BIOEN 3202 - HUMAN PHYSIOLOGY II LECTURE NOTES MARCH 10TH, 2006

Compiled by David Sutherland

- I. Action Potential Figures:
 - a. Ventricular Cell

 - i. Rapid Na⁺ influx causes depolarization
 ii. Ca⁺² and K⁺ balance currents in plateau phase
 - iii. Rapid K^+ efflux causes repolarization (in 2 places); there are some 20 different potassium currents known so far.

b. Pacemaker cell (Sinoatrial (SA) node)

- i. I_f = Funny Current, composite of Na⁺ and Ca⁺² flow, which leads to spontaneous despolarization until membrane reaches threshold and action potential can fire.
- c. Digression into resting potential, driving force and ionic currents
 - i. Resting Potential determined by:
 - 1. Nernst Potential of ions
 - 2. Relative Permeability of ions ($P_K >> P_{Na} > P_{Ca}$)
 - ii. Driving Force: (V_m-V_i)
 - 1. Equilibrium => Nernst Potential
 - iii. Ionic Current: $(i_i = (V_m V_i)g_i)$
 - 1. A form of Ohm's Law (V=IR)
- d. How to change AP frequency at SA node:
 - i. \uparrow or \downarrow in Ca⁺² conductance during rising phase results in slight change in HR (not significant)
 - ii. \uparrow or \downarrow in K⁺ conductance results in \uparrow or \downarrow of resting potential and \uparrow or \downarrow in duration of repolarization.
 - Only ↑ in K⁺ is significant; decelerates HR using parasympathetic neurotransmitter, acetylcholine (ACh).
 - iii. \uparrow or \downarrow in size of i_f results in \uparrow or \downarrow of slope of threshold phase which leads to shortening or lengthening of that phase and subsequent change in HR.
 - 1. \uparrow in i_f is only significant here; it accelerates the HR using the sympathetic neurotransmitter, norepinephrine (NE).
- II. ANS Innervation

- a. HR also regulated by endocrine system
 - i. Slower to act than ANS
 - ii. Primary means of HR control in transplant recipients
 - iii. Non-specific, i.e., neurotransmitters are in the blood and hence everywhere in the body. ANS control is much more targeted.

- III.
- Vocabulary a. Pacemaker b. Sinoatrial (SA) Node