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ABSTRACT

Visualization and exploration of volumetric datasets has been an active area of

research for over two decades. During this period, volumetric datasets used

by domain users have evolved from univariate to multivariate. The volume

datasets are typically explored and classified via transfer function design and

visualized using direct volume rendering. To improve classification results and

to enable the exploration of multivariate volume datasets, multivariate transfer

functions emerge. In this dissertation, we describe our research on multivariate

transfer function design. To improve the classification of univariate volumes,

various one-dimensional (1D) or two-dimensional (2D) transfer function spaces

have been proposed; however, these methods work on only some datasets. We

propose a novel transfer function method that provides better classifications by

combining different transfer function spaces. Methods have been proposed for

exploring multivariate simulations; however, these approaches are not suitable

for complex real-world datasets and may be unintuitive for domain users. To this

end, we propose a method based on user-selected samples in the spatial domain to

make complex multivariate volume data visualization more accessible for domain

users. However, this method still requires users to fine-tune transfer functions

in parameter space transfer function widgets, which may not be familiar to them.

We therefore propose GuideME, a novel slice-guided semiautomatic multivari-

ate volume exploration approach. GuideME provides the user, an easy-to-use,

slice-based user interface that suggests the feature boundaries and allows the

user to select features via click and drag, and then an optimal transfer function

is automatically generated by optimizing a response function. Throughout the

exploration process, the user does not need to interact with the parameter views at

all. Finally, real-world multivariate volume datasets are also usually of large size,

which is larger than the GPU memory and even the main memory of standard



work stations. We propose a ray-guided out-of-core, interactive volume rendering

and efficient query method to support large and complex multivariate volumes

on standard work stations.
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CHAPTER 1

INTRODUCTION

1.1 Motivation
Volumetric data are important to many application domains, and are usually

visualized using direct volume rendering. In recent years, the volume datasets

utilized by domain users have evolved from univariate to multivariate. Multi-

variate volume datasets have become increasingly important and popular. Me-

teorologists simulate atmosphere movements, e.g., hurricanes, which involves

the interaction of dozen of physical parameters to study their causes and try to

forecast them. Combustion simulations involving multiple chemical elements

and physical measurements can help engineers to improve the efficiency of an

engine. Geophysicists compute several attributes derived from the amplitude

of three-dimensional (3D) seismic survey data to facilitate the exploration of oil

and gas [12]. Physicians determine the location of lesions in the brain using MRI

scans that contain multiple channels. Transfer function design is the major means

for exploring volume data and extracting features in direct volume rendering.

Transfer functions of 1D or 2D are commonly used for the exploration of uni-

variate volume datasets, and multivariate transfer functions are used to explore

multivariate volume datasets. However, extracting clear features of interest for

univariate volumes using 1D or 2D transfer functions is usually difficult due

to the limited classification ability of these low-dimensional transfer functions.

On the other hand, although methods and systems have been proposed for

multivariate volume exploration and visualization, domain users urgently need

an intuitive and flexible multivariate visualization tool that is able to extract

meaningful features in complicated real-world datasets. Moreover, due to the

boost of accuracies of acquisition devices, storage and computational capacities of

computers, multivariate volume datasets are generated with ever increasing size.
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Giga-scale or even tera-scale multivariate volume datasets have become common,

and fast volume rendering and query techniques are vital for the visualization of

these datasets.

In this dissertation, we present our proposed approaches to the multivariate

transfer function design problem. This chapter first introduces transfer function

combinations, in which we propose to combine the best features of existing transfer

function spaces to create a transfer function space that provides better classification.

It then introduces a transfer function design approach based on user-selected

samples in the spatial domain to make multivariate volumetric data visualization

more accessible for domain users. Next, it introduces GuideME: an automated

technique for designing optimal multivariate transfer functions with a simple

and easy-to-use slice-based user interface for highly complex volumes. Finally, it

introduces our work on scalable out-of-core methods for interactive rendering and

efficient querying for large multivariate seismic volumes on consumer level PCs.

1.2 Transfer Function Combinations
Direct volume rendering is an active area of research. Mapping of data values

to optical properties, known as classification, remains a challenging problem.

Transfer functions are most commonly used for classification in volume rendering,

yet finding good transfer functions remains a difficult problem. For material

boundaries, it has been shown that 2D transfer functions provide greater speci-

ficity1 than 1D transfer functions [54, 60]. In many datasets, separate features may

share the same scalar value and gradient magnitudes and as such scalar value,

gradient magnitude tuples are not sufficient for separating such features.

Recently, many new 2D transfer function spaces have been proposed to improve

the classification from different metrics. The size-based transfer function is a

transfer function space [14] built upon blob detection techniques using scale space

theories to classify objects based on their sizes. The occlusion spectrum is another

2D transfer function space [15] that takes into consideration ambient occlusion

1We use the disambiguation definition of specificity rather than the statistical definition, which
means the proportion of negatives in a binary classification test that are correctly identified.
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within the volume for discriminating between features of similar scalar values.

It is also possible to compute statistical measurements such as mean value and

standard deviation in a local region around a voxel [38] to form a 2D transfer

function space. All these methods are effective on some datasets. Other datasets,

however, may contain materials that have similar statistical properties but occlude

each other, or have materials that share similar statistical properties and occlusion

measurements but differ in size.

We propose, therefore, to combine the best features of these transfer functions to

create a transfer function space that provides better specificity. Our contributions

in this work are threefold: 1) combining 2D transfer function space with 1D

transfer function spaces with a basic approach for selecting combinations, 2) a user

interface supports transfer function design in the combined transfer function space,

3) experiments and detailed discussions of different transfer function combinations

and original 2D transfer functions on various datasets.

We experimented with combinations of these transfer function spaces and

discuss a basic approach for selecting combinations that improve classification

and show that this combined transfer function space provides better classification

than 2D gradient magnitude transfer functions, 2D statistical transfer functions,

2D occlusion-based transfer functions or 2D size-based transfer functions.

1.3 Transfer Function Design Based on User-Selected
Samples for Intuitive Multivariate

Volume Exploration
Multivariate dataset visualization has been an active research area for the past

decade and remains a challenging topic. A linked-view visualization system that

enables the users to explore the datasets in both the transfer function domain

and the spatial domain may boost their understanding of the data. In recent

years, visualization researchers have been studying this topic and some solutions

have been proposed [21, 1, 5, 31]. These linked-view systems provide users the

ability to explore the dataset with closely linked scientific visualization views, e.g.,

volume rendering or isosurface rendering, and information visualization views,

e.g., scatter plots, parallel coordinate plots (PCP) or dimensionality reduction
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views. Typically, the user explores and extracts features of interest by interactively

designing transfer functions (TFs) in the value domain over the information

visualization contexts and examining classified results in the spatial domain from

the scientific visualization view. Successful examples using these systems are

clearly shown for simulation datasets. However, extracting meaningful features

in real-world measurement datasets, e.g., multivariate 3D seismic survey, via these

systems is not trivial. Features inside the seismic dataset have to be recognized

in the spatial domain by a geology expert, and the features have complicated

combinations of attribute values and subtle differences from their surroundings.

Therefore, it is too laborious to extract features by iterating between TF design in

the value domain and getting feedback from the results rendered in the spatial do-

main, especially when the dimensionality is high. Our geophysicists collaborators

have found extracting features with only the value domain TF widgets, e.g., on a

PCP to be cumbersome, and specifically asked for more automated methods.

We propose a TF design approach based on user-selected samples from the

spatial domain represented as slices for more intuitive exploration of multivariate

volume datasets. Specifically, the user starts the visualization by probing fea-

tures of interest in a panel view, which simultaneously displays associated data

attributes in slices. Then, the data values of these features can be instantly and

conveniently queried by drawing lassos around the features or, more easily, by

applying ”magic wand” strokes. High-dimensional transfer functions (HDTFs)

can then be automatically and robustly generated from the queried data samples

via the kernel density estimation (KDE) [87] method. The TFs are represented by

parallel coordinate plots (PCPs) and can be interactively modified in an HDTF

editor. Automatically generated Gaussian TFs in dimensionality reduced 2D view

can also be utilized to extract features. The extracted features are rendered in the

volume rendering view using directional occlusion shading to overcome artifacts

from Phong shading in the multivariate case. To further refine features, which

share similar data value ranges, direct volume selection tools on the volume

rendering view or the panel view can be applied.

The contributions of this work are the following: First, we propose a transfer
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function design method for multivariate volume visualization based on user-

selected samples, specifically an HDTF generation method based on KDE and

a Gaussian mixture model based 2D Gaussian TF generation method. Second,

we also propose an interactive multivariate volume visualization system based

on the proposed method that has been implemented to allow domain users to

extract refined features in very complicated multivariate volume datasets more

intuitively.

1.4 GuideME: Slice-guided Semiautomatic Multivariate
Volume Exploration

The state-of-the-art method for exploring multivariate volumes is user inter-

action with multiple linked view systems. This method requires the user to

explore the volume using parameter views, e.g., parallel coordinate plots (PCP) or

histograms, in a trial-and-error manner [1, 5, 31]. Although these systems have

been successful in simulation datasets where the user understands the ”recipe” of

the parameter space, i.e., knows what combinations of value ranges of attributes

may result in interesting features, it is difficult for the user to explore complex

measured datasets, e.g., seismic datasets. To this end, research efforts have

addressed the exploration of complex datasets such as seismic data [103, 43, 44].

In [103], the approach allows domain users to apply their expertise to the finding

of features by directly selecting a region of interest in a multipanel slice view.

However, these methods either work only on univariate seismic data for a certain

type of features [43, 44] or still require transfer function tuning with a PCP-based

or a histogram-based editor [103], which can be unintuitive and time consuming

for domain users. Moreover, switching between multiple views may be somewhat

distracting.

Seismic datasets are an important tool for the petroleum industry which is the

driving application of our method. Geophysicists interpret features that indicate

potential oil and gas reservoirs, including channels and salt domes, on 3D seismic

data slices. To interpret the seismic data, they first identify and locate geological fea-

tures on slices from the 3D seismic data through examination and selection. With

the advancement of multivariate 3D seismic [12] interpretation, attributes derived
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from the seismic amplitude are used to aid in the extraction of relevant features.

Interpretation is done mainly by free-hand drawing on slices and refinement of

the features through multiattribute transfer functions [103, 90]. Users typically

perform the following tasks during interpretation: selecting features by drawing

on 2D slices, refining those features through transfer function manipulation, and

examining results in 3D renderings. Other domains use similar tasks and we

demonstrate the generality of our approach with multimodal MR brain scans.

We therefore propose GuideME, a novel method for multivariate volume

exploration that strives to provide the user with a very simple and intuitive

exploration process for highly complex datasets. Instead of multiple linked views,

our method has only one slice view coupled with a focus overlay and a volume

rendering view, and the tedious trial-and-error interactions are largely replaced

by a guided uncertainty-aware lasso and automated feature extraction. The user

starts the exploration by browsing through the slices and detects a feature of

interest using his/her domain knowledge. A focus window that allows the user

to inspect other attributes that can be placed over the feature of interest. Through

the inspection, the user determines attributes that best describe the boundaries of

the feature. A boundary confidence image is then blended with the slices, and

the user can easily select the region with a guided uncertainty-aware lasso that

automatically snaps to the detected feature boundaries. The selected region is

then used as input for the automated feature extraction. Eventually, the feature

is volume rendered and may be optionally edited directly in the 3D view. Using

a highly complex real-world seismic dataset and multimodal MR brain scans, we

show our approach is efficient, and is able to create results comparable to those

given by previous method and ground-truth segmentations.

In this work, we make the following contributions:

• A novel slice-guided semiautomatic multivariate volume exploration work-

flow. The user is freed from unfamiliar parameter space views and tedious

trial-and-error transfer function tunings.

• A guided uncertainty-aware lasso for region selection, based on edge detec-

tion and Dijkstra shortest path algorithms.
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• A technique to automatically fine-tune a multivariate transfer function given

the lasso, based on the optimization of a response function.

1.5 Interactive Multivariate Volume Rendering and
Efficient Query on Standard PCs

Due to the advance in 3D seismic imaging techniques, resolution of 3D seis-

mic datasets used in the petroleum industry is usually of giga-bytes. Multiple

attributes derived from the original seismic amplitude dataset have been used for

aiding the interpretation of the seismic survey. With these additional attributes,

however, the size of the entire dataset may become far larger than the capacity of

the GPU memory and even the main memory of a typical workstation. Recently,

GPU-based multiresolution out-of-core volume rendering systems have been pro-

posed. The Gigavoxel approach by Crassin et al. [16] and CERA-TVR by Engel [23]

divide the dataset into multiresolution bricks and utilize an octree structure and

ray guided paging system to efficiently render large sparse volume datasets. Had-

wiger et al. [35] propose a rendering system that uses a virtual memory system and

2D mipmapping to support dense and noisy petascale microscopy scans. However,

none of these methods are able to handle large multivariate volume datasets. In

this work, we extend the approach by Hadwiger et al. to support interactive

rendering of large multivariate seismic datasets on a consumer-level PC. On the

other hand, data value querying raises another challenging issue for multivariate

datasets especially when the data are very dense as hierarchical acceleration

techniques, e.g., octrees may not be beneficial. We propose an efficient data

querying technique based on precomputed per-block Gaussian mixture models

and run-time ellipse-polygon intersection detection. An interactive exploration

system has been built to allow the user to visualize the multivariate volumes as

well as to edit multivariate transfer functions with the query feedback on parallel

coordinate plots.

1.6 Dissertation Statement
Multivariate transfer function design is vital for the exploration and visual-

ization of univariate and multivariate volumetric datasets, which are important
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to many real-world applications. The design of multivariate transfer functions

requires both existing and novel techniques in volume rendering, user interaction,

image processing, data analysis and optimization.

1.7 Dissertation Contributions
The main contributions of this dissertation are:

• More intuitive multivariate volume exploration and visualization work-

flows designed for domain users. Our proposed methods strive to maintain

the power and flexibility of existing workflows, while overcoming the short-

comings of existing approaches that are designed from the perspective of

visualization experts. We provide domain users with new work flows that

are designed as a result of close collaborations. The resulting workflows give

domain users a central role and try to reduce unfamiliar widgets and views

that may hassle users. For example, we allow the user to select samples

directly on data slices to generate the initial transfer function, and then

fine-tune the transfer function using parameter space widgets. A further

developed workflow can be seen in GuideME, in which the parameter

space is completely hidden from the user and the manual transfer function

tuning process is replaced by an optimization approach. Through real-world

examples, domain users find the new workflows more intuitive and efficient.

• Improved classification ability of transfer functions demonstrated on com-

plex real-world datasets. We propose a transfer function combination method

that generates multidimensional transfer function spaces by ranking and

selecting the most helpful 1D or 2D transfer function spaces computed from

a univariate volume. Moreover, transfer functions do not contain spatial

information. Easy-to-use spatial fine tuning tools are therefore provided.

Diffusion-based region growing tools and lasso tools are provided for effi-

cient volume editing on transfer function classified results on either 2D or

3D image spaces. Complex real-world datasets, including CT lung scan, MR

brain scans and multivariate seismic datasets, have been successfully used

to demonstrate the improved classification ability of transfer functions.
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• Improved user interactions in the visualization process. The goal for

easier visualization experience for domain users is considered in all our

proposed work. An easy-to-understand user interface that combines 2D and

1D transfer function widgets is built for the transfer function combination

work. The user interface of the multivariate volume visualization system

that is based on user-selected samples provides synchronized panel view,

click-and-drag transfer function editors and hand drawing-based region

selection and spatial fine tuning tools on 2D and 3D views. In GuideME, the

user is given suggestions of feature boundaries and uncertainty information,

and the selection of region is aided by lassos that automatically snap to

feature boundaries.

1.8 Outline
The background and important related work are explained in Chapter 2. Chap-

ter 3 details the work of transfer function combinations. The work of multivariate

transfer function design based on user-selected samples in the spatial domain is

presented in Chapter 4. Chapter 5 presents the method of GuideME, slice-guided

multivariate exploration of volumes. In Chapter 6, we present the work of

interactive rendering and efficient query of large multivariate seismic volumes on

consumer-level PCs. Finally, conclusions and future work are given in Chapter 7.



CHAPTER 2

BACKGROUND

2.1 Transfer Function Spaces
Volume datasets can be explored using transfer functions. The most frequently

used transfer function for volume rendering is a 1D transfer function that uses

scalar values for classification. Realizing the poor classification ability of that

transfer function space, Levoy [60] and Kindlmann et al. [54] use the gradient

magnitude of the volume as another property for better classification. Kniss

et al. [56] advocate and implement multidimensional transfer functions widgets,

making the 2D transfer function a standard method in modern volume renderers.

