Summary of Topics for Bioengineering/Physiology 6000 System Physiology I Mid Term #1, 2014 Edition, March 17

Rob MacLeod (macleod@sci.utah.edu)

March 10, 2014

Forward

The following is a list of topics that we covered in the first part of the semester in Bioengineering 6000 course. I expect students to be familiar with each of the concepts and ideas and will draw from this list for first midterm questions.

1 Basic Ideas in Animal Physiology

- 1. Adaptation, acclimatization, and acclimation
- 2. Homeostasis: what it is, different ways of responding to external change, examples, role of negative feedback
- 3. Structure function relationships: what we mean by structure/function relationships, with examples.

2 Electrophysiology

2.1 Cellular

- 1. Ion transport mechanisms of the membrane in heart cells: channels, pumps, exchangers.
- 2. Critical concepts:
 - Equilibrium potential
 - Resting potential
 - Driving force
- 3. Ion currents:
 - Channel structure and regulation (state transition model for channel opening),
 - Hodgkin-Huxley formalism (gate variables),
 - Important cardiac currents and their regulation (voltage and time dependence),

- Be sure to go over the cell membrane simulation homework and be familiar with the mechanisms and behavior you observed there, *eg.*, thresholds, all-or-nothing, response to varying ion concentrations.
- 4. Action potentials:
 - Different types of cardiac action potentials, *i.e.*, those belong to different cell types in the heart,
 - Effects of autonomic nervous system neurotransmitters on pacemaker action potentials.

2.2 Myocardial Tissue

- 1. Structural characteristics of myocardial tissue: organization, fibers, gap junctions, syncytium,
- 2. Nature and role of anisotropy,
- 3. Propagation of excitation through myocardial tissue,
- 4. Cell to cell coupling, local circuit currents,
- 5. Measurement of electrical activity in cardiac tissue, *eg.*, bipolar and unipolar electrical recordings and optical methods,
- 6. Gap junction structure, function,
- 7. Mechanisms of reentry and ectopic focus in cardiac arrhythmias.

2.3 Whole heart

- 1. Electrophysiology of the whole heart:
 - Structure, role of conduction system,
 - Role of different pacemakers ("overdrive suppression"),
 - Effects of autonomic nervous system on the heart rate,
 - Activation sequence of the heart,
 - Cardiac arrhythmias.
- 2. Electrocardiography:
 - Basic physiology and biophysics of the ECG, components required for ECG to arise,
 - Heart dipole and the sequence of activation,
 - Lead systems,
 - Basic interpretation of ECGs.

3 Background materials from the text

The following pointers are to sections in the Eckert Animal Physiology text that are recommended or required reading:

Chapter 1:	pages 3–14
Chapter 2:	pages 26–29
Chapter 3:	pages 49–51 (should be review)
Chapter 4:	pages 79–104 (should be review)
Chapter 5:	pages 122–150 (selectively, some as review)
Chapter 12:	pages 476–481 and assume that you have to know everything
	that is even mentioned in these few pages.

For other resources should you need more explanation please see here

http://www.sci.utah.edu/~macleod/bioen/be6000/background.html