Cardiovascular Variability and Respiratory Influences under Hyperbaric Conditions

Introduction

- Known affects of atmospheric pressures greater than 1 atm
 - Heart rate variability
 - Health
 - Unhealthy
 - Affect on blood O2 saturation
 - Changes in respiration
- Recreational scuba diving and common medical treatments
 - Roughly 4 atm at 30 m (in sea water)
 - o 2.5-3 atm used in medical treatments
 - What does this do to the function of the heart
 - Are there any long term effects
 - Dangers of scuba diving
 - "Normal" reaction to increased atmospheric pressure
- Unknowns
 - Is controlled breathing linked to HRV
 - Additional information for scuba divers
- Outline of paper
 - Background info
 - Brief history of scuba diving
 - Brief history of hyperbaric medical treatments
 - Methods used for studying normal response to pressure
 - Professional divers
 - Controlled breathing
 - Results of study
 - Contradict previous study
 - Increased Vagal tone
 - \circ Discussion
 - Possible problems with study
 - Indicative of normal medical treatment response?
 - Conclusion

Background

- Heart is capable of functioning under significantly increased pressures
 - Depths of 100 m below sea level
 - **3 atm**
 - Used in medical treatments, CO poisoning, deep wounds...
- What is challenging about this stress
 - Deep sea divers
 - Oxygen toxicity
 - Slows breathing
 - Increased outside pressure on heart
 - o Medical treatments
 - Hyperbaric hyperoxia induces bradycardia
 - Hyperbaric air ($O_2 21\%$ at ≥ 2.5 atm)
 - What affects do these have on the heart and respiration

- Method of analysis
 - 4 min ECG recordings
 - HRV- how it is calculated and its purpose
 - HF and LF

Methods (Lund2000)

- Male professional divers
 - Controlled breathing 15 breaths per min
 - Followed time table used in hyperbaric oxygen (HBO) medical treatments
- 4 minute ECGs following reaching a level of pressure
 - After 30 min of rest at 1 atm
 - After reaching 2.5 atm for 30 min
 - After exposure to 2.5 atm for 55 min
 - After ascending to 1.6 atm
 - After decompression
- Study done for both 100% O2 and 21% O2 (normal air)
- Statistical analysis of HRV

Results (Lund2000)

- Heart rate decreased with increased pressure
 - Results similar for both cases
- HRV increased for both cases
 - HRV greater for 100% O2
 - Greater HF (high frequency) component
 - Greater LF (low frequency) component
- Arrhythmias
 - Increased QT and PQ durations
 - Due to vagal response

Discussion:

- What triggers a parasympathetic response to increased pressure?
 - o Increased outside pressure on the heart
 - Increased O2 concentration in blood
 - Respiration (maintained constant across study)
- Mechanisms
 - Reduced venous flow
 - Shift of pressure-flow graphs (Aldea2000)
 - Excess O2 due to increased pressure
 - Slower heart rate
 - Reduced venous return
 - Increased vagus response
 - Increased O2 in blood
 - Increased outside pressure on heart
 - Effective reduction in ventricular capacity
 - Controlled breathing
 - Probably reduced volume

- Weakness
 - o Controlled breathing
 - Although compensated in analysis, affects other mechanisms
 - Not typical of patients receiving hyperbaric treatments
 - Professional Divers
 - Trained response to exposure to pressure
 - Developed compensatory mechanisms
 - Much lower pressures than what professional divers experience
 - Potential panic likely to be seen in patients not present
- Questions
 - How would this change with less experienced divers
 - What would change without controlled breathing
 - Less obvious changes in HRV
 - Lungs would help compensate (i.e. slower respiration rate)