By far, the 1D and 2D transfer functions are the most popular and practical

techniques for classification in volume rendering; however, great efforts have

been made to define new transfer function spaces to improve the classification

ability.

Due to noise and partial volume effects, selecting a boundary in the arches of

a gradient magnitude-based transfer function is not easy and sometimes even

impossible. To resolve this problem, Lundstrom et al. [64] employ the local

histograms to better discern tissues in medical datasets and propose a 2D transfer

function space that uses competitive classification certainty measure in addition

to scalar values. Sereda et al. [86] use a 2D LH histogram-based transfer function

for easier boundary identification and selection and further use this boundary

information for a region growing segmentation schema.

Higher degree derivatives of the original scalar volume can also be used as

transfer function spaces. Kindlmann et al. [55] use curvature as a second dimen-

sion of their transfer function domain. The curvature-based transfer functions

allow nonphotorealistic renderings that highlight the contours of the volume.
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The theory of scale-space, developed originally by the computer vision and

image processing communities, can be used to classify objects based on their sizes.

A commonly used scale-space representation is the linear Gaussian scale-space,

which is essentially a convolution of a volume with differently sized Gaussian

filters. Lum et al. [63] combine it with an image pyramid representation of different

scales to improve classification. Correa and Ma [14] create a continuous scale-space

for the volume and use anisotropic diffusion to detect “blobs” in the volume. The

size of these defines an additional metric of the volume, which is then used to

create size-based transfer functions.

Shape is another important aspect to classify an object. Sato et al. [83] use eigen-

value analysis on 3D local intensity structures to classify tissues in medical datasets

with 2D transfer function spaces created using shape measurements: sheet, line or

blob along with the scalar value. Prassni et al. [78] propose shape-based transfer

functions by computing shape descriptors over presegmented volume to provide

a manageable set of shape classified volumetric features with an intuitive optical

properties assignment interface.

In many cases, different features occlude with each other but share similar

scalar values, e.g., the skin and the gray matter in an MR brain scan. Correa and

Ma [15] use the occlusion of a voxel as an additional dimension of the transfer

function domain to classify features of similar scalar value, but different local

neighborhoods.

Volumes can also be classified based on their statistical metrics, such as mean

value or standard deviation of voxels in a certain neighborhood. Caban et al. [10]

compute local statistical metrics and use their linear combinations to classify fine

structures. Patel et al. [74] use a dynamically changing neighborhood to compute

mean value and variance for voxels, thus defining a transfer function domain.

A user interface then allows a selection of features based on the mean value,

variance and radius of the neighborhood. Haidacher et al. [38] further extend

this approach by selecting the radius semiautomatically via an adaptive sample

selection technique.

Transforming the volume data into frequency domain is another idea for
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generating transfer function spaces. Vucini et al. [94] utilize GPU-based fast

Fourier transformation to support interactive frequency-based transfer function

design that enhances conventional volume visualization.

2.2 User Interfaces for Transfer Function Design
A 1D transfer function that uses scalar values of the volume or a 2D transfer

function that has the gradient magnitude of the volume as a second property for

better classification [54] are most frequently used. As in most volume visualization

systems available nowadays, e.g., Voreen [93], VisIt [62] and ImageVis3D [48], the

transfer functions can be interactively defined by 1D transfer function widgets or

2D transfer function widgets proposed by Kniss et al. [56].

However, to design a good transfer function, the user has to manipulate the

transfer function widgets in the transfer function space and check the result in

the volume rendered image, which is laborious and time consuming. To address

this issue, researchers have proposed to automate the transfer function design

process. Many researchers focus on the automation of user interactions on the

transfer function space. Maciejewski et al. [65] utilize KDE to structure the data

value space to generate initial transfer functions. Wang et al. [96] initialize transfer

functions by modeling the data value space using the Gaussian mixture model

and render the extracted volume with preintegrated volume rendering. Most

recently, Ip et al. [50] propose a hierarchical visual segmentation method using

normalized-cut on the intensity-gradient magnitude 2D transfer function space to

assist the volume exploration process. Although these automated methods applied

on the transfer function space significantly reduce the time a user spends in the

volume exploration process [50] compared to the most commonly used transfer

function widgets, interacting with the transfer function space is not intuitive.

Therefore, the potential of transfer function design on more intuitive spaces

has also been studied. One strategy is to provide the user with a gallery of

predefined transfer functions, and then the user can easily design customized

transfer functions by picking features of interest from the gallery and refining

them. Marks et al. [67] propose Design Gallery as a general user interface for
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computer graphics applications. As for volume rendering, the design gallery

automatically defines a set of random 1D transfer functions and generates the

resulting thumbnails by the dispersion heuristic. The resulting thumbnails are

arranged using multidimensional scaling algorithm. The user can then select

a preferred thumbnail and fine tune its associated transfer function. Similarly, a

spreadsheet-like interface is proposed by Jankun-Kelly and Ma [51] where the user

can explore a range of parameter combinations at the same time and compare the

results side-by-side. Tory et al. [89] propose a parallel coordinates style interface

that provides an overview of rendering options and transfer function settings.

The user can easily explore different parameters and backtrack the visualization

history using the proposed interface. Tzeng and Ma [92] propose to use ISODATA

(Iterative Self-Organizing Data Analysis) clustering on a small subset of all data

voxels to classify the volume, and then these classified features are displayed in

a cluster-space user interface. With this user interface, the user is able to design

transfer functions without knowing the transfer function space, simply by picking

features from the gallery of preclassified features and refining them using the

clustering operation buttons and rendering property adjustment widgets.

Interacting with the spatial domain views, e.g., sketching on the volume

rendering view, is another intuitive option for the user. Several methods have

been proposed to enable the user to design transfer functions by sketching on the

spatial domain. Tzeng et al. [90, 91] propose systems that allow users to sketch

the volume slices to assign color and transparency, and then high-dimensional

transfer functions are generated using artificial neural network. Based on user

sketches on the rendered images, Wu and Qu [99] fuse multiple features in distinct

rendering results into a comprehensive visualization. Ropinski et al. [80] propose

a sketch-based user interface for 1D transfer function design where the user draws

strokes to define foreground and background to extract layers in the volume, and

then the transfer functions are refined by adjusting the color and opacity of each

layer. A more convenient sketch based volume exploration system is proposed

by Guo et al. [30] where a full set of tools have been developed to enable direct

manipulation of color, transparency, contrast and other optical properties on the
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volume rendering view by means of user drawn strokes. In its essence, the system

intelligently defines 1D transfer functions based on user sketches.

Other researchers have proposed methods to design transfer functions by

semantics. Salama et al. [82] propose a framework that allows visualization experts

to design high-level transfer function user interface with semantic information.

Given specific features of interest by the domain user, e.g., bones, skin and blood

vessels, the visualization expert creates transfer function models described by sets

of control points from many data instances of the same type. Each transfer function

model can be written as a data point in a high-dimensional space, and the semantic

parameters can be generated using principal component analysis (PCA) on these

high-dimensional data points. A simple semantics editor user interface can then

be created from the semantic parameters that modify the control points of the low

level 2D transfer function widgets. The user simply needs to adjust a set of sliders

for each semantic parameter.

2.3 Multivariate Data Visualization
Visualizing and understanding multidimensional datasets has been an active

research topic in information visualization. The scatter plot matrix is a straight-

forward yet scalable way that utilizes pairwise scatterplots as matrix elements to

represent multidimensional datasets. The scatter plot matrix trades the resolution

of each scatter plot to display more plots. Due to the large amount of plots shown

in a scatter plot matrix, exploration of the multivariate space becomes cumbersome

and time consuming. Elmqvist et al. [22] therefore propose a method for navigating

through the plots. Other researchers have studied how to choose the display order

of the scatter plots [85].

Parallel coordinate plots (PCPs) [49] is a popular multivariate visualization

technique that overcomes the two-variable limit of the scatter plot. PCP arranges

individual variable axes parallel to each other and represents individual samples

as a polyline passing through all axes. With increasing samples, the PCP will

become more cluttered and the rendering cost will be prohibitively expensive.

A large amount of research efforts have been done to address this over-plotting
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issue. Fua et al. [26] propose to cluster the data values and render only the

representing polylines of each cluster. Novotny and Hauser [70] separate the

number of polylines to render from the number of data samples by generating

the PCP from 2D histograms of adjacent variable pairs, and outliers are also

identified through histogram analysis. Zhou et al. [102] perform visual clustering

on the PCPs by drawing curved edges instead of polylines and optimizing the

arrangement of these curved edges. Heinrich and Weiskopf [41] show how PCPs

can be made continuous, which gives a smooth and uncluttered representation.

The over-plotting issue can also be resolved by edge bundling, and researchers

have proposed a variety of techniques: e.g., geometry-based edge bundling [17],

hierarchical edge bundling [45] and force-directed edge bundling [46]. McDonnell

and Mueller [68] address the over-plotting issue using illustrative rendering which

applies opacity and shading effects, silhouettes emphasizing, shadows and halos

to edge bundled PCPs.

Dimensional reduction and projection are other techniques for multidimen-

sional data visualization. These techniques provide a similarity-based overview

for multidimensional data. Numerous research efforts have been focused on this

topic, and popular methods include principal component analysis (PCA) [53], mul-

tidimensional scaling (MDS) and Isomap [88]. To reduce computation complexity,

techniques that apply classical dimensional reduction and projection methods to

only a small subset of representative samples and project the remaining samples

via interpolation have been proposed. These techniques include Landmarks

MDS [19] and Pivot MDS [8]. Alternatively, Faloutsos and Lin propose the

Fastmap algorithm [24], which has exactly O(n) complexity. Fastmap utilizes

dissimilarities between each sample and two pivot elements per coordinate axis to

make its distance computation O(n). More recently, Paulovich et al. [75] propose

the part-linear multidimensional projection (PLMP) method, which requires only

distance information between pairs of representative samples, and therefore is

faster than previous methods for large datasets. Moreover, with a representative

sample positioning strategy, PLMP is able to conduct dimensional projection for

out-of-core datasets.
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Parallel coordinate plots capture individual dimensional information well but

suffer from the clutter problem and such plots require expertise to interpret,

because data points are transformed into polylines and the polylines occlude with

each other. It is hard and sometimes even impossible to check the data correlation

between a single pair of attributes, let alone for multiple attributes on the PCPs.

On the other hand, pairwise scatter plots provide a clear correlation between a

pair of attributes. A 2D scatter plot of the dimensional reduced or projected space

of the high-dimensional data provides an easy-to-understand overview of the

high-dimensional space at the cost of losing individual dimensional information.

It is nontrivial if not impossible to use only one of these techniques to provide

the user with proficient insights to a multidimensional dataset. Unfortunately,

providing several linked views: one for PCPs, one for pairwise scatter plots and

yet another for dimensional reduced/projected scatter plot would cause a context

jump for the user. Researchers therefore have proposed to take the advantages of

these techniques and combine them in a unified plot. Yuan et al. [100] propose

SPPS (scattering points in parallel coordinates), which draws pairwise scatter

plots between each pair of PCP axes or adopts a DIMDS (dimensional incremental

multidimensional scaling) scatter plot between a selected pair of PCP axes. They

convert parallel coordinates segments into point plots and draw the PCPs as curves

that pass through their associated points. To provide a seemless integration, a

uniform brushing tool that allows linked brushing on either the PCPs or the scatter

plots is also proposed.

2.4 Interactive Linked View Multivariate Volume
Visualization System

Multivariate volume datasets can be explored using linked view systems that

have shown to be useful for multivariate simulation data exploration. Early

studies utilize multiple linked scatter plots as the data value view and the user

brushes regions of interest on these plots to design transfer functions. The SimVis

system [21, 77] allows the user to interact with several 2D scatter plot views using

linked brushes to select features of interest in particle simulations rendered as

polygons and particles.
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As parallel coordinate plots have become a widely accepted method for mul-

tidimensional data visualization, researchers propose to build data value view

together with transfer function widgets based on parallel coordinate plots. Akiba

and Ma [1] propose a tri-space exploration technique involving parallel coordi-

nate plots together with time histograms to help the design of high-dimensional

transfer functions for time-varying multivariate volume datasets. Blaas et al. [5]

extend parallel coordinate plots for interactive exploration of large multitime point

datasets rendered as isosurfaces. Rübel et al. [81] build a cluster-based multivariate

visualization system centered on the histogram-based parallel coordinates for

very large multivariate time-varying particle simulation. Given a user-selected

multivariate value range on any attribute axis on the parallel coordinates, a fast

multivariate query using bitmap indexing is conducted. The query result is then

represented as parallel coordinate plots using the method proposed by Novotny

and Hauser [70]. Finally, the particles that satisfy the query are rendered in the

spatial view using particle systems.

A parallel coordinate plot provides a good context for the definition of each

attribute value in high-dimensional transfer functions. However, due to data

point to polyline transformation and the occlusion issue by its nature, it is hard

to observe high-dimensional features and check correlations between attributes in

a parallel coordinate plot as stated in Section 2.3. Researchers therefore resort to

the dimensional reduction and projection techniques in conjunction with parallel

coordinate plots to provide the user with more insight. Zhao and Kaufman [101]

combine multidimensional reduction and transfer function design using parallel

coordinates but their system is able to handle only very small datasets. Guo et

al. [31] propose an interactive HDTF design framework using both continuous

PCPs and MDS technique accelerated by employing an octree structure. Guo et

al. [32] develop parallel algorithms for multivariate volume rendering, continuous

PCPs computation and MDS computation to make their work [31] scalable.

However, we have observed two limitations in the above systems: 1) the

user has to explore the data via interactions on the transfer function view, which

may be unintuitive for domain users and moreover makes exploration for real-
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world datasets difficult, and 2) the visualization is merely produced with transfer

functions and it is difficult to achieve a more refined result.

2.5 Interactive Large Volume Rendering
Ray casting and slice-based volume rendering are the two methods used for

direct volume rendering. Thanks to the computational power of GPUs, volume

rendering has become interactive. However, with the ever increasing size of

volume datasets, interactive direct volume rendering of large volume datasets

that cannot fit into the GPU memory, i.e., out-of-core volume rendering, is still

a challenging topic. Building hierarchical structure for a volumetric data is a

common way to enable and accelerate out-of-core volume rendering. In the early

work of hardware assisted volume rendering, LaMar et al. [59] and Weiler et al. [97]

propose to use hierarchical bricking schemes. Boada et al. [6] build a mipmap-like

structure based on an octree, and then they choose a cut through the tree and use

the mipmap data of the leaves during rendering. Guethe and Strasser [33] use

hierarchical wavelet representation and screen-space error estimation for level of

detail selection. The ImageVis3D system [48] uses a kD tree to subdivide data

and each brick in the tree is rendered in one rendering pass. Gobbetti et al. [28]

determine the visibility of octree nodes using the corresponding partial octree on

the CPU, which is then downloaded to the GPU.

All work above requires a CPU-based traversal of an explicit hierarchical

structure, which can be very expensive. More recently, due to the improvement of

the GPU, GPU-based ray-guided volume rendering frameworks enable efficient

rendering of gigascale and even petascale volume data on a single consumer

level GPU. Crassin et al. [16] propose a GPU-based ray-guided octree volume

rendering framework, called “gigavoxel,” which uses ray casting information to

directly guide the data streaming. The “gigavoxel” framework is efficient as the

ray casting information naturally determines voxel visibility and view frustum.

However, “gigavoxel” is intended for entertainment applications, which usually

result in sparse octrees, and moreover, the kD restart octree traversal scheme

requires a full path traversal from the root of the tree for each voxel, which can
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be costly. Hadwiger et al. [35] present an interactive volume renderer that scales

to petascale which uses a visualization-driven virtual memory approach. Similar

to “gigavoxel,” ray casting is also utilized to detect visible data, however, [35]

avoids the potentially costly kD restart octree traversal. Unlike “gigavoxel,: [35]

it is designed and optimized for dense anisotropic microscopy data. In contrast

to all previous work, the virtual memory approach requires no precomputation of

a multiresolution hierarchy. Instead, it constructs volume data from the 2D raw

images based on a visualization-driven data construction scheme via on-the-fly

stitching and re-sampling.



