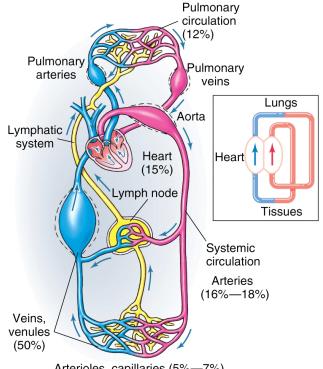
Microcirculation Lecture Block 11 (contributions from Brett Burton)

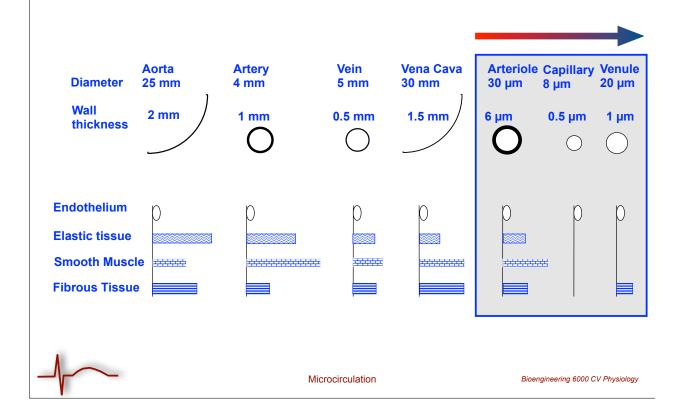


Microcirculation

Bioengineering 6000 CV Physiology

Elements of Microcirculation

- · Arterioles, capillaries, venules
- · Structure and function: transport
- Fluid balance
- Lymph system



Arterioles, capillaries (5%—7%)

Microcirculation

Vessels of the Circulatory System

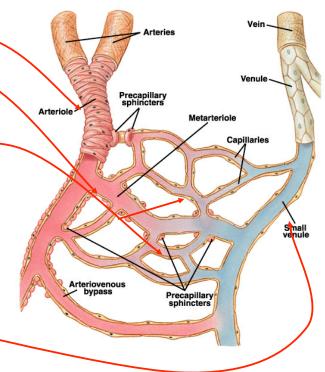
Built to Transport

Structure of the Capillary System

Arterioles

- < 40 μm diameter
- thick smooth muscle layer

Metarterioles


- connect arterioles and capillaries
- discontinuous smooth muscle layer
- serve as shunts

Capillaries

- approx. 10 billion in the body
- 500-700 m² surface area
- <30 µm from any cell to a cap</p>
- 4-9 µm diameter, 1 mm long
- no smooth muscle, contractile endothelial cells but not clear if functional

Venules

- larger than arterioles
- weak smooth muscle layer

Bioengineering 6000 CV Physiology

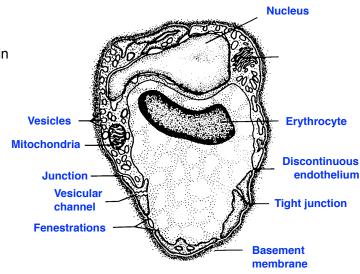
Capillary Wall Structure

Microcirculation

· Intercellular cleft (Junctions):

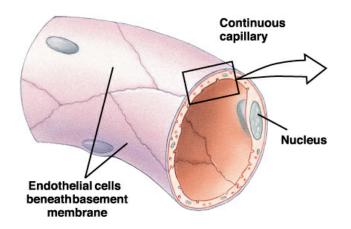
- 6-7 nm space between adjacent endothelial cells
- site of transport, although only 1/1000th of surface area
- reduced in size in brain (blood-brain barrier)

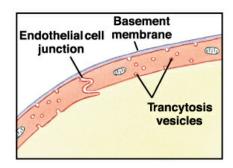
Discontinuous endothelium


- large spaces between endothelial cells
- found in liver

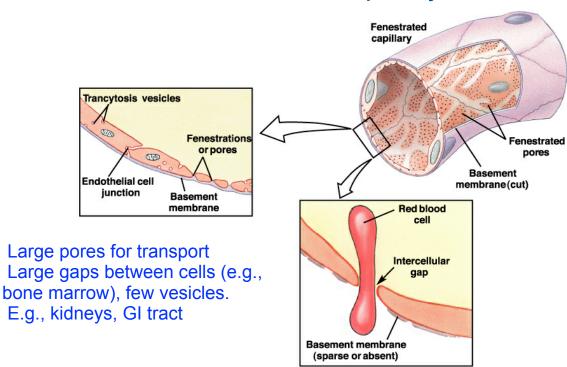
Pinocytic vessicles

Transport system for large molecules/solids


Fenestra


- Membrane "windows" with permeable membrane cover
- Found in kidneys, permit much higher transport levels

