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Fig. 1. Interactive level-set segmentation of a brain tumor from a 256 ×
256 × 198 MRI with volume rendering to give context to the segmented
surface. A clipping plane shows the user the source data, the volume rendering,
and the segmentation simultaneously. The segmentation and volume rendering
parameters are set by the user probing data values on the clipping plane.

Abstract— Deformable isosurfaces, implemented with level-set
methods, have demonstrated a great potential in visualization and
computer graphics for applications such as segmentation, surface
processing, and physically-based modeling. Their usefulness has
been limited, however, by their high computational cost and
reliance on significant parameter tuning. This paper presents
a solution to these challenges by describing graphics processor
(GPU) based algorithms for solving and visualizing level-set
solutions at interactive rates. The proposed solution is based on
a new, streaming implementation of the narrow-band algorithm.
The new algorithm packs the level-set isosurface data into
2D texture memory via a multi-dimensional virtual memory
system. As the level-set moves, this texture-based representation
is dynamically updated via a novel GPU-to-CPU message passing
scheme. By integrating the level-set solver with a real-time volume
renderer, a user can visualize and intuitively steer the level-set
surface as it evolves. We demonstrate the capabilities of this
technology for interactive volume segmentation and visualization.
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I. INTRODUCTION

Level-set methods [1] rely on partial differential equations
(PDEs) to model deforming isosurfaces. These methods have
applications in a wide range of fields such as visualization, sci-
entific computing, computer graphics, and computer vision [2],
[3]. Applications in visualization include volume segmenta-
tion [4], surface processing [5], and surface reconstruction [6].

The use of level sets in visualization can be problematic.
Level sets are relatively slow to compute and they typically
introduce several free parameters that control the surface
deformation and the quality of the results. Setting these free
parameters can be difficult because, in many scenarios, a
user must wait minutes or hours to observe the results of a
parameter change. Although efforts have been made to take
advantage of the sparse nature of the computation, the most
highly optimized solvers are still far from interactive. This
paper proposes a solution to the above problems by mapping
the level-set PDE solver to a commodity graphics processor.

While the proposed technology has a wide range of uses
within visualization and elsewhere, this paper focuses on a
particular application: the analysis and visualization of volume
data. By accelerating the PDE solver to interactive rates and
coupling it to a real-time volume renderer, it is possible to
visualize and steer the computation of a level-set surface as it
moves toward interesting regions within a volume. The volume
renderer provides visual context for the evolving level set due
to the global nature of the transfer function’s opacity and color
assignment. Also, the results of a level-set segmentation can
specify a region-of-interest for the volume renderer [7].

The main contributions of this paper are:

• An integrated system demonstrating that level-set compu-
tations can be intuitively controlled by coupling a real-
time volume renderer with an interactive solver

• A GPU-based 3D level-set solver that is approximately
15 times faster than previous optimized solutions

• A multi-dimensional virtual memory scheme for GPU
texture memory that supports computation on time-
dependent, sparse data

• Real-time volume rendering directly from a packed, 2D
texture format. The technique also enables volume ren-
dering from a data set represented as a single set of 2D
slices.

• A message passing scheme between the GPU and CPU
that uses automatic mipmap generation to create compact,
encoded messages

• Efficient computation of a volumetric distance transform
on the GPU
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II. BACKGROUND AND RELATED WORK

A. Level Sets

This paper describes a new solver for an implicit repre-
sentation of deformable surface models called the method
of level sets [1]. The use of level sets has been widely
documented in the visualization literature, and several works
give comprehensive reviews of the method and the associated
numerical techniques [2], [3]. Here we merely review the
notation and describe the particular formulation that is relevant
to this paper.

An implicit model represents a surface as the set of points
S = {x̄|φ(x̄) = 0}, where φ : R

3 �→ R. Level-set methods
relate the motion of that surface to a PDE on the volume, i.e.

∂φ/∂t = −∇φ · v̄, (1)

where v̄ describes the motion of the surface. Note that v̄
can vary in both space and time. Within this framework one
can implement a wide range of deformations by defining an
appropriate v̄. This velocity term is often a combination of
several other terms, including data-dependent terms, geometric
terms (e.g. curvature), and others. In many applications, these
velocities introduce free parameters, and the proper tuning
of those parameters is critical to making the level-set model
behave in a desirable manner. Equation (1) is the general form
of the level-set equation, which can be tuned for wide variety
of problems and which motivates the architecture of our solver.

The proposed solver addresses the issues surrounding the
solutions of (1). For this paper, however, we restrict the
discussion on the particular form of this equation that is
suitable for the segmentation application described in Sect. VI-
A. This special case of (1) occurs when v̄ = G(x̄, t̄)n̄, where
n̄ is the surface normal and G is a scalar field, which we refer
to as the speed of the level set. In this case (1) becomes

∂φ/∂t = −|∇φ|G. (2)

Equation (2) describes a surface motion in the direction of the
surface normal, and thus the volume enclosed by the surface
expands or contracts, depending on the sign and magnitude of
G.

Another important special case occurs when G, in (2), is the
mean curvature of the level-set surface. The mean curvature
of the level sets of φ are expressed as

H =
1
2
∇ · ∇φ

|∇φ| . (3)

In volume segmentation and surface reconstruction this mean
curvature term is typically combined with an application-
specific data term in order to obtain a smooth result that
reflects interesting properties in the data.

There is a special case of (1) in which the surface mo-
tion is strictly inward or outward. In such cases the PDE
can be solved somewhat efficiently using the fast marching
method [3] and variations thereof [8]. However, this case
covers only a very small subset of interesting speed functions.
In general, we are concerned with solutions that allow the
model to expand and contract as well as include a curvature
term.
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Fig. 2. The three fundamental steps in a sparse-grid solver. Step 1 initializes
the sparse computational domain. Step 2 executes the computational kernel
on each element in the domain. Step 3 updates the domain if necessary. Steps
2 and 3 are repeated for each solver iteration.

Efficient algorithms for solving the more general equation
rely on the observation that at any one time step the only
parts of the solution that are important are those adjacent
to the moving surface (near points where φ = 0). This
observation places level-set solvers as part of a larger class
of solvers that efficiently operate on time-dependent, sparse
computational domains—i.e. a subset of the original problem
domain (Figure 2).