CHAPTER 3

TRANSFER FUNCTION COMBINATIONS

Direct volume rendering has been an active area of research for over two

decades. Transfer function design remains a difficult task since current methods,

such as traditional 1D and 2D transfer functions, are not always effective for all

datasets. Various 1D or 2D transfer function spaces have been proposed to improve

classification exploiting different aspects, such as using the gradient magnitude

for boundary location and statistical, occlusion or size metrics. In this chapter, we

present a novel transfer function method that can provide more specificity for data

classification by combining different transfer function spaces. In this work, a 2D

transfer function can be combined with 1D transfer functions and improves the

classification. Specifically, we use the traditional 2D scalar/gradient magnitude, 2D

statistical, and 2D occlusion spectrum transfer functions and combine these with

occlusion and/or size-based transfer functions to provide better specificity. We

demonstrate the usefulness of the new method by comparing it to the following

previous techniques: 2D gradient magnitude, 2D occlusion spectrum, 2D statistical

transfer functions and 2D-size based transfer functions.

3.1 Combining Transfer Functions
3.1.1 Formulating Transfer Function Combinations

In practice, using just one or two metrics during volume classification makes it

difficult to robustly classify and separate features in complex volumes. Using more

properties in the transfer function space often can better describe features in the

volume; however, user interaction becomes more difficult or even impossible when

the number of properties, and thus the dimensionality, of the transfer function

space increases. Gaussian transfer functions have been proposed by Kniss et

al. [57] to provide analytical multidimensional transfer functions of arbitrary
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dimensionality. Also a procedural high-dimensional transfer function model is

proposed in [36]. However, in both works, how to provide an effective user

interface remains unclear.

The proposed transfer function combination sequentially applies two transfer

functions, a 2D and a 1D one, to all voxels vX, where X is the 3D position, of the

input dataset V that has l properties Y1,Y2, . . .Yl.

{C1,C2,C3, . . .Ck} = TFw(V)where

C j := {vX|TFw j(Yp(X),Yq(X)) > 0,p,q ∈ [1, l]} (3.1)

{Wi ⊂ C j} = TFr(Yr(X))where

X ∈ C j(X), j ∈ [1,k],r ∈ {1, . . . , l}/{p,q} (3.2)

In Equation 3.1, a number of 2D transfer function widgets, k, are first applied to

the volume, resulting in sets of classified voxels C1,C2,C3 . . .Ck, respectively. Then

one from a set of r, which is typically 1 or 2, 1D transfer functions is applied to

the classified region C j, yielding the final classified volume region Wi. Each 2D

transfer function widget has one associated 1D transfer function.

Kniss et al. [57] clearly show a 2D example that separating high dimensional

transfer functions into lower-dimensional transfer functions using multiplication

can lead to misclassification, which gets worse when the dimensionality is ex-

tended into 3D. Our proposed method, however, does not suffer from such issues

as each 2D transfer function widget has a 1D transfer function that helps further

separate features within the voxels selected by the 2D transfer function. This

dimension reduction method, however, can cause classification inconsistencies

compared to a true 3D transfer function. We believe that this is a reasonable

compromise, considering that the losses in classification precision compared to

using an equivalent higher dimensional transfer function are typically minor.

Rezk-Salama [79] proposed a similar idea called local transfer functions to set

transfer functions for segmented volumes, i.e., a transfer function is associated

with a tag in the tagged volume; voxels are essentially preclassified and their tags

are stored in a volume. Our method is more flexible as the user essentially inter-

actively labels voxels using the 2D transfer functions and then further classifies
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the features using the associated 1D transfer function. Bruckner and Gröller [9]

similarly use a 1D transfer function to index into a table of style transfer functions

for flexible illustrative volume renderings. Their work conceptually differs from

ours as our transfer function combination method is utilized to improve the

specificity of transfer functions rather than producing illustrative visualizations.

3.1.2 Selecting Combinations

We propose to separate the transfer function space into a 2D transfer function

space with a set of 1D transfer function spaces as a trade-off between dimension-

ality and usability.

A problem naturally arises when more than three properties/attributes are

provided, namely which properties contain salient features, which attributes are

most effectively used as the 2D transfer function domain, and which are best

classified by the associated 1D transfer functions. Thus, we provide a few simple

rules to aid the user in selecting appropriate combinations.

For a given set l properties of a dataset, the correlation coefficient matrix R

of size l× l is computed, as well as the entropy vector E of size l, which contains

all properties’ entropy. The primary property Yp, is chosen that represents the

original information of the dataset (e.g., original intensity dataset or the mean

dataset computed from the statistical properties extraction process as shown in

Section 3.2.3). A property that is intrinsically associated with Yp (e.g., gradient

magnitude vs. original intensity dataset or standard deviation vs. mean value) is

used as the secondary property Yq. The primary and secondary properties define

the 2D transfer function space. For all remaining properties Yi, i ∈ [1, l] and i , p,q

a score is computed as a linear interpolation between the correlation coefficient

Rpi and the normalized entropy E(Yi)
maxE , as shown in Equation 3.3:

si = −a|Rpi|+ (1− a)
E(Yi)
maxE

,0 ≤ a < 1 (3.3)

The correlation coefficient depicts the similarity between properties: a lower

correlation coefficient value indicates a higher independence of properties. By

intuition, more independent properties correspond to more interesting features,

which we hope can be extracted by combining them together. Therefore, we favor
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properties that are less correlated with the already chosen properties and as such

a negative relationship between the absolute value of correlation coefficient |Rpi|
and the score si is shown in Equation 3.3. Specifically, the coefficient matrix R of

property Yp and Yi is computed by Equation 3.4.

Rpi =
Cov(p, i)√

Cov(p,p)Cov(i, i)
(3.4)

where Cov(p, i) is the covariance matrix of property Yp and Yi.

However, using the correlation coefficient alone could lead to situations where

properties that do not increase classification ability can beat more meaningful

properties in the scoring, and to remedy this, the entropy of a property is also

considered in Equation 3.3. The entropy value of a property reflects the amount

of information contained in that property, shown as a normalized form E(Yi)
maxE in

Equation 3.3. The entropy is defined as

E(Yi) =
n∑

b=1

p(yb) log2(p(yb)) (3.5)

where n is the number of bins in the histogram of property Yi, b is the current

bin and p(yb) is the probability of data value yb at current bin. E(Yi) describes the

homogeneity of property Yi and is negatively proportional to the homogeneity,

i.e., higher entropy represents less homogeneity.

Properties that are less homogenous usually contain more features of interest

compared to more homogenous ones. Therefore, low homogeneity can be used

to rule out less contributing properties that have higher score from the correlation

coefficient. As such, high entropy is desired in our scheme, i.e., properties that

are less homogenous are favored over more homogenous ones. However, low

entropy may also be of interest on some occasions, e.g., a property contains

large homogenous regions but highlights a small feature that no other properties

can. The classification ability of those properties, however, is hard to describe by

mathematical quantities but can be rather easily determined subjectively.

The parameter a is dataset dependent and allows the user to choose a balance

between the correlation of two properties and the amount of information contained

in an individual property.
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The remaining properties are then ranked based on their scores si and used as

the tertiary attributes for the associated 1D transfer functions. We found that using

one or two tertiary attributes provides a good compromise between complexity

and effectiveness of the classification. One of the available tertiary attributes is

selected as the active one for each widget in the 2D transfer function space.

As an example, the process of combination selection for CT chest scan Artifix

discussed in Section 3.3.2 is shown. Using the rules, we compute the correlation

coefficients and the entropies of the five properties of the dataset as shown in

Table 3.1.

Choosing the scalar value x as the primary attribute suggests using the gradient

magnitude |∇x| as the secondary attribute. Then scores sµ,σ,ρ for mean, standard

deviation and occlusion properties are computed for the remaining attributes by

setting a to 0.4, which yields sµ,σ,ρ = [−0.0347,0.1938,0.3086].

The occlusion property has the highest score, meaning it is the best property

regarding both the correlation between it and the primary attribute and the

information it contains. The occlusion property is used as the tertiary attribute to

define a combined 3D gradient magnitude/occlusion transfer function space.

Alternatively, choosing the mean value µ and the standard deviation σ as the

primary and secondary attributes, the scores sx,|∇x|,ρ are computed for the other

attributes, yielding sx,|∇x|,ρ = [0.0094,0.2061,0.3045] for scalar, gradient magnitude

and occlusion properties, respectively. The occlusion property has the highest

score and is thus used as the tertiary attribute to define a combined 3D statisti-

cal/occlusion transfer function space.

3.1.3 User Interface

In general, true 3D transfer function widgets are relatively difficult to interact

with, since robust and effective interaction with a 3D space is still an open

research problem [7]. The proposed combined transfer function space, however,

is separable into a 2D transfer function space and a set of 1D transfer function

spaces. Haidacher et al. [37] propose a similar separation method for multimodal

visualization. In contrast to their simple triangle shaped windowing function, our

method provides more insights and flexible controls for the 1D transfer function
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Table 3.1. The correlation coefficients and the entropies of the properties computed
from Artifix CT chest scan dataset. The properties are the intensity value x, the
gradient magnitude |∇x|, the mean value µ, the standard deviation σ and the
occlusion metric ρ. The bottom row shows the entropy E of each attribute.

x |∇x| µ σ ρ
x 1.0000 0.1654 0.9973 0.2435 0.7286
|∇x| 0.1654 1.0000 0.1690 0.9569 -0.0583
µ 0.9973 0.1690 1.0000 0.2464 0.7388
σ 0.2435 0.9569 0.2464 1.0000 0.0067
ρ 0.7286 -0.0583 0.7388 0.0067 1.0000
E 5.3828 3.6077 4.8012 3.8392 7.9090

spaces. This separation, as stated before, can cause decreased classification

precision when the 1D transfer function spaces are not independent from the 2D

transfer function space compared to a true 3D transfer function space. However,

our combination selection rules proposed in Section 3.1.2 help to rule out highly

dependent 1D transfer function spaces. Therefore, we believe this separation is a

good trade-off between interactivity and classification precision.

Each 1D transfer function is attached to every selected region in the 2D transfer

function domain based on the usual transfer function widgets or selectors. Thus,

features in the volume can be classified by selecting their voxels in the 2D domain

defined by the primary and secondary attributes. In cases where those voxels

represent multiple separate features, the additional 1D transfer function can be

used to further separate such features within the voxels selected in the 2D domain

using one of the tertiary attributes. While adding complexity to the manipulation

of transfer functions, this technique provides familiar interaction with each of the

2D and 1D transfer functions (TF). We believe this additional interaction (com-

bining familiar 2D TF manipulation with familiar 1D TF manipulation) provides

a reasonable method for interacting with the higher dimensionality of transfer

function combinations. However, it does require users to be familiar with such

interaction techniques.

Figure 3.1 illustrates the proposed 3D transfer function editor for a 2D gradient

magnitude transfer function space with associated 1D occlusion transfer functions.

The top part shows the 2D gradient magnitude transfer function domain x×
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Figure 3.1. The separable 3D transfer function editor. The transfer function editor
with the 2D gradient magnitude transfer function space x× ||∇x|| shown on top,
and the 1D occlusion space ρc attached to the currently selected widget c in the
2D space, shown below. In this example, the blue widget is active, and the 1D
histogram represents the occlusion information of all the voxels with statistical
properties selected by the widget in the 2D statistical domain.

||∇x||, where the user can place and interact with traditional 2D transfer function

widgets [56] TFw2D and a more generic lasso tool. The occlusion volume space

ρc or the size volume space tc of the region c selected by the currently active

2D transfer function widget TFwc is represented by a 1D transfer function editor,

shown at the bottom, along with a 1D histogram of the occlusion information of

all voxels selected by c. That is, the 1D transfer function editor operates strictly on

voxels selected by a 2D transfer function widget (the blue widget in Figure 3.1).
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The 2D transfer function widgets, such as ellipse, rectangle or triangle widgets

as proposed by Kniss et al. [56], typically include some default shapes with few

degrees of freedom. Users are able to set colors, opacities and different fall-offs

for each of these widgets. These tools provide facilities to the user for a general

exploration of transfer function spaces using easy to manipulate high-level widgets.

However, it is difficult for the user to precisely select arbitrary regions. This

often prevents a user from exploring the subtle structures in the transfer function

domain, which may make a significant difference in the final visualization. Thus,

similarly to commonly used image processing applications, we also include a lasso

tool to allow the user to intuitively and easily select arbitrary regions by drawing

the region boundaries directly into the transfer function space. In Figure 3.1, the

red curve illustrates the hand drawn boundary path with a spherical fall-off for

the color and opacity. A box on the left hand side of the 1D transfer function editor

allows the user to select which tertiary attribute is used as the 1D transfer function

space for each 2D widget.

The proposed user interface allows the user to interact with the 3D transfer

function space intuitively. Whenever the user creates a transfer function widget

on the 2D transfer function space, the histogram of the voxels selected by that

widget is computed and immediately shown in the 1D transfer function editor.

Initially, the 1D transfer function maps, as visible, all voxels that are selected by

the 2D transfer function widget. With the help of the 1D histogram, one can

then design the 1D transfer function intuitively. As such, users are provided with

a familiar interface thus providing intuitive interaction. This user interface adds

minimal complexity to the standard 1D and 2D transfer function editors in existing

volume visualization systems, e.g., Voreen [93] and ImageVis3D [48]. With a 3D

transfer function space we are able to leverage the usability of the user interface;

however, we are also interested in extending it for higher dimensional transfer

function spaces in the future.
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3.2 Specific Transfer Function Spaces Used
In addition to the well-known 2D gradient magnitude and scalar value transfer

function, we include several recently proposed transfer functions to be used

in combinations. Creation of these transfer functions is generally based on the

methods described in the respective papers, but with slight modifications, which

are discussed in the following subsections: size-based transfer functions [14] in

Section 3.2.1, occlusion-based transfer functions [15] in Section 3.2.2 and statistical

transfer functions [38] in Section 3.2.3.

3.2.1 Size Information Computation

Correa and Ma [14] proposed a three-step method to create a size volume S

from an input volume. The three steps are scale-space computation, scale detection

and back projection. Correa and Ma use anisotropic diffusion to create the scale

space with better localization. The classical normalized Laplacian kernel is used

to detect the blobs as local maxima both in spatial and scale domains. A back

projection step utilizing Shepard’s interpolation with Wendland polynomials is

then conducted for the detected blob tuple (x, y,z, t).

A single voxel can be part of features with multiple sizes; however, only the

largest size value is kept at each voxel. Thus smaller features get masked out by

larger ones, which happens in the brain MRI example shown in Section 3.3.4. To

avoid this situation, we allow the user to specify an intensity range to compute a

scale space specifically for that range.

3.2.2 Occlusion Information Computation

Correa and Ma [15] suggest using an extended ambient occlusion metric to

measure the occlusion of the volume. One can view the occlusion information ρ as

a weighted sample mean value for a spherical neighborhood with certain radius

R centered at each voxel, which results in an isotropic blurring effect that does not

preserve the boundaries of the structures.

Sometimes, overly smoothed volumes that lose all their boundary information

are not desired, thus we derive a gradient based equation for computing the

occlusion information, inspired by work done by Perona and Malik [76].
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For a sphere of radius R, we compute the occlusion information of the N voxels

xi surrounding the current voxel x as shown in Equation 3.6:

mx =
gx

N

N∑
i=1

xi (3.6)

gx =
η2

∥▽Ix∥2+η2 (3.7)

In Equation 3.7, gx is a term based on the gradient magnitude of the current voxel

x.

The dataset dependent parameter η ∈R+ handles gradients of zero magnitude

e.g., for η ∈ [0.001,0.01], essentially helping to preserve boundaries of different

structures. If η ≥ 1, the filter behaves similar to a box filter.

Computing mx is equivalent to convolving the volume with a spherical filter

BR of radius R, and then modulating it with gx:

mx = gx · (BR ∗ Ix) (3.8)

The complexity of this operation is O(mn), where m = 4
3πR3 + 1, and thus very

costly, since the radius should be large enough to maximize the variance of the

result [15].

This computational scheme is infeasible in practice, due to its computational

complexity. However, since each sample inside the sphere is treated equally, a box

filter of width 2R can be used to approximate the sphere. Exploiting the separability

of convolving with a box filter and the performance of modern GPUs allows the

computation of mx within seconds. The 3D convolution is then separated into three

consecutive convolutions with a 1D box filter b2R+1 of width 2R+1, as Equation 3.9

shows:

mx = gx · {b2R+1 ∗ [b2R+1 ∗ (b2R+1 ∗ Ix)]} (3.9)

This separation considerably reduces the computation time. Such an occlusion

metric is view-independent and thus can be precomputed and stored, and there-

fore does not affect the speed of visualization.



30

3.2.3 Statistical Properties

We construct the statistical feature space with a procedure similar to that

presented by M. Haidacher et al. [38]. They propose to grow a sphere over

the neighborhood of each voxel and to compute the following statistical metrics:

mean value µ, standard deviation σ, skewness as well as kurtosis. It is a multistage

process: first, extract statistical metrics and second, conduct the normality test. If the

test is passed, continue with the similarity test. After the similarity test, if the new

samples are similar to the old ones, we combine the statistical metrics. If any of the

above tests fail or a user-defined maximum radius rmax is reached, the procedure

is terminated, otherwise we increase the neighborhood by one voxel.