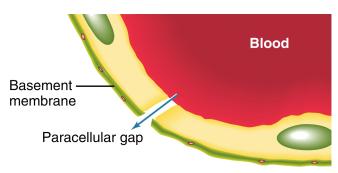
Continuous Capillary


Tight junctions between cells
Transport via vesicles
E.g., blood-brain barrier (extremely tight junctions)

Microcirculation

Bioengineering 6000 CV Physiology

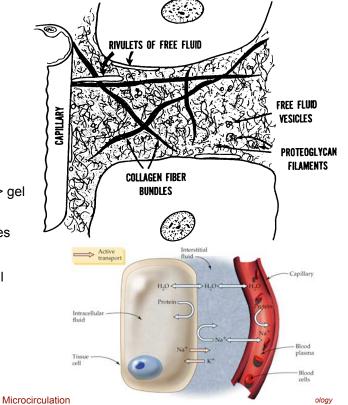
Fenestrated Capillary



Microcirculation

Sinusoidal Capillary

- Most porous of the caps
- Paracellular gaps and no vesicles.
- Liver, bone marrow, spleen, lymph nodes.
- Plasma and interstitial fluid in equilibrium.



Microcirculation

Bioengineering 6000 CV Physiology


Interstitium and Interstitial Fluid

- 12 liters (1/6th of the body)
- Collagen bundles
 - provide structure, tension
- Proteoglycan filaments
 - thin, coiled shape (small)
 - "brush pile" of the interstitium
- Interstitial fluid
 - ultrafiltrate of plasma
 - trapped by proteoglycan filaments -> gel
 - slow flow through the gel
 - fast diffusion of water and electrolytes
- Free liquid
 - small rivulets along collagen and cell edges
 - water reservoir for interchange with capillaries
 - increases drastically in edema

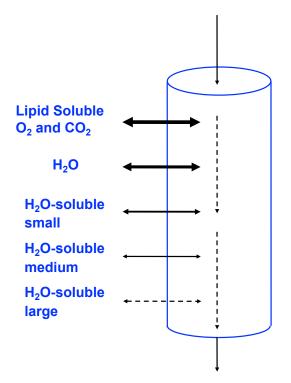
Other Interstitial Spaces

Microcirculation

Bioengineering 6000 CV Physiology

Capillary Diffusion and Water Balance

Microcirculation


Diffusion through Capillaries

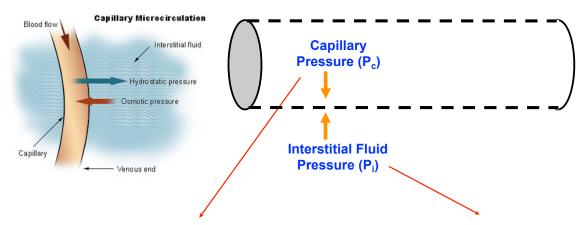
- Dominant mechanism, rate varies by tissue
- Diffusion of water 40-80 times faster than flow
- 2/3 of blood volume diffuses per minute
- Driven by concentration gradient:

J = -DA dc/dx

D = diffusion constant, A = area, c = concentration

- Flow limited: transport rate is fast enough for equilibrium
- Diffusion limited: equilibrium never established

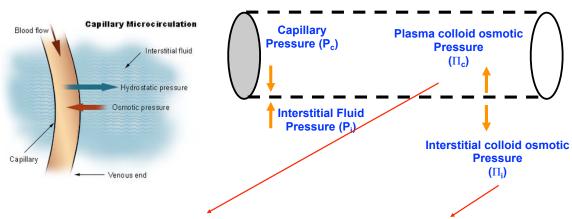
Microcirculation


Bioengineering 6000 CV Physiology

Fluid Balance

- · Goal: what is the overall purpose of the system
 - Maintain correct amount of fluid in blood, interstitium, (and body)
- Process Steps: the set of steps that produce something
 - How is water controlled?
- Points of Regulation: where can we alter the process?
 - Where is are fluid levels controlled?
- Sensor types and locations: the measurement system(s)?
 - How do we sense fluid levels?
- Feedback mechanisms: how do sensors communicate with points of regulation to alter the process?
 - What connects sensors, regulation, process?