Two of the most common CPU-based level-set solver tech-
niques are the narrow-band [9] and sparse-field [6], [10]
methods. Both approaches limit the computation to a narrow
region near the isosurface yet store the complete computational
domain in memory. The narrow-band approach implements the
initialization and update steps in Figure 2 (Steps 1 and 3) by
updating the embedding, φ, on a band of 10-20 pixels around
the model, using a signed distance transform implemented with
the fast marching method [3]. The band is reinitialized when-
ever the model (defined as a particular level set) approaches
the edge. In contrast, the sparse-field method only traverses the
complete domain during the initialization step of the algorithm
in Figure 2. The sparse-field approach keeps a linked list of
active data elements. The list is incrementally updated via a
distance transform after each iteration. Even with this very
narrow band of computation, update rates using conventional
processors on typical resolutions (e.g. 2563 voxels) are not
interactive. This is the motivation behind our GPU-based
solver. Although the new solver borrows ideas from both
the narrow-band and sparse-field algorithms, it implements a
new solution that conforms to the architectural restrictions of
GPUs.

B. Scientific Computation on Graphics Processors

Graphics processing units have been developed primarily
for the computer gaming industry, but over the last several
years researchers have come to recognize them as a low cost,
high performance computing platform. Two important trends
in GPU development, increased programmability and higher
precision arithmetic processing, have helped to foster new non-
gaming applications.

For many data-parallel computations, graphics processors
out-perform central processing units (CPUs) by more than an
order of magnitude because of their streaming architecture [11]
and dedicated high-speed memory. In the streaming model of
computation, arrays of input data are processed identically by
the same computation kernel to produce output data streams.
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In contrast to vector architectures, the computation kernel
in a streaming architecture may consist of many (possibly
thousands) of instructions and use temporary registers to hold
intermediate values. The GPU takes advantage of the data-
level parallelism inherent in the streaming model by having
many identical processing units execute the computation in
parallel.

Currently GPUs must be programmed via graphics APIs
such as OpenGL or DirectX. Therefore all computations must
be cast in terms of computer graphics primitives such as
vertices, textures, texture coordinates, etc. Figure 3 depicts the
computation pipeline of a typical GPU. Vertices and texture
coordinates are first processed by the vertex processor. The
rasterizer then interpolates across the primitives defined by
the vertices and generates fragments (i.e. pixels). The fragment
processor applies textures and/or performs computations that
determine the final pixel value. A render pass is a set of data
passing completely through this pipeline. It can also be thought
of as the complete processing of a stream by a given kernel
(i.e. a ForEach call).

Grid-based computations are solved by first transferring
the initial data into texture memory. The GPU performs the
computation by rendering graphics primitives that access this
texture. In the simplest case, a computation is performed on all
elements of a 2D texture by drawing a quadrilateral that covers
the same number of grid points (pixels) as the texture. Memory
addresses that identify each fragment’s data value as well as
the location of its neighbors are given as texture coordinates.
A fragment program (the kernel) then uses these addresses
to read data from texture memory, perform the computation,
and write the result back to texture memory. A 3D grid
is processed as a sequence of 2D slices. This computation
model has been used by a number of researchers to map
a wide variety of computationally demanding problems to
GPUs. Examples include matrix multiplication, finite element
methods, multi-grid solvers, and others [12]–[14]. All of these
examples demonstrate a homogeneous sequence of operations
over a densely populated grid structure.

Strzodka et al. [15] were the first to show that the level-
set equations could be solved using a graphics processor.
Their solver implements the two-dimensional level-set method
using a time-invariant speed function for flood-fill-like image
segmentation, without the associated curvature. Lefohn and
Whitaker demonstrate a full three dimensional level-set solver,
with curvature, running on a graphics processor [16]. Neither
of these approaches, however, take advantage of the sparse
nature of level-set PDEs and therefore they perform only
marginally better (e.g. twice as fast) than sparse or narrow
band CPU implementations.

This paper presents a GPU computational model that sup-
ports time-dependent, sparse grid problems. These problems
are difficult to solve efficiently with GPUs for two reasons. The
first is that in order to take advantage of the GPU’s parallelism,
the streams being processed must be large, contiguous blocks
of data, and thus grid points near the level-set surface model
must be packed into a small number of textures. The second
difficulty is that the level set moves with each time step,
and thus the packed representation must readily adapt to the
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Fig. 3. The modern graphics processor pipeline.

changing position of the model. This requirement is in contrast
to the recent sparse matrix solvers [17], [18] and previous
work on rendering with compressed data [19], [20]. Recent
work by Sherbondy et al. [21] describes an alternative time-
dependent, sparse GPU computation model which is discussed
in Section VI-C.

C. Hardware-Accelerated Volume Rendering

Volume rendering is a flexible and efficient technique for
creating images from 3D data [22]–[24]. With the advent of
dedicated hardware for rasterization and texturing, interactive
volume rendering has become one of the most widely used
techniques for visualizing moderately sized 3D rectilinear
data [25], [26]. In recent years, graphics hardware has become
more programmable, permitting rendering features with an
image quality that rival sophisticated software techniques [27],
[28]. In this paper, we describe a novel volume rendering
system that leverages programmable graphics hardware to
render the packed level-set solution data.

III. A VIRTUAL MEMORY ADDRESS SCHEME FOR SPARSE

COMPUTATION

The limited computational capabilities of modern GPUs,
their data-parallel streaming architecture, and our goal of
interactive performance impose some important design re-
strictions on the proposed solver. For instance, the data-
parallel computation model requires homogeneous operations
on the entire computational domain, and memory constraints
require us to process and store only the active domain on the
computational processor (i.e. the GPU). Furthermore, GPUs do
not support scatter write operations, and the communication
bandwidth between the GPU and CPU is insufficient to allow
transmission of any significant portion of the computational
domain. Our new streaming, narrow-band level-set solver
works efficiently within these restrictions and leverages GPU
capabilities by packing the active computational domain into
2D texture memory. The GPU solves the 3D, level-set PDE
directly on this packed format and quickly updates the packed
representation after each solver iteration.

Re-mapping the computational domain (a subset of a vol-
ume) to take advantage of the GPU’s capabilities has the unfor-
tunate effect of making the computational kernels extremely
complicated—that is difficult to design, debug, and modify.
The kernel programmer must take the physical memory layout
into consideration each time the kernel addresses memory.
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Other researchers have successfully re-mapped computational
domains to efficiently leverage the GPU’s capabilities [12],
[17], [18], [29], but they invariably describe these complex
kernels in terms of the physical memory layout. This section
presents a solution to this problem for level-set computation
that allows kernels to access memory as if it were stored in the
original, 3D domain—irrespective of the 2D physical layout
used on the GPU. Our solution is an extension to the virtual
memory systems used in modern operating systems.