Haidacher et al. [38] use the Jarque-Bera test [52] for normality since it is easily

implementable on a GPU. It, however, requires a relatively large set of samples in

order yield results of sufficient quality. Therefore, various other normality tests

have been proposed in the literature; we chose D’Agostino’s K-squared test [18]

as a state-of-the art method. Its robustness with respect to identical values in

the dataset makes it a good fit for CT and MRI datasets, which can contain large

homogeneous regions.

Utilizing the transformations Z1(
√

b1) and Z2(b2) of the sample skewness
√

b1

and the sample kurtosis b2, the K-squared test (Equation 3.10) is then defined as:

K2 = Z1(
√

b1)2+Z2(b2)2 (3.10)

K2 is approximately χ2-distributed with 2 degrees of freedom; we can test its null

hypothesis by looking up the χ2-distribution table. The entry for test level 1−α =
0.999 with 2 degrees of freedom in the χ2-distribution table is 13.82. Therefore, the

normality test will be passed if

K2 < 13.82 (3.11)

If the samples in the spherical neighborhood pass the normality test, it is

necessary to further test whether they have the same distribution as that of the

samples computed in the previous iteration. As done by Haidacher et al. [38],

Welch’s T-test [98] is used to compare the similarity of the sample distributions.
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3.3 Results and Discussion
The statistical properties, the occlusion information and the size information

are all precomputed on the GPU, and those volumes are then used in the interactive

visualization stage to define the transfer function space. Users interact with an ex-

tended slice-based volume renderer implemented in OpenGL and Qt that supports

combined 3D transfer functions to explore and generate final visualizations.

The scoring process is not part of our volume renderer and is conducted in

MATLAB only once for a dataset. The input is a matrix where each of its columns

is a property volume that is flattened into an 1D array. The correlation coefficient

matrix is computed by the MATLAB function corrcoef, which uses Pearson’s

correlation. The MATLAB function entropy, which implements Equation 3.5, is

applied to compute the entropy of each property by taking the histograms of the

properties in a column of the input matrix. The number of bins of the histograms

is determined by the number of bits of the data, e.g., an unsigned 8 bit volume has

256 bins. Finally, Equation 3.3 is evaluated for the corresponding row of the major

property in matrix R and the normalized entropy vector E(Yi)
maxE . The whole process

takes about 10 seconds for each of the examples shown.

The following discussion compares 2D gradient magnitude, 2D statistical, 2D

occlusion, 2D size with 3D combined statistical/occlusion, statistical/size, occlu-

sion spectrum/size or statistical/(occlusion, size) transfer functions applied to a

synthetic dataset and real-world datasets. The combined 3D transfer functions

for each dataset were typically designed within 15 to 20 minutes, similar to

the time required to design the traditional 2D transfer functions. The synthetic

dataset models a filled shell encompassing varying sized spheres; the “Artifix”

dataset has been retrieved from the OsiriX DICOM archive [72]. The back pack

and the “Artifix” datasets are CT scans of a back pack and chest, respectively,

“CerebrixCrop” is the T1 channel of an MRI scan of a brain.

The parameters used to create the transfer function spaces are chosen by trial-

and-error on each dataset. The synthetic dataset and CT datasets are computed

with confidence level 0.1, whereas the MRI dataset with a confidence level 0.001

when generating the statistical transfer function space. The radius is set to 40 for all
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datasets when creating the occlusion volumes. The synthetic dataset is processed

with a boundary preserving parameter η = 1.0 in order to overcome the noisiness,

whereas all other datasets use η = 0.005 to preserve the boundary details. The size

property computed for the MRI dataset is limited to the intensity range [250,500]

in order to classify the tumor.

The transfer function combinations shown below are chosen by applying the

algorithm described in Section 3.1.2 with varying parameter a. An exception to

this are the results shown in Figure 3.2, where the extremely noisy nature makes

Equation 3.3 ineffective.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2. Comparisons of transfer function combinations for a synthetic dataset.
The synthetic dataset was created as a mixture of overlapping Gaussian distri-
butions with varying parameters to model a filled shell encompassing varying
sized spheres as shown in a). The dataset has been classified, from left to right,
using transfer functions (shown right below the rendered images) based on b)
2D gradient magnitude, c) 2D occlusion spectrum and d) 2D size-based transfer
function, e) 2D statistical, f) combined statistical/occlusion transfer function, g)
combined statistical/size transfer function and h) combined statistical/(occlusion,
size) transfer function.
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3.3.1 Synthetic Dataset

A synthetic dataset was created, as illustrated in Figure 3.2(a), in order to

mimic a common scenario in real life medical datasets, such as chest CT scans or

head MRI scans, where different structures overlap both spatially and in the scalar

values. Often, the outer structures occlude with the inner ones, but they also can

have different sizes. The synthetic dataset contains six different materials: the

environment with µ0 = 0.20,σ0 = 0.14, the middle hull with µ1 = 0.40,σ1 = 0.16, the

outer hull and the upper small inner sphere with µ2 = 0.60,σ2 = 0.11, and both the

remaining larger and smaller inner spheres have µ3 = 0.80,σ3 = 0.13. In addition,

low amplitude noise following a Gaussian distribution has been added across the

whole domain to simulate noise introduced by acquiring a volumetric image with

a scanner.

Various transfer functions have been applied to the synthetic dataset, as shown

in Figure 3.2. Traditional 2D gradient magnitude-based transfer functions, as

Figure 3.2(b) illustrates, suffer severely from the overlapping scalar values in the

transfer function domain. There, features are indistinguishable due to noise, which

makes it hard to separate features based on their gradient magnitude, as seen in

the joint histogram in Figure 3.2(b).

Occlusion spectrum 2D transfer functions, shown in Figure 3.2(c), are able to

separate the inner and outer structures based on their occlusion property as in the

transfer function shown in Figure 3.2(c). The three inner spheres, however, cannot

be separated clearly due to the similarity in their occlusion information as well as

their scalar values. Also, the center of the inner yellow region overlaps with all

spheres in the occlusion spectrum, thus causing misclassification.

The size-based 2D transfer function applied to the dataset (Figure 3.2(d))

separates the inner spheres from each other and the outer rings; however, there are

classification artifacts at the top and right part of the green outer ring. The small

sphere at the bottom right cannot be properly separated from the purple sphere,

since they both overlap in their scalar values.

Statistical 2D transfer functions, as demonstrated in Figure 3.2(e), are able to

separate the overlap in the (µ,σ) transfer function domain. It is thus possible to
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classify them using different properties. However, both spheres at the lower center

have the same statistical properties, and similarly, the outermost shell shares the

statistical properties with the upper central sphere, yet they represent different

structures.

Supplementing the statistical information with occlusion information, as shown

in Figure 3.2(f), makes it possible to separate the inner purple sphere, compared

to Figure 3.2(e). The transfer function in Figure 3.2(f) shows that the 1D occlusion

histogram for the highlighted 2D widget can be used to separate the purple sphere

with its low amount of highly occluded voxels from the green outer shell, which

has a higher amount of less occluded voxels. However, the two red spheres at the

bottom are not separated from each other.

On the other hand, supplementing the statistical information with size infor-

mation, as shown in Figure 3.2(g), makes it possible to separate the two spheres

at the bottom into the cyan small one and the larger red one, when compared to

Figure 3.2(e). Noticeable are the purple artifacts in the green outer shell at the right

side, since that region has a similar feature size compared to the purple sphere.

Figure 3.2(h) shows that occlusion and size information together are able to

classify all the features of the dataset without ambiguity. The 1D transfer function

associated with each widget in the 2D statistical transfer function space uses either

size information or occlusion information to further classify the voxels selected in

the statistical 2D transfer function domain, thus allowing the user to exploit the

benefits of either method, while being able to interact with 1D and 2D transfer

functions, instead of 3D or 4D transfer functions.

3.3.2 CT Scan of a Chest: “Artifix”

In the chest CT scan “Artifix” (Figure 3.3), both traditional 2D and combined

3D transfer functions were used to classify the lung (blue), bones (shades of gray),

blood vessels (red), aorta (dark orange), kidney (brown) and the skin (transparent

gray).

The gradient magnitude transfer function fails to correctly separate the blood

vessels and the kidneys from the bones. Also noticeable is the relatively high

amount of noise distributed across the volume.
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(a) (b) (c)

(d) (e)

Figure 3.3. Transfer function combinations for a CT chest scan. The chest
CT scan “Artifix” classified using transfer functions based on a) 2D gradient
magnitude, b) 2D occlusion spectrum, c) 2D statistical, d) combined 3D gradient
magnitude/occlusion transfer function and e) combined 3D statistical/occlusion
transfer function.

The occlusion spectrum can be used to separate the kidney from the surround-

ing tissue. However, the aorta is similarly classified, since the aorta and the kidney

are overlapping in the occlusion spectrum. Also, details of the lung are lost, since

its tissue has similar occlusion values compared to the surrounding tissue, due to

the intricacy and delicacy of the alveoli and bronchioles.

A statistical transfer function (Figure 3.3(c)) removes a noticable amount of that

noise, but still leaves some areas, such as the front part of the ribs, and the kidney

misclassified, since they are close with respect to their statistical properties.

Experimentation with the size-based transfer function as the associated transfer

function space did not measurably improve the classification since the relative

similarity of the scalar values in this CT scan mapped them to similar size values.

However, combining occlusion information with either a 2D gradient magni-

tude transfer function (Figure 3.3(d)) or a statistical transfer function (Figure 3.3(e))
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increases the ability to correctly separate the kidneys from the aorta. The fine

structures of the lung’s surface are identifiable, since they have different statistical

properties compared to the surrounding tissues. There are only slight differences

between the combined transfer functions since they are similar without consider-

ing occlusion information.

3.3.3 CT Scan of a Back Pack

Figure 3.4 shows the CT scan of a back pack filled with liquids (in red, green,

blue), a battery (in purple) and a box (in cyan) classified with various transfer

functions.

The scoring with a = 0.6 conducted on the back pack dataset with scalar value

chosen as the main property and gradient magnitude as the intrinsically associated

secondary property results in:

sµ,σ,ρ,S = [−0.5208,−0.3882,0.2165,−0.1595]

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.4. Transfer function combinations for a back pack CT scan. The back pack
CT scan classified using transfer functions based on a) 2D gradient magnitude, b)
2D statistical, c) 2D size, d) 2D occlusion, e) combined 3D gradient magnitude
/occlusion transfer function, f) combined 3D statistical/size transfer function and
g) combined occlusion spectrum and size transfer function.
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suggests that the occlusion volume ρ and size volume S should be considered for

tertiary attributes. Changing the main property to mean volume with standard

deviation volume as the secondary attribute gives the scoring for the rest of the

properties:

sx,|▽x|,ρ,S = [−0.4847,−0.2140,0.2153,−0.1679]

also hints to us that the occlusion volume ρ and size volume S should be used as

tertiary attributes.

The 2D transfer functions separate the different liquids to varying degrees, but

they fail to identify the battery properly. Other features, such as the wires or the

small circular shapes, are mapped to the same color yellow (Figures 3.4(a), 3.4(b)),

or the same feature is mapped to different colors (Figures 3.4(c), 3.4(d)). Notable

is the 2D occlusion transfer function, which allows the extraction of the cyan box

but classifies the liquids with less specificity.

Adding occlusion as the third axis did not yield meaningful results, since the

dataset itself has many features that are similarly occluded by the clothing articles

(showing in transparent gray) inside the back pack, thus reducing the separability

in the occlusion channel.

Utilizing a size transfer function as the third axis allows the clear separation

of the battery (purple color). The 3D occlusion spectrum/size transfer function

(Figure 3.4(g)) is additionally able to visualize the cyan box, which is difficult to do

using gradient magnitude (Figure 3.4(e)) and statistical information (Figure 3.4(f))

as the 2D transfer function domain. However, all the 3D transfer functions have

problems in classifying the wires as features both connected spatially and with

respect to their colors, suggesting further investigations of alternative volumetric

attributes as the third axis.

3.3.4 MRI Scan of a Brain: “CerebrixCrop”

MRI datasets, occurring in clinical and research studies where separating the

brain from the surrounding tissue is of particular interest, are typically challenging

to classify, since they often contain ubiquitous noise [27]. Figure 3.5 shows such

a dataset containing a tumor in the center of the brain. Transfer functions are
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Figure 3.5. Transfer function combinations for an MRI brain scan data. The
“CerebrixCrop” MRI dataset shown with focus on the brain tissue shown as yellow
(top row) and a tumor shown in red (bottom row). The following transfer functions
were applied: a,f) 2D gradient magnitude, b,g) 2D occlusion, c,h) 2D statistical,
d,i) 3D statistical/occlusion, e,j) 3D statistical/(occlusion,size).

applied to classify the brain tissue (in yellow) and the fluid inside the tumor (in

red). Note that although both features can be shown simultaneously by setting

transparency of the brain, we set the brain to be completely transparent in the

second row of images for clear visualizations of the tumor.

We apply the scoring process with a = 0.6 to the MRI dataset: set scalar value

as primary and gradient magnitude as secondary yields:

sµ,σ,ρ,S = [−0.3188,−0.1247,0.1674,−0.0224]

meaning that the occlusion volume ρ and size volume S once again should be

considered for tertiary attributes. Substituting the main attribute with the mean

value with the standard deviation as the secondary attribute gives

sx,|▽x|,ρ,S = [−0.2841,−0.0591,0.1505,−0.0298]

and leads us to the same decision.

Gradient magnitude-based 2D transfer functions (Figure 3.5(a)) fail to properly

separate the brain from the skin, since they both share similar ranges of scalar

values and gradient magnitudes.



39

Figure 3.5(f) demonstrates the inability for the gradient magnitude based 2D

transfer functions to clearly pull out the tumor, since similar scalar values and

gradient magnitudes appear universally across the dataset.

The occlusion spectrum (Figures 3.5(b) and 3.5(g) helps to better separate the

brain from its surrounding tissues as well as remove noise with scalar values

similar to the tumor. However, the surface of the brain tissue is still incorrectly

classified and a large amount of noise still appears around the tumor due to similar

occlusion values in these regions.

Statistical transfer functions (Figures 3.5(c) and 3.5(h)) significantly smooth

the dataset, making the creases and recesses of the brain tissue clearly show up,

however, noise that heavily affects the visual quality is still seen across the dataset,

especially in Figure 3.5(h).

Combining the occlusion information with statistical information, as shown in

Figures 3.5(d) and 3.5(i), classifies the brain tissue properly, but fails to clearly

extract the tumor.

However, a transfer function combination with two tertiary attributes, as

shown (Figures 3.5(e) and 3.5(j)), clearly separates both the brain tissue and the

tumor. The statistical attributes are used as the primary and secondary attributes,

and the occlusion and size information are used as the tertiary attributes.

The widget that classifies the yellow brain tissue uses the occlusion attribute

to further classify it with the associated 1D transfer function; however the widget

classifying the red tumor uses the size attribute instead to further remove the noise

via its associated 1D transfer function.

3.3.5 Multivariate Dataset: Hurricane Isabel

One time step (time step 30) of the VisContest 2004 Hurricane Isabel [47]

multivariate dataset is used to demonstrate the generality of our method. The

dataset is a simulation of a hurricane from the National Center for Atmospheric

Research in the United States. The original dataset contains 100 time steps and

each with 12 attributes. Many of these attributes, however, are redundant or

contain little amount of information.
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The three most salient attributes are selected, namely pressure, temperature and

a water vapor mixing ratio measurement, QVAPOR, by evaluating the entropy of

each attribute. The 2D transfer function domain is pressure and temperature. We

use QVAPOR as the associated 1D transfer function. These attributes are then

used to classify significant features in meteorology, including hurricane eye and

spiral arms. As shown in Figure 3.6, each colored widget in the 2D domain uses a

different QVAPOR 1D transfer function for classification and the classified volume

are visualized using volume rendering. The eye of the hurricane (shown in red)

has a lower pressure but higher temperature than the blue outer bands and a lower

temperature compared to the yellow and green spiraling bands. The QVAPOR

attribute allows us to see the spiraling bands with fine details in the dataset.

(a) Hurricane Isabel Visualization (b) Hurricane Isabel UI

Figure 3.6. Classifying a multivariate dataset using the combined transfer function
space. Visualization of the multivariate Hurricane Isabel dataset using pressure
and temperature in the 2D transfer function with different 1D transfer functions
using QVAPOR for each 2D transfer function widget shown in different colors.