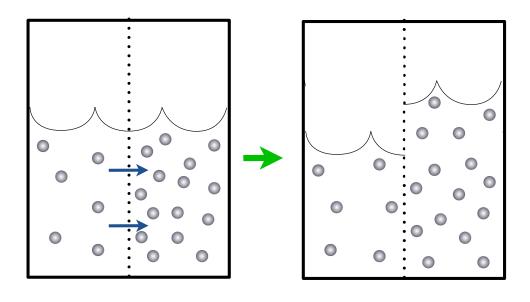
Fluid Balance: Hydrostatic Pressure


- Direct measures: 30--40 mm Hg arterial, 10--15 venous, 25 in the middle
- Functional measures: 17 mm Hg mean
- Near zero in healthy state
- Free fluid pressure
 - small but negative (2-7 mm Hg), helps to hold interstitium together
 - determines the tendency for edema
- Gel pressure
 - positive and static

Microcirculation

Bioengineering 6000 CV Physiology

Fluid Balance: Osmotic Pressure

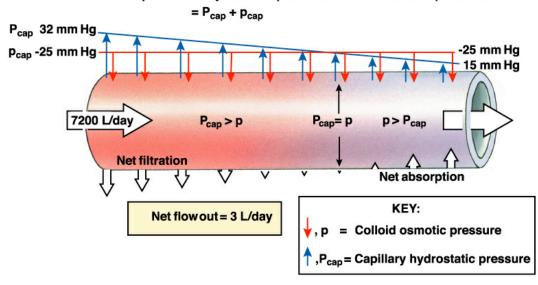

- Proteins diffuse poorly out of blood
- Plasma: 7.3 g/dl; IF: 2--3 g/dl
- · Donnan Effect:
 - negatively charged proteins attract, but do not bind, ions
 - result is higher osmotic pressure
 - in humans: 28 mm Hg vs.19 from protein

- · Only small amount of protein in the IF
- 6 mm Hg pressure.

prot

Microcirculation

Fluid Balance: Osmotic Pressure


Microcirculation

Bioengineering 6000 CV Physiology

Fluid Balance

Filtration in systemic capillaries

Net pressure = hydrostatic pressure + colloid osmotic pressure

Microcirculation

Fluid Balance Example

Arterial End

Hydrostatic Pressure	mm Hg
Capillary	30
Interstitial	-5.3
Subtotal (positive = outwards)	35.3
Osmotic Pressure	
Capillary	-28
Interstitial	-6
Subtotal (positive = outwards)	-22
Total (positive = outwards)	13.3

Hydrostatic Pressure		mm Hg
	Capillary	10
	Interstitial	-5.3
Subtotal (positive = outwards)		15.3
Osmotic Pressure		
	Capillary	-28
	Interstitial	-6
Subtotal (positive = outwards)		-22
Total (positive = outwards)		-6.7

Venous End

Microcirculation

Bioengineering 6000 CV Physiology

Fluid Balance Example

Mean Values

- Starling Equilibrium
 - 0.3 mm Hg net outward pressure
 - -2 ml/min net outflow
 - Difference goes to lymphatics

Hydrostatic Pressure		mm Hg
	Capillary	17
	Interstitial	-5.3
Subtotal (positive = outwards)		22.3
Osmotic Pressure		
	Capillary	-28
	Interstitial	-6
Subtotal (positive = outwards)		-22
Total (positive = outwards)		0.3

Example of Imbalance: Starvation and fluid balance

- reduction in blood protein
- · drop in capillary osmotic pressure
- water leaves blood and gathers in abdomen

Microcirculation

Fluid Movement Equation

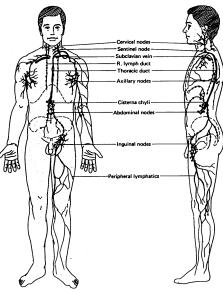
$$Q_{tc} = KA(P_c - P_i + \Pi_c - \Pi_i)$$

K =capillary permeability

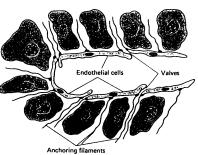
A = surface area $P_c =$ capillary pressure $P_i =$ interstitial pressure $\Pi_c =$ capillary colloid osmotic pressure

 $\Pi_i =$ interstitial colloid osmotic pressure

Is
$$Q_{tc} = 0$$
?