A. Traditional Virtual Memory Overview

Nearly all modern operating systems contain a virtual
memory system [30]. The purpose of virtual memory is to give
the programmer the illusion that the application has access
to a contiguous memory address space, while allowing the
operating system to allocate memory for each process on
demand, in manageable increments, from whatever physical
resources happen to be available. Note that there are two
meanings of virtual memory. The first is the mapping from a
logical address space to a physical address space. The second
is the mechanism for mapping logical memory onto a physical
memory hierarchy (e.g. main memory, disk, etc). For this
discussion, virtual memory only refers to the former definition.

Virtual memory works by adding a level of indirection
between physical memory and the memory accessed by an
application. Most conventional virtual memory systems divide
physical and virtual memory into equally sized pages. The
data addressed by an application’s contiguous virtual address
space will often be stored in many, disconnected physical
memory pages. A page table tracks the mapping from virtual
to physical memory pages. When an application requests
memory, the system allocates physical memory pages and
updates the page table. Note that the virtual and physical pages
are identically sized.

When an application accesses memory via a virtual address,
the system must first perform a virtual-to-physical address
translation. The virtual address, VA, is first converted to a
virtual page number, VPN. The system uses the page table to
convert the VPN to a physical page address, PPA. The PPA is
the physical address of the first element in a page. Finally, the
memory system obtains the physical address, PA, by adding
the PPA to the offset, OFF. The OFF is the linear distance
between the virtual address and the beginning of the virtual
page which contains it. The address computation is

VPN ← VA
S[P]

PPA ← PageTable(VPN)
OFF ← mod(VA,S[P])
PA ← PPA + OFF,

(4)

where S[P] is the size of a memory page.

B. Multi-Dimensional Virtual Memory for GPUs

The virtual memory system used in our solver is a multi-
dimensional extension of the traditional virtual memory sys-
tem described in Section III-A.

Traditional virtual memory systems use one-dimensional
virtual and physical address spaces. Our system uses a 3D
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Fig. 4. The multi-dimensional virtual and physical memory spaces used
in our virtual memory system. The original problem space is V, the virtual
address space. The virtual page space, VP, is a subdivided version of V.
Virtual memory pages are mapped to the physical page space, GP, by the
page table. The inverse page table maps physical pages in GP to virtual
pages in VP. The collection of all elements in GP constitute G, the physical
memory of the hardware.

virtual and a 2D physical memory address space. We use a
3D virtual memory space because the level-set computation is
inherently volumetric. The 2D physical memory address space
is motivated by the fact that GPUs are optimized to process
2D memory regions. By using a 2D physical address space,
we are able to process the entire active volumetric domain
simultaneously. This maximizes the benefit of the parallel,
SIMD architecture of the GPU. We also make the simplifying
assumption that virtual and physical pages are identical in
dimension and size. Thus, the virtual space is not partitioned
equally in all axes: 2D pages must be stacked in 3D to populate
the problem domain as seen in Figure 4. Our system uses
pages of size S[P] = (16, 16). This size represents a good
compromise between a tight fit to the narrow computational
domain and the overhead of managing and computing pages.
Empirical results validate this choice.

We now introduce notation for the various address spaces
in our system. We notate the space of K-length vectors of
integers as Z

K . The set of all voxels in the 3D virtual address
space (i.e. the problem domain) is defined as V ⊂ Z

3. Each
of the virtual memory pages is a set of contiguous voxels in
V; the space of all virtual pages is VP (Figure 4). Similarly,
the physical address space, G ⊂ Z

2, is subdivided into pages
to form the physical page space, GP. The elements within
a virtual or physical page are addressed identically using
elements of P ⊂ Z

2. We also define a size operator for the 2D
and 3D spaces described above. For X in {V,VP,G,GP,P},
we define S[X] to be a 2-vector or 3-vector (according to
the dimension of X) giving the number of elements along
each axis of the space X . Note that S[VP] = S[V]/S[P] and
S[GP] = S[G]/S[P] (using component-wise division).

Virtual-to-physical address translation in a multi-
dimensional virtual memory system works analogously
to the 1D algorithm. Virtual addresses are now 3D position
vectors in V and physical addresses are 2D vectors in G.
The page table is a 3D table that returns 2D physical page
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Fig. 5. The virtual-to-physical address translation scheme in our multi-
dimensional virtual memory system. A 3D virtual address, VA, is first
translated to a virtual page number, VPN. A page table translates the VPN
to a physical page address, PPA. The PPA specifies the origin of the physical
page containing the physical address, PA. The offset is then computed based
on the virtual address and used to obtain the final 2D physical address, PA.

addresses. With these multi-dimensional definitions in mind,
Eq (4) still applies to the vector-valued quantities. Figure 5
shows an example multi-dimensional address translation.

For the level-set solver in this paper, the multi-dimensional
virtual memory system is implemented in part by the CPU and
in part by the GPU. The CPU manages the page table, handles
memory allocation/deallocation requests, and translates VPNs
to PPAs. The GPU issues memory allocation/deallocation re-
quests and computes physical addresses. We further divide the
GPU tasks between the various processors on the GPU. The
fragment processor creates memory allocation/deallocation re-
quests. The address translation implementation uses the vertex
processor and rasterizer to compute all PAs. Sections III-C
and III-D describe the architectural and efficiency reasons
for assigning the various virtual memory tasks to specific
processors.

C. Virtual-to-Physical Address Translation

This section explains the details of the virtual-to-physical
address scheme used in our GPU-based virtual memory sys-
tem. Because the translation algorithm is executed each time
the kernel accesses memory, its optimization is fundamental
to the success of our method.

The simplest and most general way to implement the
virtual-to-physical address translation for a GPU-based virtual
memory system is to directly implement the computation in
(4) and store the page table on the GPU as a 3D texture. A
significant benefit of this approach is that it is completely gen-
eral. Unfortunately, without dedicated memory-management
hardware to accelerate the translation, this scheme suffers from
several efficiency problems. First, the page table lookup means
that a dependent texture read is required for each memory
access. A dependent texture is defined as using the result
of one texture lookup to index into another. This may cause
a significant loss in performance on current GPUs. Second,
storing the page table on the GPU consumes limited texture
memory. The third problem is that a divide, modulus, and
addition operation are required for each memory access. This
consumes costly and limited fragment program instructions.
Note that Section III-D discusses other problems with storing
the page table on the GPU related to the limited capabilities
of current GPU architectures.
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Fig. 6. The substream boundary cases used to statically resolve the
conditionals arising from 3 × 3 × 3 neighbor accesses across memory page
boundaries. The nine substream cases are: interior, left edge, right edge, top
edge, bottom edge, lower-left corner, lower-right corner, upper-right corner,
and upper-left corner (a). The interior case accesses its neighbors from only
three memory pages (b). The edge cases require six pages (c), and the corner
cases require twelve memory pages (d). Note that for reasonably large page
sizes, the more cache-friendly interior case has by far the highest number of
data elements.