CHAPTER 4

TRANSFER FUNCTION DESIGN BASED ON

USER-SELECTED SAMPLES FOR INTUITIVE

MULTIVARIATE VOLUME EXPLORATION

Multivariate volumetric datasets are important to both science and medicine.

We propose a transfer function (TF) design approach based on user-selected

samples in the spatial domain to make multivariate volumetric data visualization

more accessible for domain users. Specifically, the user starts the visualization

by probing features of interest on slices and the data values are instantly queried

by user selection. The queried sample values are then used to automatically

and robustly generate high-dimensional transfer functions (HDTFs) via kernel

density estimation (KDE). Alternatively, 2D Gaussian TFs can be automatically

generated in the dimensionality reduced space using these samples. With the

extracted features rendered in the volume rendering view, the user can further

refine these features using segmentation brushes. Interactivity is achieved in our

system and different views are tightly linked. Use cases show that our system has

been successfully applied for simulation and complicated seismic datasets.

4.1 Method Overview
The workflow of our proposed method as shown in Figure 4.1 is comprised of

three major stages: (A) data probing, (B) qualitative analysis and (C) optional feature

refinement.

Data probing is the process where the user discovers regions of interest by

examining multivariate data slices. The regions of interest can be conveniently

selected using a lasso tool or a ”magic wand” tool. Once the regions of interest are

selected, a simple, yet efficient, voxel query operation that inquires the multivariate

data values is performed. The user then performs a qualitative analysis, i.e.,
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extracting and rendering volumetric features by means of designing HDTFs or 2D

TFs on dimensionality reduced spaces. KDE is utilized to automatically generate

the HDTFs and to robustly discard outliers from the queried samples. Similar to

previous methods [1, 5, 31], the transfer functions can also be directly modified in

the high dimensional transfer function editor. The high dimensional data space

as well as the transfer functions are represented by parallel coordinate plots and

pairwise scatter plots. In addition, automated 2D Gaussian TFs on the projection

view offer a simpler alternative for more distinct features. The HDTFs can then

be fine-tuned directly in a PCP-based HDTF editor while the 2D Gaussian TFs

can be manipulated by 2D Gaussian TF widgets. On many occasions, however,

different features share similar data values and thus an optional feature refinement

stage is introduced to refine the features classified by the TFs. Features are refined

by the user via segmentation brushes or lassos that are applied directly on the

volume rendering view or the multipanel view. After several iterations of the

three stages, the user can choose to output the classified result as labeled volume

for further processing. We have implemented an interactive multivariate volume

visualization system based on the proposed method that has been implemented

to allow domain users to extract refined features in very complicated multivariate

volume datasets more intuitively.

4.2 Voxel Query and PCP Generation
Our proposed method is based on user-selected multivariate voxel samples

through interactive selection, which requires efficient voxel query. The multivari-

ate values of the queried samples should be immediately presented to the user by

means of PCPs, and so a fast PCP generation method is needed.

4.2.1 GPU-based Voxel Query via Conditional Histogram
Computation

Voxel query can be accelerated by spatial hierarchy structures that group similar

neighboring voxels into nodes, e.g., an octree structure adopted by Guo et al. [31].

However, Knoll et al. [58] report that, “Conversely, volumes with uniformly high

variance yield little consolidation; due to the overhead of the octree hierarchy they
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could potentially occupy greater space than the original 3D array.” Our initial

experiment on the seismic data with the code from [58] agrees with this statement.

We therefore propose to efficiently conduct the voxel query by computing sets of

joint conditional histograms via a simple GPU-based volume traversal. A joint

conditional histogram jch(a,b) f of two attributes a and b is a 2D histogram showing

the joint distribution of attribute values Ya and Yb of voxels V whose evaluated

result from a certain boolean function f ( ⃗Y(V)) ( ⃗Y(V) being the attribute values of

V) is true. If f is always true, the joint conditional histogram degenerates to an

unconditional joint histogram. Note that the values of user selected samples are

queried via an unconditional joint histogram computation over the user-selected

region on the given slice.

For a multivariate volume of N attributes, given an N-dimensional TF as the

condition, a set of N− 1 joint conditional histograms can be computed to record

the query results. The values of the joint conditional histograms are accumulated

by first evaluating the N-dimensional TF for all voxels in the volume, and then

transforming the voxels that have positive opacities from the TF into bins in

the conditional histogram space, and finally incrementing the joint conditional

histogram count at those bins. Specifically, given a voxel vX of N attributes

Y1,Y2, ...,YN (to be concise, we use yi to denote the attribute value Yi(vX)) located

at 3D position X in the spatial domain, and an N-dimensional TF TF.

vX→ {(y1, y2),(y2, y3), ..., (yN−1, yN)}

where TF(y1, y2, . . . , yN).a > 0 (4.1)

(y1, y2), (y2, y3), ..., (yN−1, yN) being the bins of joint conditional histograms

jch(Y1,Y2), jch(Y2,Y3), ..., jch(YN−1,YN),

respectively.

Equation 4.1 and the accumulation of the conditional histograms, which are

stored aggregately as a 2D texture array of N−1 slices, can be easily implemented

on the GPU via geometry shader and ADD blending or read-write textures with

atomic operations that are supported on recent GPUs.
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4.2.2 Parallel Coordinate Plots Generation

As proposed in [70], Figure 4.2 shows that each nonzero pixel P(i, j) in the joint

histogram of attribute x and y yields a quad starting at the position of i on PC axis

x and ending at the position of j on PC axis y.

The highly parallel process can be implemented on the GPU using geometry

shader and transform feedback buffers. The algorithm loops through all pairs of

conditional histograms after setting up the transform feedback buffer for recording

the resulting geometry. In each iteration, a regular grid of the same size of a slice

of the input conditional histogram texture texcond is drawn and a geometry shader

generates a colored quad for each vertex whose texcond value is not 0. The dynamic

range of the data values is usually high and thus the ratio of the natural logarithm

of the data value versus natural logarithm of the total voxel number is computed

and then modulated with the input color C0(i, j) at grid position (i, j) to give the

final color C(i, j).

C(i, j) = C0(i, j)
log(v(i, j))
log(
∑

v)
(4.2)

Finally, all quads are stored in the transform feedback buffer, and they can be

rendered directly from the transform feedback buffer without being read back to

the CPU.

4.3 Transfer Function Generation from User-Selected
Samples

In this section, the actual TF generation method will be explained. Section 4.3.1

introduces the method for interactive voxel sample selection, Section 4.3.2 dis-

Figure 4.2. Generating a PCP from a joint histogram.



46

cusses the KDE-based HDTF generation method and Section 4.3.3 presents details

on the automated 2D Gaussian TF on the dimensionality reduced space.

4.3.1 Sample Selection in the Multipanel View

The user can interactively select an arbitrary region of interest in any attribute

by either drawing a lasso or using the magic wand tool. The lasso tool is a simple

free hand drawing tool that allows the user to select regions by manually drawing

over the boundary of a feature. Although very flexible, the user has to be very

careful when drawing on the boundary using the lasso tool.

To alleviate the difficulty of perfectly drawing over the boundary of a feature,

a more intuitive and easier to use magic wand tool is introduced. The magic wand

tool is essentially a 2D segmentation tool based on Perona and Malik’s anisotropic

diffusion [76]. Equation 4.3 describes the diffusion equation where S(t,x, y) is the

number of seeds at position (x, y) at time t, with V(t,x, y) being the intensity of the

chosen attribute at the same point, |∇V(t,x, y)| is its gradient magnitude, and g(s)

a conductivity term.

∂S(t,x, y)
∂t

= div(g(|∇V(t,x, y)|)∇S(t,x, y)) (4.3)

where g(s) = v ·exp
−s2

K2

Parameter K governs how fast g(s) goes to zero for high gradients, regular term v is

chosen as 1 and normalization term h is set to 1
n+1 for numerical stability, n being the

number of neighbors of a pixel, which is 8 in our case. Equation 4.3 can be solved

numerically using the finite difference method with a given iteration number T.

The iteration number T, parameter K and seeding brush size are user controllable.

Figure 4.3 shows the panel view of a six-attribute seismic volume dataset where

attributes are co-rendered with the seismic amplitude volume. Note that a user

drawn magic wand in dark blue highlights a potential salt dome structure.

4.3.2 Kernel Density Estimation-based Transfer
Function Generation

We would like to generate HDTFs from the samples selected using method

described in Section 4.3.1. To reduce the computational complexity, we separate
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Figure 4.3. Sample selection in the multipanel view. The user draws on a salt dome
(stroke shown in light blue) over the fifth attribute in the panel view, resulting in
the dark blue region of selection.

the N-dimensional value space into N−1 2D value spaces, i.e., a 2D+2D+ · · ·+2D

(N−1 of 2D) space. A naive approach is to generate a TF by taking the convex hull

of these 2D sample points. Although useful when the user intends to select exact

sample points, it is conceivable that the outliers in the samples can greatly bias the

generated TF and result in unwanted regions selected in the value space.

Figure 4.4(a) clearly demonstrates such a situation where a red 2D TF widget

is generated as the convex hull of the sample points with the red boundary. Also

notable is that the color gradient of the TF widget is arbitrarily defined by the user

that may not follow the underlying distribution of data.

Kernel density estimation (KDE) [87] seen in Equation 4.4 is a nonparametric

method for estimating the density function fh(x) at location x of an arbitrary

dimensional domain Ω with given samples {xi}, i ∈ {1,2,3, . . . ,n}.

fh(x) =
1
n

n∑
i=1

Kh(x−xi) =
1

nh

n∑
i=1

K(
x−xi

h
),x,xi ∈Ω (4.4)

where K(x) is the kernel function and h is the bandwidth. Thanks to the separation

of the value space, instead of computing the KDE for Ω of N dimension, we
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(a) (b) (c)

Figure 4.4. Transfer function generated from user-selected sample points. User-se-
lected sample points (shown in green) over a joint histogram. TF widget generated
from the samples as (a) convex hull and (b) KDE. In (c): a point cloud (left) and its
KDE result color coded with a “jet” color map.

compute N−1 KDE for Ω in 2D spaces. In our case, each Ω is set to the same size

of the 2D joint histogram, which is typically 256×256.

An empirical optimal bandwidth estimator is suggested in [87], which can be

extended to 2D:

h = 1.06
√

detΣ ·n− 1
5 (4.5)

where detΣ is the determinant of the 2D covariance matrix Σ of current attribute

pairs. The kernel function K(x) we used is the 2D Gaussian kernel:

K(x) =
1√
2π

e−
||x||2

2 (4.6)

With the Gaussian kernel, each sample xi contributes to the estimate in accordance

with its distance from x. Therefore, in the region near the intended samples more

short distanced samples are contributing to fh(x) compared to the region near the

outliers. As a result, the density value fh(x) around the outliers is lower than that

of the intended samples. Figure 4.4(c) shows the density function generated by

the KDE method of the given samples with the above settings. This result verifies

our expectation that the outliers have a lower density than the intended sample

regions. We can discard the outliers by setting a threshold for the density value

fh(x). Figure 4.4(b) shows the yellow TF widget generated by KDE with a density

threshold of 0.15. Noticeable is that the outliers are excluded from the TF widget

and the smooth color gradient that actually follows the underlying density. The
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resulting TF can be represented by a set of 2D TFs or a PCP created using the

method described in Section 4.2.2.

In the presence of multiple HDTFs, ambiguity could arise: different HDTFs can

cover the same regions of certain 2D attribute pairs. To differentiate the HDTFs, a

unique ID is specified to each HDTF and an ID map of the same size of the N−1 2D

TF space is created by conducting bitwise OR for all HDTFs on each 2D attribute

pair. The ID map is later decoded in the volume rendering shader to correctly

select voxels.

4.3.3 Automated Gaussian Transfer Functions on Dimensionality
Reduced Space

Dimensional reduction is another popular method for visualizing high-dimensional

data due to its ability to intrinsically generate visual representations that are easy

to understand and interact with. Instances in an m-dimensional Cartesian space

are projected into a lower p-dimensional visual space with preservation of the

distances between instances as much as possible. In other words, voxels with

similar m-dimensional attribute values are projected to be near each other in the

p-dimensional space. With a projected visual space of p = 2, the user is able to

better identify features by doing visual classification using a 2D TF widget, and

moreover, automated clustering methods can be applied for classification. In

our proposed method, the high-dimensional value space is projected into a 2D

space using Fastmap [24] and then Gaussian TFs are generated via expectation

maximization optimization with Gaussian mixture model. The user can choose to

use either the 2D Gaussian TF or the HDTF for each feature by switching a button

on the user interface. The 2D Gaussian TFs are preferred for more convenient

extraction of several distinct features at the same time, whereas the HDTFs are

better for features that have subtle differences in the HD value domain.

We employ Fastmap [24] as the dimensional reduction technique since it is

fast, stable and easy to implement. Fastmap is a recursive algorithm for multi-

dimensional projection with an O(N) time complexity. Given target dimension

k, a distance function D() and object array O contains N objects of m dimension,

the algorithm FastMap computes the k-dimensional projected image X from the N
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objects. The algorithm is summarized in Algorithm 4.1

Assuming that all attributes we are handling are continuous measurements,

the dimensionality reduced 2D value space can be modeled by a Gaussian mixture

model (GMM). GMM models point clouds by assigning each cluster a Gaussian

distribution. For a point x in the 2D value space, a Gaussian distribution is shown

in Equation 4.7 with mean value µ being a 2D vector and covariance matrix Σ as

a 2×2 matrix.

N(x|µ,Σ) =
1

2π|Σ|1/2 e−
1
2 (x−µ)TΣ−1(x−µ) (4.7)

Therefore, for a GMM with k components, the distribution of the 2D value space

can be written as

p(x|θ) =
k∑

j=1

α jN(x|µ j,Σ j) (4.8)

where θ is the parameter set of the k-component GMM {α j,µ j,Σ j}kj=1, and α j is the

prior probability of the jth Gaussian distribution. The optimal θ̂ can be found as

θ that maximizes the likelihood of p(X|θ)

θ̂ = argmaxp(X|θ) = argmax
n∏

i=1

p(xi|θ) (4.9)

where n is the number of input points. Equation 4.9 can be solved by the

expectation maximization (EM) algorithm [4]. Given an initial setup of θ, the EM

Algorithm 4.1 FastMap(k,D(),O)
if k ≤ 0 then

return
else

col = col+1 (col is initialized to 0)
end if
Choose and record the pair of pivot objects Oa,Ob.
Project objects on line (Oa,Ob) using the cosine law:

X[i,col] = xi =
D(Oa,Oi)2+D(Oa,Ob)2−D(Ob,Oi)2

2D(Oa,Ob) , i ∈ {0,1,2, ...,N−1}
Call FastMap(k−1,D′(),O).
Where
D′(O′i ,O

′
j)

2 =D(Oi,O j)2− (xi−x j)2, i, j ∈ {0,1,2, ...,N−1}
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algorithm iterates between two steps: expectation step (E step) and maximization

step (M step) until the log likelihood

lnp(X|θ) = log(
n∏

i=1

p(xi|θ)) =
n∑

i=1

{
k∑

j=1

α jN(xi|µ j,Σ j)}

converges. We initialize the EM algorithm using the K-means algorithm [40],

which quickly gives a reasonable estimation of θ. With an initialization of k mean

values {µ j}kj=1, K-means algorithm iteratively refines {µ j}kj=1 until convergence

through assignment and update steps. The assignment step assigns each sample

to the cluster with the closest mean, and the update step calculates the new means

to be the centroid of each cluster. In our case, the initial means are k random

samples in the input dimensional reduced 2D point cloud. Once the K-means

algorithm terminates, {Σ j}kj=1 can be easily computed with the result means, and

prior probabilities {α j}kj=1 is given by the proportion of total samples inside each

cluster.

We use a modified TF generation scheme as in [96] but ours differs in that 1) the

value space we use is the 2D dimensionality reduced space of high-dimensional

attribute compared to the 2D intensity versus gradient magnitude space as in [96],

and 2) we use the user-selected samples as the input point clouds, whereas they

use all voxels in a volume.

Given some user-provided sample data points and a class number k (which is

set to 3 by default from our experiments), the EM algorithm computes the Gaussian

distribution parameters θ̂. Each Gaussian distribution is managed by a Gaussian

TF widget with a user-defined color C and opacity function α of location x:

α = αmaxe−
1
2 (x−µ)TΣ−1(x−µ) (4.10)

The Gaussian TF widget is centered at the mean value µ of the Gaussian distribu-

tion and its boundary is generated by transforming a unit circle with the square

root matrixΣ1/2 of covariance matrixΣ. Σ1/2 is calculated via eigen decomposition

of Σ:

Σ = VDV−1 (4.11)

Σ1/2 = VD1/2V−1 (4.12)
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where D is a diagonal matrix holding the eigenvalues and V contains the eigen-

vectors as columns. V is an orthogonal matrix, i.e., V−1 =VT, since Σ is symmetric.