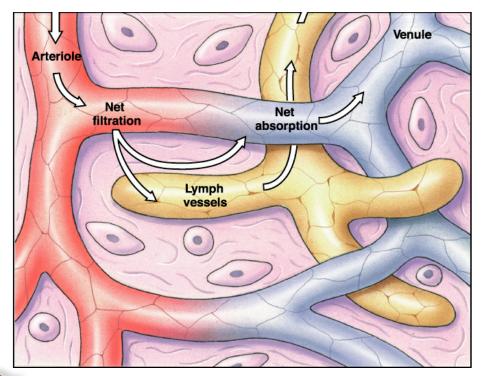

Microcirculation

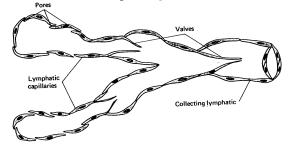
Bioengineering 6000 CV Physiology


Lymphatic System

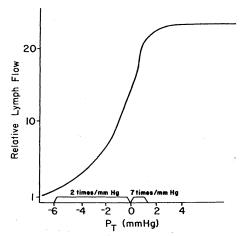
The Lymphatic System

- Role
 - fluid balance
 - fat absorption from GI
 - immune response: bacteria


- · Lymphatic capillaries
 - endothelial flaps
 - valves to collectors
 - driven by skeletal muscle contraction


Bioengineering 6000 CV Physiology

Fluid Balance and Lymphatics



Microcirculation

Lymphatic Flow

- · Interstitial Pressure
 - negative pressure permits flow
 - at positive pressures capacity for flow saturates
- Lymphatic pump
 - valves block backflow
 - lymphatics contract when filled
 - external pressure moves lymph
 - 4-150 ml/hr flow (1/6000 of cardiac output) = total plasma volume in 1 day

Figure 31—4. Relationship between interstitial fluid pressure and lymph flow. Note that lymph flow reaches a maximum as the interstitial pressure rises slightly above atmospheric pressure (0 mm Hg). (Courtesy of Drs. Harry Gibson and Aubrey Taylor.)

Microcirculation

Bioengineering 6000 CV Physiology

Fluid Balance

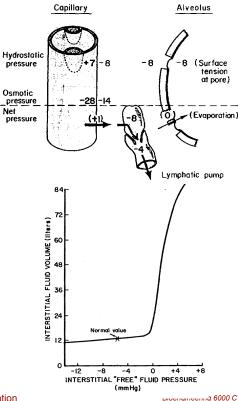
- Goal: what is the overall purpose of the system
 - Maintain correct amount of fluid in blood, interstitium, (and body)
- Process Steps: the set of steps that produce something
 - Diffusion across capillaries
 - Removal of water from tissue (lymphatics) and body (kidney)
- Points of Regulation: where can we alter the process?
 - Blood pressure
 - Colloid pressure (osmotic forces)
 - Kidney
- Sensor types and locations: the measurement system(s)?
 Numerous (stay tuned)
- Feedback mechanisms: how do sensors communicate with points of regulation to alter the process?
 - Numerous, involving both nervous and endocrine and local

Microcirculation

Pulmonary Edema

· Causes:

- Increase in pulmonary capillary pressure (e.g., reduced left ventricular function).
- Increased permeability of pulmonary capillaries (e.g., exposure to noxious gases or chemicals).
- Decrease in plasma colloid pressure (rare)


• Effects:

- Alveolar edema: membranes break easily and fluid gushes into the alveoli, blocking exchange
- Lymphatic compensation: lymphatics increase in size/capacity
- Rapid death: With acute LV failure, pressure can rise to 50 mm Hg within minutes and death can follow within a half hour.

· Safety factors:

- Negative interstitial pressure
- Lymphatic flow capacity
- Lymphatic washout of proteins

Microcirculation

פונים הויפות 6000 CV Physiology