We can avoid the memory and computational inefficien-
cies that arise from storing the page table on the GPU by
examining the pattern of virtual addresses required by the
application’s fragment program. In the case of our level-set
solver, the fragment programs only use virtual addresses within
a 3 × 3 × 3 neighborhood of each active data element. This
means that each active memory page will only access adjacent
virtual memory pages (Figure 6). Moreover, we show that this
simplified translation case makes it possible to lift the entire
address translation from the fragment processor to the vertex
processor and rasterizer.

Once we resolve the virtual addresses used by a fragment
program, we can determine which virtual pages each active
page will access. With this relative page information, the
GPU can perform the virtual-to-physical address translation
without a page table in texture memory. The CPU makes this
possible by sending the PPAs for all required pages to the
GPU as texture coordinates. The GPU can then use the relative
neighbor offset vectors to decide which adjacent page contains
the requested value (see Figure 6(a)).

The GPU’s task of deciding which adjacent page contains
a specific neighbor value unfortunately requires a significant
amount of conditional logic. This logic must classify each
data element into one of nine boundary cases: one of the four
corners, one of the four edges, or an interior element (see
Figure 6). Unfortunately current fragment processors do not
support conditional execution. This logic could alternatively
be encoded into a texture; however, this would again force
the use of an expensive dependent texture read. Just as
statically resolving virtual addresses allowed us to optimize
the GPU computation, all active data elements can be pre-
classified into the nine boundary cases. The result is that all
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memory addresses used in each case will lie on the same
pages relative to each active page (see Figure 6). In other
words, the memory-page-locating logic has been statically
resolved by pre-classifying data elements into their respective
boundary cases. The data elements for these substream cases
are generated by drawing unique geometry for each case. The
corner substream cases are represented as points, the edges as
lines, and the interior regions as quadrilaterals.

Kapasi et al. [31] describe an efficient solution to con-
ditional execution in streaming architectures. Their solution
is to route stream elements to different processing elements
based on the code branch. Substreams are merely a static
implementation of this data routing solution to conditional
execution. The advantage is that the computation kernel run on
each substream contains no conditional logic and is optimized
specifically for that case. Our solution additionally gains from
optimized cache behavior for the most common, interior, case
(77% of the data points in a 16 × 16 page). The interior
data elements require only three memory pages to access all
neighbors (Figure 6(b)). In comparison, reading all neighbors
for an edge element requires loading six pages (Figure 6(c)).
The corner cases require twelve pages from disparate regions
of physical memory(Figure 6(d)). The corner cases account
for less than 2% of the active data elements.

With the use of substreams, the GPU can additionally
optimize the address computation by computing physical ad-
dresses with the vertex processor rather than the fragment
processor. Because all data elements (i.e. fragments) use
exactly the same relative memory addresses, the offset and
physical address computation steps of (4) can be generated by
interpolating between substream vertex locations. The vertex
processor and rasterizer can thus perform the entire address
translation. This optimization distributes computational load
to under-utilized processing units and reduces the number of
limited and expensive fragment instructions.

D. Bootstrapping the Virtual Memory System

This section describes the steps required to initialize the
GPU virtual memory system. To begin, the application speci-
fies the page size, S[P], the virtual page space size, S[VP], and
the fundamental data type to use (i.e. 32-bit floating point, 16-
bit fixed point, etc.). The virtual memory system then allocates
an initial physical memory buffer on the GPU. It also creates
a page table, an inverse page table, a geometry engine, and
a stack of free pages on the CPU. The decision to place the
aforementioned data structures on the CPU is based on the
efficiency concerns described in Section III-C as well as GPU
architectural restrictions. These restrictions include: the GPU’s
lack of random write access to memory, lack of writable 3D
textures, lack of dynamically sized output buffers, and limited
GPU memory.

The page table is defined to store a MemoryPage object
that contains the vertices and texture coordinates required by
the GPU to access the physical memory page. The inverse page
table is designed to store a VPN vector for each active physical
page. Figure 5 shows these mappings. Note that the page table
and inverse page table were referred to as the unpacked map
and packed map respectively in Lefohn et al. [32].

The vertices and texture coordinates stored in the
MemoryPage object are actually pointers into the geometry
engine. The geometry engine has the capability of quickly
rendering (i.e. processing) any portion of the physical mem-
ory domain. Thus the geometry engine must generate the
substreams for the set of active physical pages. The last
initialization step is the creation of the free-page stack. The
virtual memory system simply pushes all physical pages (i.e.
pointers to MemoryPage objects) defined by the geometry
engine onto a stack.

The application issues GPU physical memory allocation
and deallocation requests to the virtual memory system. Upon
receiving a virtual page request, the system pops a physical
page from the free-page stack, updates the page tables, and
returns a MemoryPage pointer to the application. The reverse
process occurs when the application deallocates a virtual
memory page.

The level-set solver generates memory page allocation and
deallocation requests after each solver iteration based on the
form of the current solution. Section IV-D describes how
the solver uses the GPU to efficiently create these memory
requests.

IV. SPARSE GPU LEVEL-SET SOLVER

This section now explains our GPU level-set solver im-
plementation using the virtual memory system and level-set
equations presented in Section III and Section II-A. Note that
the details of the level-set discretization are found in Lefohn
et al. [33].

A. Initialization of Computational Domain

The solver begins by initializing the sparse computational
domain (Step 1 in Figure 2). An initial level-set volume
is passed to the level-set solver by the host application.
The sparse domain initialization involves identifying active
memory pages in the input volume, allocating GPU memory
for each active page, then sending the initial data to the GPU.

The solver identifies active virtual pages by checking each
data element for a non-zero derivative value in any of the six
cardinal directions. If any element in a page contains non-
zero derivatives, the entire page is activated. The initialization
code then requests a GPU memory page from the virtual
memory system for each active page. The level-set data is
then drawn into GPU memory using the vertex locations in
each MemoryPage object.

This scheme is effective only because the input level-set
volume is assumed to be a clamped distance transform–
meaning that regions on or near the isosurface have non-
zero gradients while regions outside or inside the surface
have gradients of zero. The outside voxels have a value of
zero (black) and the inside ones have a value of one (white).
Section IV-B explains how the distance transform embedding
is maintained throughout the level-set computation.