The eigenvalues σ1,σ2 are the radii of the principal axes of the ellipse, whereas the

eigenvectors a,b are the unit vectors of the principal axes.

Transformations of the Gaussian widgets, i.e., translation, rotation and scaling,

can be achieved using the eigenvalues and eigenvectors. The translation is done

by shifting the µ with an offset ∆µ given by user dragging. The rotation of the

widget is achieved by rotating the eigenvectors in V with an angle β. Finally,

multiplying the eigenvalues σ1,σ2 with a scaling factor (sa,sb) results in the scaling

of the widget.

4.4 Feature Refinement in the Spatial Domain
The feature refinement stage is introduced to allow the user to directly ma-

nipulate the features in the spatial domain. Various refinement tools have been

implemented to handle different situations. All tools support three refinement

modes: new, add and remove.

4.4.1 Screen Space Brush in the 3D View.

The tool as seen in Figure 4.5(a) allows the user to draw strokes on the 3D

view screen to set seeds in the visualization results, and then a GPU-based region

growing is conducted to set the connected voxels to a given tag number. The

seeding location is determined by casting rays from brush strokes on the image

(a) (b) (c)

Figure 4.5. Feature refinement tools. Three feature refinement tools are included
in our method: (a) 3D brush, (b) 3D lasso and (c) 2D brush.
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plane to the volume extracted by current TFs. A voxel along the ray is seeded

when its opacity is greater than a user-defined threshold.

4.4.2 Screen Space Lasso in the 3D View.

Alternatively, the user can directly indicate features of interest on the 3D view

using a lasso as shown in Figure 4.5(b). A lasso is a simple tool that selects all

voxels from the TF extracted volume that are inside the back projected volume of

the screen space lasso covered area.

4.4.3 Refinement Brush in the Panel View.

The refinement can also be done by seeding on the panel view via drawing

strokes (Figure 4.5(c)), and this is useful when the features of interest are occluded

in the 3D view or readily visible in a slice. A morphological closing, i.e., dilate the

volume by one voxel and then erode the volume by one voxel, is performed after

refinement in order to fill small holes and bridge tiny gaps. Note that all refined

feature groups are managed in the group manager in the HDTF editor introduced

in Section 4.6.2, and thus similar to TF groups, their colors can be changed, they

can be deleted and their visibility can be toggled.

4.5 Rendering
We employ the directional occlusion shading (DOS) [84], which is an efficient

approximation to ambient occlusion as the rendering technique because the DOS

is gradient-free and provides the user more insights into the dataset than local

shading models as shown on seismic datasets [73]. A user study conducted

by [61] shows that DOS outperforms other state-of-the-art shading techniques

in relative depth and size perception correctness. Hardware supported trilinear

interpolation cannot be used for tag volume rendering because false tag values

will be generated. Instead, nearest neighbor sampling has to be used to correctly

render the tag volume. However, a simple use of nearest neighbor sampling yields

blocky looking results because of the voxel level filtering. Instead, using a manual

trilinear 0-1 interpolation gives pixel level filtering. From our observations, the

cases where multiple tags appear in a single 8 voxel neighborhood rarely occur
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and so a simplified method of [34] is utilized. The largest tag value in the eight

neighboring voxels around current pixel is mapped to 1 and all others to 0 and

then a trilinear interpolation is conducted on these 0/1 values. The interpolated

result is then compared against 0.5. If greater, the final tag value of the pixel is set

to the pixel’s nearest neighboring voxel’s tag value, otherwise the tag value is set

to 0.

4.6 User Interface
The user interface of our system is seen in Figure 4.1 where a multipanel slice

view for data probing is shown to the left (1), an interactive 3D view that shows

volume rendering results and allows post feature manipulation is seen in the

middle (2), a projection view shown to the upper right (3) and a high-dimensional

transfer function view appears to its bottom (4). These four views are tightly

linked and any updates in one view will be reflected in others.

4.6.1 Multipanel Viewer

We have developed a multipanel view that shows all attributes of a slice by

placing attributes into individual panels as seen in the left part of Figure 4.1 as

well as in Figure 4.3. The multipanel viewer synchronizes user interactions across

all attribute views, including: mouse positioning, panning, zooming, scrolling

and aspect changing. To enhance the perception of attributes, each attribute can

have a specifically designed color map that highlights features of interest. In order

to better use the dynamic range of the color maps, the contrast of the attributes

can be conveniently changed using the mouse wheel. Furthermore, a background

volume can be co-rendered with the current attribute volume using transparency.

This rendering mode is especially helpful for seismic volumes as our collaborating

geologists suggest that it provides more insight into the attributes when the seismic

amplitude volume is co-rendered as a context.

4.6.2 HDTF Editor

The user can interact with the HDTF editor to manually modify the HDTFs.

Figure 4.6 shows the HDTF editor where the PCP axes reorder button and attribute-



55

wise control panel can be seen on the top, the PCP TF editor is seen in the upper

left, a group manager is shown to its right and the pairwise TF editor is shown in

the lower part.

The attribute-wise control buttons allow the user to specify a color map, toggle

sampling between linear and nearest neighbor, and toggle lock/unlock for each

attribute. A locked attribute is essentially an attribute with its entire value range

used in TFs. In other words, it can be visualized in the panel view but is not

contributing to classification. This setting is useful since not all attributes provide

positive assistance in the extraction of specific features and this knowledge is

usually not known beforehand. Also, there are cases when one needs an attribute

to provide only context for data probing, e.g., the seismic amplitude attribute,

which will be discussed in Section 4.7. The group manager manages all TF and

segment groups. One is able to toggle the visibility or remove an individual or a

batch of groups conveniently.

As seen in Figure 4.6, the PCP axes are co-rendered with the 1D histograms

of attributes shown to the right and color map to the left. Since the color map

is synchronized with the one that appears in the panel view, the user is able to

instantly know how to set the TF widgets. The user interacts directly with the

parallel coordinate axes to design an HDTF using one of the three interaction

widgets, namely, brush widget, tent widget and Gaussian widget. The brush widget

enables the user to arbitrarily interact with the TF domain. Tent and Gaussian

widgets are essentially sets of 1D TF widgets residing on each attribute axis of

the HDTF domain, and they differ only in their shape of the opacity gradient. In

addition to the PCP TF editor, a pairwise 2D TF editor is used to aid the exploration

of pairwise features. The pairwise 2D TF editor allows the user to interact with

N− 1 2D TF space to fine tune the HDTFs to match irregular shaped features in

specific pairs of attributes using 2D rectangle, triangle or lasso widgets.

4.6.3 Projection Viewer

A projection viewer has been implemented in our proposed system by com-

bining the Fastmap dimensional reduction technique with GMM 2D Gaussian

TFs. The projection viewer extends the traditional 2D TF editor with Gaussian
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Figure 4.6. The high-dimensional transfer function editor. Note that the first
attribute, seismic amplitude, is locked.

TF widgets, but preserves familiar 2D TF widgets: rectangle, triangle and lasso.

Closely linked with the panel view and the HDTF editor, the projection viewer

shows the dimensional reduction view of user-selected samples.

4.7 Use Cases
Two use cases from different application domains will be shown to demonstrate

the usefulness of our proposed method. The first case is a commonly used

hurricane simulation dataset and the second case is a 3D seismic survey data

with several derived attributes, which will be used to extract geological features

that are important in the petroleum industry since they indicate potential oil and

gas reservoirs.

4.7.1 Hurricane Isabel Simulation

We have experimented with the proposed system on the simulation dataset:

hurricane Isabel. The hurricane Isabel dataset [47] is a multivariate multiple time

step atmospheric simulation. Eight attributes of time step 25 are used to generate
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the result in Figure 4.7, namely the pressure, the temperature, the total precipitation

mixing ratio (PRECIP), the graupel mixing ratio (QGRAUP), the water vapor

mixing ratio (QVAPOR), the total cloud moisture mixing ratio(CLOUD) and the

speed.

The simulation dataset contains no noise and since each attribute represents

a clear physical meaning, it is relatively easy to classify. A good classification

can be achieved by HDTFs or alternatively by automated 2D Gaussian TFs on the

projection view.

Joint histograms could be generated with continuous scatter plots [2]. The

user can generate the result in Figure 4.7 by placing several large lassos on slices

(a) (b)

(c)

Figure 4.7. Results of a hurricane simulation dataset. The extracted features
shown in (a) the top view and (b) the bottom view. Seen in (c) is the corresponding
projection view with automated Gaussian TFs that produce the classification result.
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in the axial view (slices indexed by the z axis) on the multipanel viewer in the

data probing stage. The GMM-EM algorithm explained in Section 4.3.3 then

automatically generates the TFs for classification in the qualitative analysis stage.

The hurricane eye, spiral arms and the top of the atmosphere are clearly seen in

Figure 4.7. Due to the nature of these data, no feature refinement is required.

The results are similar compared to previous methods. With previous meth-

ods [21, 1, 5, 31], one has to carefully design the TFs one by one for each

feature, either by editing pairs of histograms [21], or PCP-based HDTF [1, 5]

or high-dimensional Gaussian TF and MDS-based TF [31]. Our method, however,

allows the user to extract the same features by simply drawing several large lassos

across the features on the multipanel viewer, which is significantly easier.

4.7.2 3D Seismic Dataset

3D seismic imaging has been the standard for oil and gas exploration for

decades, and more recently, multiattribute volumes derived from the seismic

amplitude volume have been used to aid the understanding of the seismic sur-

veys [12]. However, these derived volumes are visualized individually in current

seismic data analysis tools and therefore the relationships between attributes are

lost. With the proposed methods and our system, our collaborating geophysicists

successfully extract refined geological features from the dataset and can export the

results as a labeled volume for further processing.

The data used are a part of the public 3D seismic survey dataset “New Zealand”

of size 213 × 276 × 426, in which different geological features exist, including

channels, faults and a salt dome, that can be potential reservoirs of oil and gas. Five

attributes have been derived from the original seismic amplitude data (Amp). Using

the six attributes, namely Amp, Seg MedFilter, Inst Amp, Inst Phase Entropy,

Semb and Semb Thick, geophysicists are able to clearly extract meaningful features

as shown in Figure 4.8.

Note that for all features, Amp provides only context and is not clamped in order

to select complete geological structures. The geophysicist starts the exploration

by scrolling through the slices in the inline direction (slices indexed by the x axis)

and finds a shallow channel complex in the Amp.
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Figure 4.8. Extracted geological features in a seismic dataset. Features extracted
from the New Zealand dataset: a shallow channel complex in red, a salt dome
shown in yellow, a deeper channel shown in purple and the largest fault in green.

In the data probing stage, a lasso around the channel complex is drawn on the

Amp attribute seen in Figure 4.9(a), and from this an HDTF is generated with the

KDE method described and fine tuned in the qualitative analysis stage as shown

in Figure 4.9(c). The main connected component as shown in Figure 4.9(b) is

extracted in the feature refinement via segmentation brushing in the 3D view.

The salt dome appears to be a distinct feature on slices in the cross line direction
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Figure 4.9. User selected samples and classified features of a seismic dataset.
Refined features shown in the middle column with the user’s selection of regions
of interest shown in the left column and the TFs shown to the right. Note that the
color of the refined features are independent of their TF colors.

(slices indexed by the y axis) and so the automated Gaussian TFs in the projection

view are utilized. By drawing a lasso around the salt dome on the Inst Amp

attribute, as shown in Figure 4.9(d), Gaussian TFs are automatically generated in

the projection view. The visualization of the isolated salt dome seen in Figure 4.9(e)

is created by enlarging the Gaussian widget (Figure 4.9(f)) that highlights the salt

dome and drawing a region-growing brush stroke on the salt dome.

Scrolling down through the time direction (slices indexed by z axis), a smaller
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channel is discovered at the bottom of the volume. The lower channel is clearly

visible in the Inst Amp and Semb attributes. Using the magic wand tool inside the

channel on the Inst Amp attribute (Figure 4.9(g)), and fine tuning the HDTF as

seen in Figure 4.9(i), the channel can be extracted. Due to its connection to the

surroundings, we use the lasso tool to manually extract only the channel as shown

in Figure 4.9(h).

Finally, when the geophysicist switches back to the inline direction, the faults

are easily recognized in the Semb Thick attribute and are partly extracted via magic

wand brushing (Figure 4.9(j)). Since the faults depend only on the Semb Thick

attribute, this attribute is fine tuned to cover the entirety of the faults (Figure 4.9(l)).

The largest fault as seen in Figure 4.9(k) is extracted via region-growing brushing

in the 3D view. In theory, previous methods that use only the value domain TF

widgets are able to extract the features. However, our collaborating geophysicists

have found that in practice, it becomes overwhelmingly laborious.

4.8 Implementation
The system is implemented in C++ with OpenGL and Qt. The magic wand

tool, conditional histogram generation, PCP creation and region-growing-based

segmentation are accelerated using GLSL shaders. Directional occlusion for

volume rendering and PCP rendering are implemented on the GPU as well. The

figtree package [69] is utilized for efficient kernel density estimation. The linear

algebra operations are aided by the Eigen library [29].



CHAPTER 5

GUIDEME: SLICE-GUIDED MULTIVARIATE

EXPLORATION OF VOLUMES

Multivariate volume visualization is important for many applications includ-

ing petroleum exploration and medicine. State-of-the-art tools allow users to

interactively explore volumes with multiple linked parameter-space views. How-

ever, interactions in the parameter space using trial-and-error may be unintuitive

and time consuming. Furthermore, switching between different views may be

distracting. We propose GuideME, a novel slice-guided semiautomatic multi-

variate volume exploration approach. Specifically, the approach comprises four

stages: attribute inspection, guided uncertainty-aware lasso creation, automated

feature extraction and optional spatial fine tuning and visualization. Throughout

the exploration process, the user does not need to interact with the parameter

views at all and examples of complex real-world data demonstrate the usefulness,

efficiency and ease-of-use of our method.

5.1 Method Overview
Our approach utilizes automated methods to replace a laborious user workflow.

A guided uncertainty aware lasso that snaps to feature boundaries is proposed to

assist region selection, automated transfer function tuning is applied to avoid

trial-and-error transfer function design and finally a 3D connected component is

automatically extracted. The result of the method is a 3D connected component

that best represents the intention of the user. As shown in Figure 5.1, our approach

comprises four conceptual stages: attribute inspection, uncertainty aware lasso

drawing, feature extraction based on automated transfer function tuning and

volume visualization with optional spatial fine tuning.
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In the following, we explain attribute inspection in this section, detail the

uncertainty aware lasso in Section 5.2, and the automated feature extraction in

Section 5.3, and briefly describe the volume rendering and spatial fine tuning in

Section 5.4.

During attribute inspection, the user inspects one attribute at a time through a

focus window on slices. The focus window serves as a ”magic lens” [3] to overlay

the chosen attribute with the contextual background. Then, the user selects one or

more attributes that can properly represent the feature boundaries. The selected

attribute(s) are then used to generate uncertainty information in terms of boundary

confidence as shown in Figure 5.2 as the color coded curves . With the uncertainty

information, the user is able to draw guided uncertainty-aware lassos that snap to

feature boundaries via a few mouse clicks as the white curves seen in Figure 5.2.

Next, the feature is extracted using an automated feature extraction approach that

minimizes false positives outside the lasso region while preserving true positives

inside, and finds the dominant 3D connected component within the lasso region.

Finally, further spatial fine tuning can be conducted in the 3D view.

5.2 Guided Uncertainty-aware Lasso
In this stage, we first extract feature boundaries using edge detection on

an anisotropic diffused image of the data slice. A boundary confidence image

describing the uncertainty can then be derived from the feature boundaries of

the selected attributes. Next, the system calculates an optimal path between user

clicks based on the uncertainty information to create a guided uncertainty-aware

lasso. The details of each component will be described in the next subsections.

