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1 Introduction

The goal of assignments related to this document is to experiment with a numerical simulation of
the cardiac action potential. The form of this simulation is just as described in class, using the
Hodgkin-Huxley formalism and differential equations to reproduce the currents responsible for the
action potential. To simulate the cardiac action potential, it is necessary to expand the number
of channels from the simple squid giant axon case, and also to alter the dynamic of these currents
compared with the original work of Hodgkin and Huxley.

This background section and the Matlab code that you will use is primarily the work of Quan
Ni, a former Bioengineering graduate student and now engineer at Guidant Corporation.

2 Derivation

In this section we describe the derivation and additional material you need to know in order to
simulate cardiac ventricular membranes. This assumes you have already studied the text and/or
read the notes from the lecture on this material, the notes from which are also available on the
class website.

The basic equation is the familiar one describing all the currents that travel across the cell
membrane of any excitable cell:

I = Iion + Cm
dV

dt
(1)

where Iion is the sum of all the ionic currents and CmdV
dt is the current that arises from the membrane

capacitance.
There are six major (and many minor) ionic currents present in cardiac ventricular cell mem-

branes: INa, a fast sodium current; Isi, a slow inward (largely) calcium current; IK , a time-
dependent potassium current; IK1, a second time-independent potassium current; IKp, a plateau
potassium current; and Ib, a time-independent background current. Thus we can write Iion from
Equation 1 as

Iion = INa + Isi + IK + IK1 + IKp + Ib (2)

We can assume that the instantaneous voltage-current relation is linear, i.e., the ionic current
for any ion species x, Ix(t), is related to the voltage across the membrane, Vm, by Ohm’s law

Ix(t) = gx(t, V )(Vm − V x
eq) (3)
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where gx is the conductance of the particular ionic channel and V x
eq is its Nernst or equilibrium

potential. The behavior of a cell membrane for most ion channels is not totally ohmic but instead
shows some degree of rectification. The use of Ohm’s law is best justified by past simulation results
that have successfully reconstructed membrane potential [1], however, one has to be skeptical
about the linear assumption under certain conditions, such as large and fast changes in calcium
concentration [2].

The conductance of an ionic channel is determined by the maximal conductance, g, and the
fraction of channels that are open. The fraction of channels open is given by some combination of
that Hodgkin and Huxley proposed as hypothetical activation variables. For the sodium channel,
they assumed two gating variables, “m”, representing activation and “h”, representing inactivation,
both raised to some integral power such that the resulting simulation matches measured values for
membrane voltage and current.

gNa(t, V ) = g ·m(t, V )i · h(t, V )j (4)

where i and j are positive integers. They further assumed m and h to obey first-order kinetics of
the form

dy

dt
=
y∞ − y(t, V )

τy(V )
, (5)

where y represents any gating variable, y∞ is the steady-state value of y, and τy is its time constant.
To adapt this formalism to a particular care, one has to determine the rate constants y∞ and τy,
as well as the powers, i and j, experimentally.

3 Numerical Simulations

The individual components of ionic currents in the cardiac membrane simulations described here
are formulated in terms of Hodgkin-Huxley type equations[1]. The formulae for gating variables
follow those of Beeler and Reuter[3], Ebihara and Johnson[4], and Luo and Rudy models[5, 6, 7],
all of which are based on cardiac ventricular cells.

The primary goal of the simulation is to approximate the electrical behavior of a single piece
of membrane that consists of a membrane capacity with six ionic currents. To represent the ionic
currents, we use a coupled system of eight first order, ordinary differential equations. At each step in
time, an algorithm establishes a set of values for the variables involved and then we integrate them
based on initial conditions and simulation parameters. To determine the membrane potential,
we sum the individual ionic currents together with any externally applied current to arrive at
the charging current for the membrane capacitance, which then determines the derivative of the
membrane potential. Finally, the Equation 1 contains all the necessary values and an integration
steps yields Vm(t).

It is also possible (although outside the scope of this assignment) to fix the membrane potential
at a desired value and simulate a voltage-clamp experiment. This then permits the study of
the characteristics of gate variable by using a simple exponential expression without the need for
integration.

The integration algorithm used to solve the differential equations for gate variables is based on
a hybrid method[8]. Briefly, for a sufficiently small change of membrane potential over the corre-
sponding time interval, ∆t, the gate variables remain essentially unchanged, and an approximate
solution for Equation 5 becomes a simple exponential of the form

y(t+ ∆t) = y∞ − (y∞ − y(t))e−∆t/τy , (6)

2



Simulation of Cardiac Action Potentials Bioengineering 6000/6460

minf

hinf

jinf

0

20

40

60

80

taum

tauh

tauj

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.05

0.1

0.15

ta
uh

,ta
uj

 (
m

s)

Membrane Potential (mV)

ta
um

 (
m

s)

Time constants

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Steady−state gate variables

Membrane Potential (mV)

Figure 1: Steady state values and time constants for the activation (m), inactivation (h) and slow
inactivation (j) parameters of the fast inward sodium current INa.

where
y∞ =

αy
αy + βy

(7)

and
τy =

1
αy + βy

(8)

are the rate constants. αy and βy depend on transmembrane potential V and are determined by
fitting data from voltage clamp experiments.