The inactive virtual pages do not need to be represented in
physical memory. If an active data element queries an inactive
value, however, an appropriate value needs to be returned.
Because all inactive regions are either uniformly black or
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Fig. 7. The level-set solver’s use of the paged virtual memory system. All
active pages (i.e. those that contain non-zero derivatives) in the virtual page
space (a) are mapped to unique pages of physical memory (b). The inactive
virtual pages are mapped to the static inside or outside physical page. Note
that the only data stored on the GPU is that represented by (b).

white, we solve this boundary condition problem by defining
a special, inactive page state. A virtual page in this state is
mapped to one of two static physical pages. One of these
static pages is black, representing regions outside of the level-
set surface. The other static page is white and represents
regions inside the level-set surface. The page table contains
these many-to-one mappings, but the inverse page table does
not store a valid entry for the static pages. Note that we could
have alternatively solved this boundary problem using single
pixels instead of entire pages. We also could have solved the
problem by creating substreams for the active elements on the
boundary of the active set.

B. Distance Transform on the GPU

In order to take advantage of the sparse nature of level-
set solutions, algorithms must maintain a somewhat consistent
level-set density, which is defined as the number of level sets
per unit volume. If the level-set density becomes too low
(spread out) it can become difficult to efficiently isolate the
computation to the desired interface. Alternatively, a level-
set density that becomes too high (close together) can cause
aliasing and numerical problems. The most common way
of maintaining a desired level-set density is to keep the
embedding, φ, resembling a distance transform [6], [9], [34].

The new streaming level-set solver maintains the distance
transform by introducing an additional speed term, Gr, to the
level-set PDE (1) that controls the surface motion. This speed
term pushes the level sets of φ, either closer together or farther
apart, so that they resemble a clamped distance transform
(CDT). The CDT has a constant level-set density within a
predefined band and ensures that voxels near the isosurface
have finite derivatives while those farther away have gradient
magnitudes of zero. As described in Sections IV-A and IV-
D, the identification of zero-derivative regions is critical for
an efficient solver implementation. This rescaling speed term,
Gr, is computed as

Gr = φgφ − φ|∇φ|, (5)

where gφ is the target gradient magnitude within the compu-
tational domain, and |∇φ| is the gradient magnitude in the
direction of the level-set model isosurface. The target param-
eter, gφ, can be set based on the numerical precision of the

level-set data. By setting gφ sufficiently high, numerical errors
caused by underflow can easily be avoided. It is important to
note that Gr is strictly a numerical construct; it does not affect
the movement of the zero level set, i.e. the surface model. Also
note that the solver can be used to compute only the distance
transform (i.e. no surface movement) by setting gφ to one and
making Gr the only speed term.

C. Level-Set Computation

The GPU next performs the level-set computation (Step
2 of the sparse algorithm in Figure 2). The details of the
level-set discretization used by our solver are given in Lefohn
et al. [33]. This section gives a high-level overview of the
computation. The level-set update proceeds in the following
steps:

A. Compute 1st and 2nd partial derivatives.
B. Compute N level-set speed terms.
C. Update level-set PDE.

The derivative computation in Step A above uses the
substream-based, virtual-to-physical address scheme described
in Section III-C. The derivatives are computed in nine sub-
stream render passes, each of which outputs to the same four,
4-tuple buffers. The speed function computations in Step B
are application-dependent. Example speed terms include the
curvature computation described in (3), the rescaling term
described in (5), and the thresholding term described in (7).
There will be zero or more render passes for each speed
function. The level-set update (Step C) is the up-wind scheme
described in Lefohn et al. [33]. This is computed in a single
pass. Note that additional GPU memory must be allocated
to store the intermediate results accumulated in Steps A and
B before they are consumed in Step C. Our solver performs
register allocation of temporary buffers to minimize GPU
memory usage.

D. Update of Computational Domain

After each level-set update, the solver determines which
virtual pages need to be added-to or removed-from the active
domain. The solver accomplishes this by aggregating gradient
information from all elements in each active page. In our
solver, the GPU must compute this information because the
level-set solution exists only in physical memory. The active
set must be updated by the CPU, however, because the page
table and geometry engine exist in CPU main memory. In
addition, the amount of information passed from the GPU to
the CPU must be kept to a minimum because of the limited
bandwidth between the two processors. This section gives an
overview of an algorithm that works within these constraints.
Lefohn et al. [33] explains the full details of the algorithm.

The GPU creates a memory allocation/deallocation request
by producing a small image (of size S[GP]) with a single-byte
pixel per physical page. The value of each pixel is a bit code
that encapsulates the activation or deactivation state of each
page and its six adjacent neighbors (in VP). The CPU reads
this small (< 64kB) message, decodes it, and submits the
allocation/deallocation requests to the virtual memory system
(Figure 8).



TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2004 9

�� � � � 	 
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

 � ! � 
 � ! � � � � � � � � � � � �
� � � � � % 	 � ' � 
 � � � � � 	 � � �) + -

. /
)0

1 2 4
51 2 4

Fig. 8. The GPU’s creation of a memory allocation/deallocation request.
Step A uses solver-specific data to create two buffers containing the active
state of each data element and its adjacent neighbors. Step B uses automatic
mipmapping to reduce the buffers from size S[G] to the physical page space
size, S[GP]. Step C combines the information from the two down-sampled
state buffers into an eight-bit code for each pixel. This code encapsulates
whether or not each active virtual memory page and its adjacent neighbors
should be enabled. In step D, the CPU reads the bit-code buffer, decodes it,
and allocates/deallocates pages as requested.

The GPU creates the bit-code image by first computing two,
four-component neighbor information buffers of size S[G]
(Step A of Figure 8). This computation uses the previously-
computed, one-sided derivatives of φ to identify the required
active pages. A page must be activated if it contains elements
with non-zero gradient magnitudes. The automatic mipmap-
ping GPU feature is then used to down-sample the resulting
buffers (i.e. aggregate data samples) to the page-space image
(Step B in Figure 8). The final GPU operation combines the
active page information into the bit code (Step C in Figure 8).
A fragment program performs this step by emulating a bit-
wise OR operation via conditional addition of powers of two.
Finally, in step D of Figure 8, the CPU reads this message
from the GPU.

Note that the use of automatic mipmapping places some
restrictions on the maximum memory page size due to quan-
tization rounding errors that arise when down-sampling 8-bit
values. This limitation can be relaxed by using a 16-bit fixed-
point data type. Alternatively, floating-point values can be used
if the down-sampling is performed with fragment program
passes instead of automatic mipmapping.

E. GPU Implementation Details

The level-set solver and volume renderer are implemented
in programmable graphics hardware using vertex and frag-
ment programs on the ATI Radeon 9800 GPU. The pro-
grams are written in the OpenGL ARB vertex program and
ARB fragment program assembly languages.