5.2.1 Boundary Extraction

The feature boundaries are extracted via edge detection on an anisotropic

diffused image of current slice Ia of attribute a. We apply anisotropic diffusion [76]

to Ia to remove noise while preserving edges. The flow function g(∇Ia) shown

on the following page is used, where K is a constant that is empirically set to 30,

which gives a good diffusion stopping effect, and the partial differential equation

is numerically solved with a small number of iterations.
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Figure 5.2. The inspection window and the boundary confidence image. On an
MRI brain scan dataset, the inspection window with attribute, T1C is shown over
a tumor region with the FLAIR attribute as background. The boundary confidence
derived from T1C, is rendered overlaying the data slice with a color map shown
to the right.

g(∇Ia) = e−( ||∇Ia ||
K )2

Then, the edges in the filtered image are extracted by Canny edge detection [11],

which is simple and has good accuracy. The gradient field is first derived, and we

then compute the direction of the gradient and classify it into four cases: horizontal,

vertical and two diagonals. We remove pixels that are not maximal in the pixel’s

classified direction in the nonmaximal suppression step. Finally, we conduct the

hysteresis step via recursive edge tracing. To avoid user involvement in the setup

of the lower and upper thresholds, we compute the histogram of the gradient

magnitude and accumulate histogram bins until the sum is equal to or greater

than a certain portion Tgm of the count of voxels on the given slice and take the

gradient magnitude value of that bin as the upper threshold tup [11]. The lower
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threshold tlo is then computed by multiplying the upper threshold with a constant

kl. We adopt the settings of Tgm = 0.7 and kl = 0.4 from Matlab and find they work

well on all datasets we use.

5.2.2 Boundary Confidence Image

A boundary confidence image can be derived from the extracted boundary

images of user-chosen attributes Ās from the pop-up menu in the inspection

window to indicate the uncertainty. As an uncertainty measurement, the boundary

confidence should be in the range [0,1], which is defined by Equation 5.1.

Ib =


1, if ||∇Ia|| > tup

maxĀs
||∇Ia||−tlo

tup−tlo
, if tlo ≤ ||∇Ia|| < tup

0, otherwise

(5.1)

The boundary confidence of each attribute is computed by normalizing the gra-

dient magnitude of the extracted boundaries. The normalization uses the upper

and lower thresholds defined in the edge extraction process, and values greater

than the upper threshold are mapped to one. Pixels that are not detected as edges

are simply mapped to zero. Next, the boundary confidence value for all selected

attributes is calculated by blending individual boundary confidence using the

MAX operator, which keeps the blended value inside the range [0,1]. An equal

weight is assigned to each attribute so as to avoid having the boundary confidence

of one attribute reduce the importance of others, and to remove the requirement of

user involvement. A sequential color map scheme suggested by Color Brewer [39]

is used for the rendering of the boundary confidence image as seen in Figure 5.2.

The color map range and opacity can be interactively modified to remove or

highlight certain confidence value ranges.

5.2.3 Guided Uncertainty-aware Lasso

Given the boundary confidence image Ib with its pixels P, and two user defined

end points u and v, an uncertainty-aware lasso that snaps to feature boundaries

can be thought of as finding an optimal path that minimizes the transition energy

between each pixel as shown in Equation 5.2.
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E(I) =
∑
p∈P

Es(p) (5.2)

Es(p) = 1− ||Ib(p)|| where p ∈ P

The energy in Equation 5.2 can be efficiently optimized using Dijkstra’s algo-

rithm [20] from end point u to v.

To compute the optimal path using Dijkstra’s algorithm, we convert image Ib

into a bidirected graph where each pixel p is assigned a node and the edge from

p to its neighboring pixel pn has energy Es(pn) as weight. Thanks to the efficiency

of Dijkstra’s algorithm, the user is able to interactively set the end points u, v by

clicking on the boundary confidence image inside the inspection window to setup,

and edit the end points by a click and drag interaction.

5.3 Automated Feature Extraction
In this stage, we extract the feature based on the lasso region via an automated

feature extraction procedure. An initial transfer function is generated and tuned

using our novel automated transfer function tuning method. The resulting transfer

function gives minimum false positives outside the lasso region while preserving

true positives inside the lasso. Then, the dominant 3D connected component in

the classified volume is extracted.

5.3.1 Automated Transfer Function Tuning

The core of our feature extraction approach lies in automated transfer function

tuning. By watching the domain experts manually fine-tuning the transfer func-

tions using existing tools, we observed that they focus only on the lassoed region

and try to minimize false positives outside the lasso while preserving true positives

inside the lasso. Therefore, we mimic this procedure by formulating an optimiza-

tion problem. For a multivariate volume of M attributes, Ā = (A1,A2, . . . ,AM), we

model the M-dimensional transfer function space by conducting AND operation

between the M 1D spaces. This avoids erroneous classification caused by a

separable M-D transfer function composed of M 1D transfer functions multiplied

together as shown on page 258 in [36]. We use only binary values 0 and 1 to indicate

the selection of attribute values, and denote such a binary transfer function as f
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and its i-th 1D subspace f i. An initial transfer function can be set up, and then

optimized by maximizing a response function.

Given the lasso region, an initial transfer function, f0, can be created by

querying the attribute values of the pixels inside the lasso. We conduct the query

by a simple traversal over the slice and tested if the current pixel on the slice

falls inside the lasso. If it does, we record the pixel’s M-queried results into the

corresponding locations of the histogram array H, where H is a 1D histogram

array of M-layers, and each layer Hi is a 1D histogram associated with an attribute

Ai. Then, an initial binary transfer function f0 is generated by setting nonzero

histogram locations to one.

We formulate a response function R(Is, Ic) of two binary images: the user lasso

image Is and a connected component image Ic of the transfer function classified

image I f . Since we focus on the lasso region only, we take the dominant connected

component of the classified image inside the lasso. Specifically, we extract all

connected components in the classified image and create a histogram of tag values

inside the lasso. Then we keep only the connected component with the most

frequent tag in this histogram and discard other connected components.

As shown in Figure 5.3, the relationship between Is, Ic and I f is clearly demon-

strated. For a multivariate transfer function f , a slice of M-attribute volume with

pixels p, I f can be denoted as:

I f = {p| f (v⃗p) > 0} (5.3)

where v⃗p = (v1
p,v2

p, . . .vM
p ) is the multivariate value of pixel p. In practice, whenever

the transfer function changes, we update I f and extract the dominant connected

component to get image Ic. After defining the terms, we are able to describe the

response function.

The response function R(Is, Ic) can then be written as:

R(Is, Ic) = wr · r(Is, Ic)+ (1−wr) · s(Is, Ic)

subject to Nc ≥Nmin (5.4)

where wr ∈ [0,1]
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Figure 5.3. Illustrations of images involved in the automated transfer function
tuning process. A shows the lasso image Is where red indicates the lasso region.
The transfer function classified image I f is seen in B where the blue and green
regions are classified by the transfer function. C shows the connected component
image Ic where blue is the dominant connected component.

where r(Is, Ic) is the cross-correlation coefficient of images Is and Ic, s(Is, Ic) is a

smoothness term; wr is a tunable weight that is empirically set to 0.7 by default;

and the nonzero pixel count Nc of image Ic has to be greater or equal to Nmin, which

we empirically set to be 90% of the nonzero pixel count of the lasso image Is. The

cross-correlation coefficient is computed by treating the images as arrays of binary

pixels as seen in Equation 5.5.

r(Is, Ic) =
σIsIc

σIsσIc

=

∑N
i=1(Isi − Īs)(Ici − Īc)√∑N

i=1(Isi − Īs)2
√∑N

i=1(Ici − Īc)2
(5.5)

The smoothness term s(Is, Ic) measures the normalized differences of nonzero pixels

pc and the neighborhood pcn of Ic inside the lasso, in our case eight neighbors n, in

the classified region inside the lasso:

s(Is, Ic) = −
∑

Ps

∑
n(pc−pcn)
smax

(5.6)

where Ps are nonboundary pixels of Is and smax denotes the maximum possible

differences inside Is. Specifically, we derive smax by considering the extreme
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case that all nonzero pixels are surrounded by zero pixels, which gives smax =

8× 1
1+(4×0.25+4×0.5) ×|Ps|= 2×|Ps| as the corner pixels are shared by four neighboring

stencils and the middle pixels on each side are shared by two stencils. Maximizing

the response function R encourages higher correlation between the classified

region and the lasso, while penalizing the elimination of true positives inside

the lasso. As a result, maximizing Equation 5.4 minimizes false positives outside

the lasso while preserving true positives inside the lasso.

Since there is no direct link between the transfer function and R, Equation 5.4

is hard to optimize using methods like gradient descent or conjugate gradient.

We therefore propose the following greedy algorithm to approximately maximize

R(Is, Ic). As seen in Algorithm 5.1, we first determine the order for optimizing the

1D subspace of individual attributes of the transfer function. This step is necessary

because this ordering affects the final result. We assume that an attribute that has

higher R than others is likely to require fewer changes for optimization than others,

which is confirmed by experiments on the datasets we used. Therefore, we use

a conservative heuristic that optimizes the 1D subspaces from more contributing

ones (higher R) to less contributing ones (lower R) for the feature of interest.

The reason is two-fold: first, this heuristic may lead to minimal iterations of

optimization. Second, if we start with less contributing attributes, it is likely to

overly eliminate true positives inside the lasso and other attributes may never

have the chance to remedy such an error. We first get the binary images classified

by the initial transfer function of individual attribute f i
0 for all attributes Ā. The

response function value R is evaluated for each binary image, and then we sort

the attributes by R. Next, we select the attribute that has the highest response

Algorithm 5.1 TF Opt(Is, f0)
for Attribute Ai in all M attributes do

Generate Ii
c with f i

0
end for
Sort all attributes Ā with descending order of R(Is, Ii

c)
f = f0
for Attributes A j in sorted Ā do

ModifyTF( f j,H j)
end for
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function value, and maximize the response function R by optimizing the transfer

function’s j-th subspace.

To optimize the individual subspace of the transfer function, we propose a sim-

ple yet efficient transfer function bin dropping approach as seen in Algorithm 5.2.

In Figure 5.4, the steps of the bin dropping method are clearly illustrated on the

top.

The method starts with the computation of the mean value µ of the associated

queried histogram of the given attribute. Then, the farther end of the attribute

to µ is chosen as direction d as it is likely to contain more false positives. The

algorithm finds the optimal point that maximizes R by dropping bins from the

transfer function in the direction d, and then performs the same operations on

the other direction until converges. The effect of the automated transfer function

tuning process is shown below in the figure.

5.3.2 3D Connected Component Extraction

Transfer function does not contain any spatial information, and therefore even

an optimized transfer function may contain false positives in 3D. Therefore, the

last step of feature extraction is to apply connected component finding to extract

the intended feature in the transfer function classified volume. We first extract all

connected components in the classified volume, and then query tag values inside

the user lasso on the slice. The connected component whose tag value is most

Algorithm 5.2 ModifyTF( f i,Hi)
Compute µ of Hi
Select direction d whose bin is farther to µ
for true do

if Rn+1(Is, Ic) > Rn(Is, Ic) then
Drop bin from f i in direction d

else
if Both directions have been tried then

break
else

Switch direction d
end if

end if
end for
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(a)

(b) (c)

Figure 5.4. Illustrations of the transfer function modification process and effects
of the process. (a) shows the steps involved in transfer function modification by
bin dropping. (b) is the initial transfer function classified result (green) using the
queried values from the lasso (white) on the MRI brain scan HG11. (c) shows the
optimized transfer function classification result.

frequent is then selected. Next, the selected connected component is given a color

and opacity and other components are discarded.

5.4 Volume Rendering and Spatial Fine Tuning
Once the 3D connected component has been extracted from the automated fea-

ture extraction stage, the classified result is stored as a tag volume and visualized

using volume rendering. We adopt the directional occlusion shading method from

Schott et al. [84], which provides better depth cues than local shading models as

demonstrated by [61] and has been shown to provide more insights into seismic
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datasets [73]. To provide smooth tag volume rendering, we utilize a simplified

version of [34], which can be efficiently computed in the GPU shader.

In some cases, even the user intended connected component contains false

positives. As such, we provide the user a simple yet flexible means of spatial

fine tuning: volume-rendered image space lasso. This image space lasso allows

the user to select voxels inside the back projected volume of the volume rendered

image. Two modes are provided: the keep mode keeps voxels inside the lasso

while removing others, and the remove mode does just the opposite, which is

similar to [95].

5.5 Implementation
Our proposed method has been implemented in C++, with OpenGL and CUDA

for rendering and computation. The user interface has been implemented using Qt.

Most image processing procedures and value querying tasks, slice rendering and

volume rendering have been implemented on the GPU using GLSL shaders with

the GL EXT shader image load store extension. The rendering of lassos and texts

is accelerated with NVidia’s NV path rendering SDK [71]. Correlation coefficient

computation is implemented with thrust CUDA library [42]. Graph creation from

the slice and Dijkstra’s algorithm are implemented on the CPU. Efficient connected

component extraction is realized with CONNEXE library [66].

5.6 Examples
To demonstrate the usefulness and efficiency of our method, we apply it to

complex multivariate datasets in two disciplines: multivariate seismic data in the

petroleum industry as shown in Figure 5.5 and multimodal brain scans from the

2013 Medical Image Computing and Computer Assisted Intervention (MICCAI)

Conference challenge. To validate our method, we compare the method against

previously extracted features by domain experts for the seismic example and

hand-segmented ground truths for the MRI brain example.
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Figure 5.5. Results of the New Zealand seismic dataset. The first row shows the
upper channel in the dataset. Shown in subfigure (a) is the lasso that extracts the
feature, (b) is the result using GuideME, and (c) is the result generated by a domain
expert using [103]. To the bottom, the salt dome feature is shown. Subfigure (d)
shows the lasso region drawn for feature extraction and in (e), shows the result
using GuideME, and in (f), the result extracted by the domain expert.

5.6.1 Seismic Dataset

The seismic dataset we used is a part of the public New Zealand seismic

data. Six attributes have been computed from the original seismic amplitude:

instantaneous amplitude InstAmp, instantaneous phase InstPhase, entropy of

instantaneous phase InstPhase Entropy, horizon layers Layer Seg, semblance

Semb and thickness of semblance Semb Thick. The user starts the exploration on

slices in “inline” direction, which in our case is the slices on the “YZ” plane. A

potential channel structure draws the user’s attention, and the user zooms in and

places the inspection window over this feature of interest.

As seen in Figure 5.5(a), after inspecting different attributes, it is decided that

Inst Amp best represents the boundary of this channel structure.
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Next, the user creates an uncertainty-aware lasso by placing several anchor

points on the feature’s boundary with relatively high boundary confidence and

fine-tunes it by dragging the anchor points. The feature is then extracted as shown

in Figure 5.5(b). Compared to Figure 5.5(c), where the feature is extracted by our

collaborating geophysicists using [103], our automated method provides a similar

result, which captures the connected body and its meander details. However, the

proposed method greatly reduces the time to achieve such a result. With the same

feature lassoed, our method takes around a second as shown in Section 5.6.3 to

extract the feature, whereas pure interactive tuning takes minutes. Moreover, the

lasso drawing process is guided, which may also be faster than free-hand drawing.

Next, we would like to extract the salt dome structure found near the center of

the volume. Again, the user utilizes the inspection window to examine attributes

that emphasize this feature, and finds that in addition to the InstAmp attribute, the

InstPhase Entropy attribute best illustrates the boundary. Then, a lasso is drawn

with boundary confidence information calculated from these two attributes as

shown in Figure 5.5(d). The result as seen in Figure 5.5(e) is comparable to the one

from domain expert interactions as seen in Figure 5.5(f).

To make a quantitative comparison, we compute the dice score, i.e., twice the

number of overlapping voxels from two datasets divided by the sum of all voxels

from the two datasets, for our proposed approach against the results conducted

by the domain expert. The dice score for the upper channel is 0.84 and the score

for the salt dome is also 0.84 as shown in Table 5.1. Both cases demonstrate that

our method is able to extract features that are similar to interactively extracted

and fine-tuned features generated by domain experts, but is faster and easier.

Furthermore, the entire user interaction in our method happen on slices and the

3D view, which may be more familiar and intuitive to domain users.

5.6.2 Brain Scan

To demonstrate the generality of GuideME, brain tumor image data from

the NCI-MICCAI 2013 Challenge on Multimodal Brain Tumor Segmentation [25]

(BRaTS) were used. The data consist of multicontrast MRI scans of 30 glioma
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Table 5.1. Quantitative comparisons and timing results for the features extracted
in the example datasets. For the timings, the first numbers in the parenthesis are
the automated transfer function tuning time and the second numbers are the 3D
connected component finding time.

