma colloid pressure (rare)
- Effects:
 - Alveolar edema: membranes break easily and fluid gushes into the alveoli, blocking exchange
 - Lymphatic compensation: lymphatics increase in size/capacity
 - Rapid death: With acute LV failure, pressure can rise to 50 mm Hg within minutes and death can follow within a half hour.
- · Safety factors:
 - Negative interstitial pressure
 - Lymphatic flow capacity
 - Lymphatic washout of proteins