There are several details related to render pass output buffers
that are critical to the performance of the level-set solver. First
is the ability to output multiple, high-precision 4-tuple results
from a fragment program. Writing sixteen scalar outputs from
a single render pass enables us to perform the expensive 3D
neighborhood reconstruction only once and use the gathered
data to compute the derivatives in a single pass. Second, we
avoid the expensive change between render targets [35] (i.e.
pixel buffers) by allocating a single pixel buffer with many
render surfaces (front, back, aux0, etc.) and using each surface
as a separate output buffer.

Lastly, there is a subtle speed-versus-memory trade-off that
must be carefully considered. Because the physical-memory
texture can be as large as 20482, storing intermediate results
(e.g. derivatives, speed values, etc.) during the computation
can require a large amount of GPU memory. This memory
requirement can be minimized by performing the level-set
computation in sub-regions. The intermediate buffers must
then be only the size of the sub-region. This partitioning
does reduce computational efficiency, however, and so the sub-
regions are made as large as possible. We currently use 5122

sub-regions when the level-set texture is 20482 and use a single
region when it is smaller.

V. VOLUME RENDERING OF PACKED DATA

The direct visualization of the level-set evolution is impor-
tant for a variety of level-set applications. For instance, in
the context of segmentation, direct visualization allows a user
to immediately assess the quality and accuracy of the pending
segmentation and steer the evolution toward the desired result.
Volume rendering is a natural choice for visualizing the level-
set surface model, because it does not require an intermediate
geometric extraction, which would severely limit interactivity.
If one were to use marching cubes, for instance, a distinct
triangle mesh would need to be created (and rendered) for each
iteration of the level-set solver. The proposed solver, therefore,
includes a volume renderer, which produces a full 3D (transfer-
function based) volume rendering of the evolving level set on
the GPU [28].

For rendering the evolving level-set model, we use a variant
of traditional 2D texture based volume rendering [25]. We
modify the conventional approach to render the level-set
solution directly from the packed physical memory layout,
which is physically stored in a single 2D texture. Because the
level-set data and physical page configuration are dynamic, it
would be inefficient to pre-compute and store three separate
versions of the data, sliced along cardinal views, as is typically
done with 2D texture approaches. Instead we reconstruct these
views each time the volume is rendered. This new technique
is thus both applicable to rendering compressed data as well
as traditional texture-based volume rendering from a single set
of 2D slices.

The volume rendering algorithm utilizes a two pass ap-
proach for reconstruction and rendering. Figure 9 illustrates
the steps involved. An additional off-screen buffer caches
two reconstructed neighboring slices containing the level-set
solution and its gradient (Figure 9 A). During the rendering
phase arbitrary slices along the preferred slice direction are
interpolated from these neighboring slices (Figure 9 B). Once
all interpolated slices between slice i and i−1 are rendered and
composited, the next slice (i+1) is reconstructed. This newly
reconstructed slice replaces the cached slice, i − 1. The GPU
then renders and composites the next set of interpolated slices
(i.e. those between slice i + 1 and i). This pattern continues
until all slices have been reconstructed and rendered.

When the preferred slice axis, based on the viewing angle, is
orthogonal to the virtual memory page layout, we reconstruct
2D slices of the level-set solution and its gradient using a
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Fig. 9. Two pass rendering of packed volume data. In step A, a 2D slice (i)
is reconstructed from the physical page (packed) layout, GP. In step B, one or
more intermediate slices between i and i−1 are interpolated, transformed into
optical properties (via the transfer function), lit, and rendered for the current
view. The next iteration begins by reconstructing slice i + 1, replacing i− 1,
and so on.
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Level Set Data

Fig. 10. Reconstruction of a slice for volume rendering the packed level-set
model: (a) When the preferred slicing direction is orthogonal to the virtual
memory page layout, the pages (shown in alternating colors) are draw into a
pixel buffer as quadrilaterals. (b) For slicing directions parallel to the virtual
page layout, the pages are drawn onto a pixel buffer as either vertical or
horizontal lines.

textured quadrilateral for each page, as shown in Fig. 10 A.
On the other hand, if the preferred slice direction is parallel
to the virtual page layout, we render a row or column from
each page using textured line primitives, as in Fig. 10 B. In
both cases, slices are reconstructed into a pixel buffer which
is bound as a texture in the rendering pass. These slices are
reconstructed at the same resolution as level-set solution.

In the rendering phase, we leverage the hardware’s bilinear
filtering for in-plane interpolation of the reconstructed level-set
slice. Trilinear interpolation of an arbitrary slice between two
adjacent reconstructed slices is accomplished by combining
them, i.e. performing linear interpolation along the preferred
slice direction, in the fragment program. This same fragment
program also evaluates the transfer function and lighting
for the interpolated data. For efficiency, we also reuse data
wherever possible. For instance, lighting for the level-set
surface, evaluated in the rendering phase, uses gradient vectors
computed during the level-set update stage.

VI. APPLICATION AND RESULTS

This section describes an application for interactive volume
segmentation and visualization, which uses the level-set solver
and volume renderer described previously. We show pictures
from the system and present timing results relative to our

current benchmark for level-set deformations, which is a
highly optimized CPU solution [36].

A. Volume Segmentation With Level-Sets

For segmenting volume data with level sets, the speed
functions usually consists of a combination of two terms [4],
[37]

∂φ

∂t
= |∇φ|

[
αD(x̄) + (1 − α)∇ · ∇φ

|∇φ|
]

, (6)

where D is a data term that forces the model to expand or
contract toward desirable features in the input data (which
we also call the source data), the term ∇ · (∇φ/|∇φ|) is the
mean curvature H of the surface, which forces the surface
to have less area (and remain smooth), and α ∈ [0, 1] is a
free parameter that controls the degree of smoothness in the
solution.

This combination of a data-fitting speed function with the
curvature term is critical to the application of level sets to
volume segmentation. Most level-set data terms D from the
segmentation literature are equivalent to well-known algo-
rithms such as isosurfaces, flood fill, or edge detection when
used without the smoothing term (i.e. α = 1). The smoothing
term alleviates the effects of noise and small imperfections
in the data, and can prevent the model from leaking into
unwanted areas. Thus, the level-set surface models provide
several capabilities that complement volume rendering: local,
user-defined control; smooth surface normals for better ren-
dering of noisy data; and a closed surface model, which can
be used in subsequent processing or for quantitative shape
analysis.