Dataset Size #Attr Feature Dice Timing

Seismic
x 274 7 Upper Channel 0.84 1.231s (741+490ms)
y 426 Salt Dome 0.84 1.373s (888+485ms)
z 245

MRI HG15
x 161 4 Tumor Core 0.85 0.833s (411+422ms)
y 216 Edema 0.81 0.817s (402+415ms)
z 177 Both 0.87 —

MRI HG11
x 161 4 Tumor Core 0.84 0.730s (350+380ms)
y 216 Edema 0.76 0.815s (405+410ms)
z 177 Both 0.87 —

patients with expert annotations for the tumor core and the edema as ground

truths. The datasets in the challenge all contain four channels: FLAIR, T1,

post-Gadolinium T1 (T1C) and T2. We chose high-grade subject HG15 and HG11,

as shown in Figure 5.6, for which the methods in the proceedings of the BRaTS

challenge gave good agreement with the ground truths.

We describe detailed operations to extract the tumor in HG15. Setting the

FLAIR as the context attribute, and browsing the slices on XY direction, a large

tumor region is observed. First, we extract the tumor core. Visualizing different

attributes inside the inspection window, it is apparent that the T1C attribute is the

best candidate for boundary confidence for the tumor core. A lasso is then drawn

around the tumor to extract it, and a volume-rendered image space lasso is used

to fine tune it. The extracted tumor core is seen in blue in Figure 5.6(a). Next,

we extract the edema. Checking with different attributes inside the inspection

window, the FLAIR attribute best describes the edema. Clicking along the edema

boundary, the feature is then extracted and fine-tuned using the volume rendered

image space lasso. The final classification of the edema is shown in red as seen

in the figure. To validate the result, we compare our classification against the

ground truth segmentation using the dice score. The dice score for the tumor and

the edema together is 0.87, and 0.85 for the tumor and 0.81 for the edema as seen

in Table 5.1. The result is also compared to a method [13] proposed in the BraTS
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Figure 5.6. Visualization results of multimodal brain scans using GuideME.
GuideME is applied to multimodal brain scans of four modals from the BRATS
2013 challenge. Subfigures (a) and (b) show the visualization result and the lassos
on the slice for HG15 and HG11. The extracted active tumors are rendered in
blue, the edemas in red and the context of brain tissue in green. In (c) and (d), we
compare the volume rendering of the tumor and the edema of the GuideME result
against the ground truth. In (c) we include a slice comparison against the ground
truth as well as the method proposed in [13].

challenge as seen in Figure 5.6(c), in which the method gives slightly above the

0.91 dice score for the whole tumor region, and around 0.90 for the tumor while

around 0.86 for the edema.

Similarly, we extract the tumor core and the edema for HG11 as seen in

Figure 5.6(b). A comparison can be seen in Figure 5.6(d). The resulting dice

score for the core and the edema is 0.87, while the core has a dice score of 0.84

and the edema has 0.76 as shown in Table 5.1. In comparison, the scores for the

method in [13] are just above 0.90 for the whole tumor, around 0.82 for the core

and 0.70 for the edema.

5.6.3 Performance

All the performance timings are conducted on a workstation with a single Intel

Core i5 3.30GHz CPU, 16GB of main memory and an Nvidia GeForce GTX 480 with
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1.5GB memory running 64-bit Windows 7 system. The creation of the boundary

confidence image is around 200 ms, and the update of guided uncertainty-aware

lasso typically takes below 20 ms. The timing results of features in both examples

can be found in Table 5.1. For the seismic dataset, the classification of the upper

channel takes 714 ms for 43 response function iterations, and it takes 55 iterations

(888 ms) for the salt dome. For the brain scan datasets, both subjects have the same

size and thus show similar timings. Specifically for subject HG15, the time for the

automated transfer function tuning for the tumor takes 411 ms with a total number

of 53 iterations. For the edema region, the timing is 402 ms for 49 iterations.

5.6.4 Discussion

Although we have not conducted a formal user study, our collaborating experts

from the petroleum industry found GuideME an improvement over previous tools

and provided informal comments. As in their traditional workflow, the datasets

are examined and analyzed using slices. Since our collaborators have the expertise

to identify a certain feature on slices, interactively selecting feature boundaries

is not an imposition to them. As they are familiar with free-hand drawing on

seismic slices, selecting an appropriate slice and view angle is naturally part of

their workflow. While selecting features from multiattribute slices is interactive

and thus done through trial and error, they have the expertise to identify a feature

on slices. A previous method [103] required the user to use a free-hand lasso tool

to select features of interest on slices. The free-hand lasso was cumbersome to

use. GuideME guides the user through the uncertainty-aware lasso interactions

where boundaries can be more rapidly and concisely defined by the drawing

interaction. The domain experts commented that the GuideME system is faster

and easier to use than previous tools. The experts also complained about the

trial-and-error transfer function tuning in [103]. Having the automated transfer

function tuning freed the experts from this tedious step. Given that the extracted

features are comparable to the previous method as shown in Section 5.6.1, the

domain experts found that with our proposed method, they can be more focused

on their geological interpretation tasks.
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Our approach is not without limitations. Our proposed method is not an

automated feature extraction method for multivariate volume datasets. It re-

quires the user to identify features of interest on slices and select them using

the uncertainty-aware lasso. The selection of feature boundaries is an interactive

process that requires the user’s expertise and understanding of the data. The lasso

region chosen for features is critical to the final visualization result. Furthermore,

our method extracts features that are connected in the 3D data. Our method,

therefore, would not work on datasets in where features are not distinguishable

on 2D attribute slices or where features are not connected in the 3D space. While

the user has to browse through the slices to detect features of interest and the lasso

region drawn for features is critical to the final visualization result, we argue that

this is where the expertise of the user applies, and is the main focus of our method.



CHAPTER 6

INTERACTIVE RENDERING AND EFFICIENT

QUERYING FOR LARGE MULTIVARIATE

VOLUMES ON CONSUMER LEVEL PCS

We present a volume visualization method that allows interactive rendering

and efficient querying of large multivariate seismic volume data on consumer

level PCs. The volume rendering pipeline utilizes a virtual memory structure

that supports out-of-core, multivariate, multiresolution data and a GPU-based ray

caster that allows interactive multivariate transfer function design. A Gaussian

mixture model representation is precomputed and nearly interactive querying is

achieved by testing the Gaussian functions against user-defined transfer functions

on the GPU in the runtime. Finally, the method has been tested on a multivariate

3D seismic dataset which is larger than the size of the main memory of the testing

machine.

6.1 Multivariate Out-of-Core Volume Rendering
Multivariate, multiresolution data blocks are stored in our virtual memory

structure. The associated ray caster is able to support multivariate transfer

functions (TFs), which are interactively defined by the user.

6.1.1 Virtual Memory Structure for Multivariate Volumes

We share the same virtual memory hierarchy as in the work of Hadwiger et

al., namely, in a top-down manner: page table directory, page table and block

caches. The difference is that instead of storing a single scalar volume in the block

cache, we store data of all attributes at a given block location contiguously in

the block cache. The page table entries are set to point to the beginning of the

first attribute of each block. When the volume renderer makes paging requests,
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the virtual memory system updates all attribute blocks of the requested block

location. Also, we store our multiresolution blocks in a block file for each attribute

to avoid the block building process from 2D tiles that intersect with the viewport.

During initialization, our system fills the block cache by simply fetching blocks

from the block cache files and sets flags in the page table and page table directory

accordingly.

6.1.2 Multivariate Transfer Functions

Multivariate TFs are supported in our method, and to reduce the computational

complexity, we separate the n-dimensional value space formed by n attributes into

n− 1 2D space. The user designs the transfer function interactively on a parallel

coordinate plot (PCP) based editor as shown in Figure 6.1.

We define a so called visibility TF, comprised by the n− 1 2D space, which

determines the visibility of voxels and also defines an appearance TF of 1D, which

controls the visual appearance of the visible voxels. The user defines the multi-

variate visibility TF by manipulating TF widgets on the parallel coordinate axes

and designs the appearance TF by clicking on a desired axis and editing in a 1D

TF editor to set color and opacity. Alternatively, the visibility TF can be modified

in a 2D TF editor for a chosen pair of attributes for a more refined result.

In the TF sampling function of the GPU ray caster, we first determine the

visibility of a voxel based on current visibility TF using an ID map, which stores

Figure 6.1. Transfer functions for the channel system of a large seismic dataset.
The TFs classifying the channel system in Figure 6.2. The visibilisty TF is shown
to the left where the blue PCP indicates the query result with the user-defined
TF widget, while the appearance TF to the right sets a gray-level color map for the
amplitude attribute.
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the coverage of all user-defined visibility TFs by bitwise OR. If any attribute value of

current voxel falls outside the coverage of current visibility TF, the voxel is skipped.

Otherwise, the visible voxel is rendered with the user-designed appearance TF.

6.2 Efficient Multivariate Query
To allow efficient data query on the noisy seismic datasets, we propose a

two-stage approach that utilizes the Gaussian Mixture Model (GMM) to compactly

approximate the multidimensional distribution of data. The method first com-

putes GMM for each block in a precomputation stage and then tests ellipse-polygon

intersection in runtime to query data values for voxels selected by user-defined

TFs. The per-block GMM is required to compute only once for a dataset and the

runtime querying achieves near interactive performance.

6.2.1 Per-block Gaussian Mixture Model Computation

Assuming the datasets follow Gaussian distribution, we are able to describe

the distribution using GMM, which is very compact in terms of storage. GMMs

are computed using the well-known expectation maximization algorithm, and we

precompute GMMs for each block at its finest resolution only once. In the same

fashion as our TF space, as described in Section 6.1.2, we compute GMMs in the

n−1 2D space. The computation is performed using the CUDA thrust library and

the result is written to a file that records the mean value and covariance matrix

for each Gaussian distribution for each block. We empirically choose the number

of Gaussians to be three as it strikes a balance between the closeness of GMM

approximation of the original distribution and the compactness of storage.

6.2.2 Runtime Ellipse-Polygon Intersection Test

During visualization, the system queries data values for user-defined TFs on

the GPU with the GMM information stored as a texture. For any given pair of

attributes, each Gaussian distribution is a 2D ellipse and each user-defined TF is a

2D polygon. We are able to conduct the query using ellipse-polygon intersection

detection, i.e., if any part of the ellipse intersects with the TF polygon in any

2D subspace of the n− 1 2D TF space, all values in the distribution are selected.
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The ellipse-polygon intersection is hard in the original space, and we compute a

circle-triangle intersection in a transformed space. It is known that the ellipse can

be transformed from a circle using matrix Σ1/2, which is the square root matrix of

matrix Σ, which holds the eigenvectors of the ellipse. Therefore, the ellipse can be

transformed back to a circle using the inverse matrix Σ−1/2. The 2D polygon can

be triangulated, and the triangles that form the polygon can also be transformed

usingΣ1/2 into the circle’s space, and then a much easier circle-triangle intersection

test can be performed. Consequently, the query result is rendered using PCP by

transforming the data values inside the Gaussian blobs to lines in the PCP.

6.3 Result
The proposed approach has been tested on a machine with Nvidia GTX480

with 1.5GB memory and a single Intel Core i5 processor with 16GB memory. Due

to the restriction of usage of the datasets provided by our collaborators, we created

a test dataset by repeating a small 100MB public domain seismic dataset with its

five derived attributes three times in the x and y axes and four times in the z axis.

The total size of the dataset is then 21.6GB, and we achieved frame rates from 2 FPS

to 25 FPS with different settings of transfer functions on a frame buffer of 800×800.

The querying time varies from 30 ms to 4 s, which is positively correlated with the

number of voxels that passed runtime testing. As shown in Figure 6.2, a channel

system and a salt dome structure have been classified using the multivariate TFs.

The channel system is colored using an appearance TF with a gray-level color map

on the seismic amplitude attribute, and the salt dome structure is colored with a

red-to-blue color map on the thickness attribute.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have described our progress on the research of multivari-

ate transfer function design. In summary, our contributions are the improvement

of the classification ability of transfer functions, intuitive workflows for multi-

variate volume exploration based on multivariate transfer function design, and

interactive out-of-core rendering of large multivariate volumes. The improvement

of classification ability of transfer functions is achieved using transfer function com-

binations. Transfer function combinations use existing transfer function spaces,

specifically, the scalar/gradient magnitude transfer function space, the statistical

transfer function space, the occlusion transfer function space and the size-based

transfer function space. Combinations that have better specificity than the element

transfer functions are selected to create a new high-dimensional transfer function

space. A moderate amount of precomputation that has been accelerated using

GPUs and separable convolution filters allows subsequent interactive design and

manipulation of the combined multivariate transfer functions via an intuitive

transfer function editor.

A novel multivariate volume exploration workflow has been proposed for more

intuitive user interaction with refined feature extraction results. The workflow is

designed to facilitate domain users with multivariate transfer function design.

Initial transfer function setup is achieved by generating multivariate transfer

functions from user-selected samples lassoed directly on slice-based panel views.

Transfer functions are then fine-tuned using linked parameter space widgets,

including parallel coordinate plots and histograms. The extracted features can

be further edited directly on the 2D or 3D view.

GuideME, a slice-guided semiautomatic multivariate volume exploration method,
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is a further improvement on the workflow of multivariate volume exploration. In

GuideME, the user explores the volume on slices, inspects different attributes

via an inspection window and draws guided uncertainty-aware lassos on feature

of interest, and then the features are extracted through an automated feature

extraction approach whose core is a multivariate transfer function optimization

method. More specifically, a boundary confidence measurement that is derived

from edge detection provides the user with hints and the uncertainty of feature

boundaries. A guided uncertainty-aware lasso that snaps to the feature boundary

facilitates region selection. An automated feature extraction method minimizes

false positives outside the lasso while preserving true positives inside the lasso.

Our experiments have shown that GuideME gives comparable results to those

generated by previous methods and expert segmentations, but is more efficient

and easier in terms of interaction.

A GPU-based out-of-core method has been proposed to support interactive

rendering and efficient query of large multivariate seismic volumes on consumer

level PCs. Virtual memory hierarchy is utilized for the realization of interactive

rendering. The efficient query is achieved by conducting ellipse/polygon interSec-

tions for precomputed Gaussian mixture models of the multivariate data blocks.

The method allows the user to efficiently explore large volumes using parameter

space multivariate transfer function editors.

All these works share the same research focus: multivariate transfer function

design for complex univariate or multivariate datasets. We have demonstrated

the usefulness and efficiency of the proposed methods through highly complex

real-world datasets, including CT chest scan, MR brain scans and seismic data.

Moreover, we have gain positive feedback from our collaborating geophysicists.

They find the proposed methods, especially the novel multivariate volume explo-

ration workflows, merit the exploration of complex multivariate seismic data.

Further research on multivariate transfer function design can happen in many

ways at different levels. The transfer function combinations are selected using

the rules described in Section 3.1.2, and it would be interesting to see robust

methods to automatically choose the best transfer function combinations. In
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order to improve the classification over a specific region, metric volumes used

for further classification steps may be computed locally from the regions already

classified instead of being precomputed globally. We would like to investigate

how to provide the user more guidance during the volume exploration process

by bringing in advanced image processing and machine learning techniques. We

might then be able to automatically select an appropriate slice that captures useful

features, and furthermore, the features would be automatically highlighted for the

user. Time varying datasets are another topic of interest. By exploiting temporal

coherence between time steps of simulations or scans, it is possible to automatically

propagate and modify already defined multivariate transfer functions. Ultimately,

our goal is to develop an interactive, flexible, scalable and intuitive visual analytic

environment. Domain users should be able to conduct both qualitative and

quantitative analysis on very large and complex volume datasets that have one

or more time steps. The visual analytic environment should allow users to focus

purely on utilizing their domain knowledge, whereas the laborious or unintuitive

procedures, e.g., transfer function design should be conducted automatically by

the computer.
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Information-based transfer functions for multimodal visualization. In
VCBM (Oct. 2008), W. N. C.P Botha, G. Kindlmann and B. Preim, Eds.,
Eurographics Association, pp. 101–108.

[38] Haidacher, M., Patel, D., Bruckner, S., Kanitsar, A., and Groller, M.
Volume visualization based on statistical transfer-function spaces. In Pacific
Visualization Symposium (PacificVis), 2010 IEEE (March 2010), pp. 17–24.

[39] Harrower, M., and Brewer, C. A. Colorbrewer.org: An online tool for
selecting colour schemes for maps. Cartographic Journal 40, 1 (Jun 2003),
27–37.

[40] Hartigan, J. A., andWong, M. A. Algorithm as 136: A k-means clustering
algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics)
28, 1 (1979), pp. 100–108.

[41] Heinrich, J., andWeiskopf, D. Continuous parallel coordinates. IEEE Trans-
actions on Visualization and Computer Graphics 15, 6 (Nov 2009), 1531–1538.

[42] Hoberock, J., and Bell, N. Thrust: A C++ template library of parallel
algorithms. http://thrust.github.io/.
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