3.1 Ionic Currents

3.1.1 The Fast Inward Sodium Current

The sodium current in this particular model is described by the equation

INa = gNa ·m3 · h · j · (Vm − ENa), (9)

where gNa is the maximum conductance of the sodium channel. m and h are activation and
inactivation parameters, respectively; j is a slow inactivation gate for modeling the slow recovery.
ENa is the Nernst (equilibrium) potential for sodium (= 54.8 mV). See Fig. 1 for steady state
values and time constants for these parameters.

3.1.2 The Slow Inward Current

The slow inward current (Isi) plays a dominant part in the creation of the myocardial action
potential plateau. Isi is mainly carried by calcium ions[3] and we can write it using the same form
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Figure 2: Steady state values and time constants for the activation (m) and inactivation (h) pa-
rameters of the slow inward current Isi.

as for sodium,
Isi = gsi ·m · h · (Vm − Esi), (10)

where gsi is the maximum conductance, m and h are activation and inactivation variables, respec-
tively. Unlike for other ions, we must take into account the change in equilibrium potential that
arises with variation in calcium concentration, which we can write as

Esi = 7.7 − 13.0287 ln([Ca]in). (11)

We can approximate the change in intracellular calcium concentration caused by the inward current
as

d[Ca]in
dt

= −10−4Isi + 0.07(10−4 − [Ca]in) (12)

See Figure 2 for the steady state values and time constants for the activation (m) and inacti-
vation (h) parameters of the slow inward current. Compared to corresponding values for the Na
channels, the time constant of the activation gate is extremely large (slow), indicating that ICa
not only has a delayed onset because of its more positive threshold voltage, but also is slower to
develop.

The dynamics of the gating variables for the slow inward current have the same form as for the
sodium channel. We can generalize this to an equation of the form

α;β =
C1 e

(
Vm−V0

C2
) + C3(V − V0)

1 + C4 e
(

V−V0
C5

)
(13)

where to find the values C1 . . . C5 we must carry out voltage clamp experiments on the respective
currents.
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Figure 3: Steady state values and time constants for the activation gate of the time dependent
potassium current IK .

3.1.3 The Time-dependent Potassium Current

In this model, we include four different potassium channels, each with different voltage and time
dependencies. Note that this is still a small fraction of the K+ channels that experimentalists have
characterized, but these four replicate the overall behavior of most of them.

The time-dependent potassium current (IK) is controlled by a time-dependent activation gate
(m) and a time-independent inactivation gate (h).

IK = gK ·m2 · h · (Vm − EK) (14)

See Fig. 3 for the steady state values and time constants for the activation parameters of the time
dependent potassium current.

3.1.4 Time-independent Potassium Current, IK1

The time-independent potassium current, IK1, only consists of an single inactivation gate (h).
Furthermore, the time constant of this gate is small (τh = 0.06 at V=-50 mV, see Fig. 4), so it can
be approximated by its steady state value, h∞

IK1 = gK1 · h∞ · (Vm − EK1) (15)

See Figure 5 for the current-voltage curve of IK1 for different values of external K+ concentration.
Note the strong difference between the behavior at positive membrane voltages (right half of the
curve) and that at negative membrane voltages (left half of curve). In this case, current flows much
more easily in the inward direction at negative potentials, a behavior known as inward rectification.
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Figure 4: Steady state values and time constants for the inactivation gate (h) of the time dependent
potassium current IK1. Note the small time constant.

IK1 plays a major role in stabilizing the ventricular cells at rest. These channels are normally
absent from pacemaker cells such as sinoatrial (SA) and atrioventricular (AV) cells. If we hyperpo-
larize a cell from its equilibrium point, there will be an influx of K+; once hyperpolarized voltage
stops, this inward K+ current will bring the cell to equilibrium again. On the other hand, if we
depolarize a cell, it will result in an efflux of K+ and as depolarization stops, the efflux current will
bring the cell back to equilibrium.

3.1.5 Plateau Potassium Current

The potassium current at plateau potentials results from a time-independent channel defined by

IKp = gKp ·m · (Vm − EKp). (16)

3.1.6 Background Current

We can formulate the background potassium current as

Ib = gb · (Vm − Eb). (17)

See Figure 6 for the current-voltage curves of total time-independent potassium current (IK1 +
IKp + Ib), which are very similar to those for the IK1 component.

3.2 Action Potential

With all the currents computed, it is now a relatively simple matter to integrate Equation 1 at
each time instant and derive the voltage signal for the action potential. By varying some of the
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Figure 5: Current-voltage curve of IK1 for different values of [K]o. Note the strong inward rectifi-
cation, indicated by the large inward currents at negative potentials.
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Figure 6: Current-voltage curve of the total time-independent current IK1 + IKp + Ib for different
values of [K]o.
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conditions of the simulation, it is possible to alter the course of the action potential, and also
observe the underlying currents that are responsible.
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