For the work in this paper we have chosen a simple speed
function to demonstrate the effectiveness of interactivity and
real-time visualization in level-set solvers. The speed function
we use in this work depends solely on the greyscale value
input data I at the point x̄:

D(I) = ε − |I − T |, (7)

where T controls the brightness of the region to be segmented
and ε controls the range of greyscale values around T that
could be considered inside the object. In this way a model
situated on voxels with greyscale values in the interval T ± ε
will expand to enclose that voxel, whereas a model situated on
greyscale values outside that interval will contract to exclude
that voxel. The speed term is gradual, as shown in Fig. 11,
and thus the effects of D diminish as the model approaches
the boundaries of regions with greyscale levels within the
T ± ε range. This makes the effects of the curvature term
relatively larger. This choice of D corresponds to a simple,
one-dimensional statistical classifier on the volume intensity
[38].

To control the model a user specifies three free parameters,
T , ε, and α, as well as an initialization. The user generally
draws a spherical initialization inside the region to be seg-
mented. Note that the user can alternatively initialize the solver
with a pre-processed (thresholded, flood filled, etc.) version of
the source data.
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Fig. 11. A speed function based on image intensity causes the model to
expand over regions with greyscale values within the specified (positive) range
and contract otherwise.

Fig. 12. A depiction of the user interface for the volume analysis application.
Users interact via slice views, a 3D rendering, and a control panel.

B. Interface and Usage

The application in this paper consists of a graphical user in-
terface that presents the user with two slice viewing windows,
a volume renderer, and a control panel. (Fig. 12). Many of
the controls are duplicated throughout the windows to allow
the user to interact with the data and solver through these
various views. Two and three dimensional representations of
the level-set surface are displayed in real time as it evolves.

The first 2D window displays the current segmentation as a
yellow line overlaid on top of the source data. The second 2D
window displays a visualization of the level-set speed function
that clearly delineates the positive and negative regions. The
first window can be probed with the mouse to accomplish three
tasks: set the level-set speed function, set the volume rendering
transfer function, and draw 3D spherical initializations for
the level-set solver. The first two tasks are accomplished by
accumulating an average and variance for values probed with
the cursor. In the case of the speed function, the T is set to
the average and ε is set to the standard deviation. Users can
modify these values, via the GUI, while the level set deforms.
The spherical drawing tool is used to initialize and/or edit
the level-set surface. The user can add-to or subtract-from the
model by drawing white or black spheres, respectively. This
feature gives the user “3D paint” and “3D eraser” tools with
which to interactively edit the level-set solution.

The volume renderer displays a 3D reconstruction of the
current level set isosurface (see Section V) as well as the input
data. In addition, an arbitrary clipping plane, with texture-
mapped source data, can be enabled via the GUI (Figure 1).
Just as in the slice viewer, the speed function, transfer function,
and level-set initialization can be set through probing on this
clipping plane. The crossing of the level-set isosurface with
the clipping plane is also shown in bright yellow.

The volume renderer uses a 2D transfer function to render

Fig. 13. (top) Volume rendering of a 2563 MRI scan of a mouse thorax.
Note the level-set surface which is deformed to segment the liver. (bottom)
Volume rendering of the vasculature inside the liver using the same transfer
function as in (top) with the level-set surface is being used as a region-of-
interest specifier.

the level set surface and a 3D transfer function to render the
source data. The level-set transfer function axes are intensity
and distance from the clipping plane (if enabled). The transfer
function for rendering the original data is based on the source
data value, gradient magnitude, and the level-set data value.
The latter is included so that the level set model can function
as a region-of-interest specifier. All of the transfer functions
are evaluated on-the-fly in fragment programs rather than in
lookup tables. This approach permits the use of arbitrarily high
dimensional transfer functions, allows run-time flexibility, and
reduces memory requirements [39].

We demonstrate our interactive level-set solver and volume
rendering system with the following three data sets: a brain
tumor MRI (Fig. 1), an MRI scan of a mouse (Fig. 13)
and transmission electron tomography data of a gap junction
(Fig. 14). In all of these examples a user interactively controls
the level-set surface evolution and volume rendering via the
multi-view interface. The initializations for the tumor and
mouse were drawn via the user interface. The initialization
for Figure 14 was seeded with a thresholded version of the
source data.

C. Performance Analysis

Our GPU-based level-set solver achieves a speedup of ten
to fifteen times over a highly-optimized, sparse-field, CPU-
based implementation [36]. All benchmarks were run on an
Intel Xeon 1.7 GHz processor with 1 GB of RAM and an
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Fig. 14. Segmentation and volume rendering of 512 × 512 × 61 3D trans-
mission electron tomography data. The picture shows cytoskeletal membrane
extensions and connexins (pink surfaces extracted with the level-set models)
near the gap junction between two cells (volume rendered in cyan).

ATI Radeon 9800 Pro GPU. All timings include the complete
computation, i.e. both the virtual memory system update and
the level-set computation are included. For a 256× 256× 175
volume, the level-set solver runs at rates varying from 70 steps
per second for the tumor segmentation (Fig. 1) to 3.5 steps per
second for the final stages of the cortex segmentation from
the same data set. In contrast, the CPU-based, sparse field
implementation ran at 7 steps per second for the tumor and
0.25 steps per second for the cortex segmentation.

The speed of our solver is bound almost entirely by the
fragment stage of the GPU. In addition, the speed of our
solver scales linearly with the number of active voxels in
the computation. Creation of the bit vector message consumes
approximately 15% of the GPU arithmetic and texture instruc-
tions, but for most applications the speedup over a dense GPU-
based implementation far eclipses this additional overhead.

The amount of texture memory required for the level-set
computation is proportional to the surface area of the level-set
surface—i.e. the number of active pages. Our tests have shown
that for many applications, only 10%-30% of the volume is
active. To take full advantage of this savings, the total size
of physical memory, S[G], must increase when the number of
allocated pages grows beyond the physical memory’s capacity.
Our current implementation performs only static allocation
of the maximum physical memory space, but future versions
could easily realize the above memory savings. Section VII
discusses changes to GPU display drivers that will facilitate
the implementation of this feature.

In comparison to the depth-culling-based sparse volume
computation presented by Sherbondy et al. [21], our pack-
ing scheme guarantees that very few wasted fragments are
generated by the rasterization stage. This is especially im-
portant for sparse computations on large volumes—where the
rasterization and culling of unused fragments could consume
a significant portion of the execution time. In addition, the
packing strategy allows us to process the entire active data
set simultaneously, rather than slice-by-slice. This improves
the computationally efficiency by taking advantage of the
GPU’s deep pipelines and parallel execution. Our algorithm

should also be able to process larger volumes, due to the
memory savings discussed above. Our algorithm, however,
does incur overhead associated with maintaining the packed
tiles, and more experimentation is necessary to understand the
circumstances under which each approach is advantageous.
Furthermore, they are not mutually exclusive, and Sect. VII
discusses the possibility of using depth culling in combination
with our packed representation.

As with any sparse algorithm, it will be advantageous to
simply compute the entire (original) domain if the active do-
main becomes sufficiently large. Our experience with segmen-
tation thus far, however, has shown that the the computation
remains sufficiently sparse even for large structures such as
a cerebral cortex segmentation. The sparseness is due to the
fact that only the surface needs to represented, and the interior
regions need not be represented or computed.

VII. CONCLUSIONS AND FUTURE WORK

This papers demonstrates a new tool for interactive volume
exploration and analysis that combines the quantitative capa-
bilities of deformable isosurfaces with the qualitative power
of volume rendering. By relying on graphics hardware, the
level-set solver operates at interactive rates (approximately
15 times faster than previous solutions). This mapping relies
on an efficient multi-dimensional virtual memory system to
implement a time-dependent, sparse computation scheme. The
memory mappings are updated via a novel GPU-to-CPU
message passing algorithm. The GPU renders the level-set
surface model directly from a sparse, compressed texture
format. Future extensions and applications of the level-set
solver include the processing of multivariate data as well as
surface reconstruction and surface processing. Most of these
only involve changing only the speed functions.

There are a couple ways in which the memory and compu-
tational efficiency of our solver can be improved. First, it may
be worth achieving an even narrower band of computation
around the level-set model. This is possible by using depth
culling to avoid computation on inactive elements within each
active page [21]. Implementing this depth culling requires a
memory model in which an arbitrary number of data buffers
can access a single depth buffer. The second optimization is to
allow the total amount of physical memory to change at run
time and grow to the limits of GPU memory. This requires
spreading physical memory across multiple 2D textures (i.e.
creating a 3D physical memory space). The proposed super
buffer [40] OpenGL extension supports both of these proposed
optimizations.

The GPU virtual memory abstraction also indicate promis-
ing future research. We are currently beginning work on
a more general virtual memory implementation that fully
abstracts N -dimensional GPU memory. The goal is to provide
an API that allows a GPU application programmer to specify
an optimal physical and virtual memory layout for their prob-
lem, then write the computational kernels irrespective of the
physical layout. The kernels will specify memory accesses via
abstract memory access interfaces, and an operating-system-
like layer will replace these memory access calls with the
appropriate address translation code.
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APPENDIX A: DISCRETIZATION OF LEVEL-SET EQUATIONS

This appendix describes the discretization of equation 1 and
the curvature computation 3. We discretize equation 1 using
the up-wind scheme [1] and compute the curvature of the level-
set surface using the difference of normals method [41].

We begin by describing the finite difference derivatives re-
quired for the level-set update and curvature computation. The
neighborhood, u, from which these derivatives are computed
is specified with the numbering scheme

6 7 8
3 4 5
0 1 2

. (8)

Note that u4 denotes the center pixel, and u±z
i represents the

ith sample on the slice above or below the current one. The
derivatives of the level-set embedding, φ, are then defined as

Dx = (u5 − u3)/2
Dy = (u7 − u1)/2
Dz = (u+z

4 − u−z
4 )/2

D+
x = u5 − u4

D+
y = u7 − u4

D+
z = u+z

4 − u4

D−
x = u4 − u3

D−
y = u4 − u1

D−
z = u4 − u−z

4

D+y
x = (u8 − u6)/2

D−y
x = (u2 − u0)/2

D+z
x = (u+z

5 − u+z
3 )/2

D−z
x = (u−z

5 − u−z
3 )/2

D+x
y = (u8 − u2)/2

D−x
y = (u6 − u0)/2

D+z
y = (u+z

7 − u+z
1 )/2

D−z
y = (u−z

7 − u−z
1 )/2

D+x
z = (u+z

5 − u−z
5 )/2

D−x
z = (u+z

3 − u−z
3 )/2

D+y
z = (u+z

7 − u−z
7 )/2

D−y
z = (u+z

1 − u−z
1 )/2.

(9)
Curvature is then computed using the above derivatives. The

two normals, n+ and n−, are computed by
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respectively. The components of the divergence from equa-
tion 3 are then computed as

∂nx

∂x
= n+

x − n−
x , (12)

∂ny

∂y
= n+

y − n−
y , (13)

and
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z , (14)

Finally, we estimate H with
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1
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). (15)

The upwind approximation to ∇φ is then computed using
D+
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y , D+
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x , D−

y , and D−
z . To begin,
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is computed followed by
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The final choice of ∇φ is defined by

∇φ =
{ ‖∇φmax‖2 if F > 0

‖∇φmin‖2 otherwise
, (18)

where F is the linear combination of all speed functions (e.g.
mean curvature, the rescaling term Gr, etc). Section VI-A de-
scribes the speed terms used in our segmentation application.

The last step in the upwind scheme computes φ(t+�t) by

φ(t + �t) = φ(t) + �tF |∇φ|. (19)
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APPENDIX B: GPU MEMORY ALLOCATION REQUEST

GENERATION

This appendix describes the details of the GPU memory al-
location/deallocation request scheme used by the GPU virtual
memory system. The algorithm is described first in terms of
an abstract client solver. Section IV and the B subsection of
this appendix describe the client-specific details.

A. General Allocation Request Algorithm

The allocation request algorithm consists of the following
steps (see the corresponding steps in Figure 8):

A. GPU computes VPN of requested active pages.
B,C. GPU compresses active-page request.
D. CPU processes memory request.

1. Reads compressed request image from GPU.
2. Decodes memory allocation/deallocation requests.
3. Releases newly deactivated pages.
4. Allocates/initializes newly activated pages.

Steps A, B, and C create the set of requested ac-
tive virtual pages. This set serves as the memory alloca-
tion/deallocation request to the CPU. The CPU then calls the
client’s ReleasePage function for each newly deallocated
page before deallocating the page. Similarly, the CPU calls
the client’s InitNewPage function for each newly activated
page.

In Step A, the GPU uses client-specific data to create two
RGBA (i.e. 4-tuple) buffers that hold eight true or false (e.g.
255 or 0) values for each active data element (Figure 8). The
first six values represent whether or not the virtual page in
each of the six cardinal directions should be active for the
next pass. The seventh value indicates if the active page itself
should be active, and the eighth value is free to be used by the
client. This eight-dimensional, active-page information vector,
J, is thus J = (+x,−x,+y,−y,+z,−z, self , clientSpecific),
where the first six elements refer to relative neighbor offsets
in the virtual page space, VP.

The eight-value code, J, is computed in eight substream
passes followed by a single standard (i.e. entire memory
page) pass. The substream passes compute whether the in-
plane adjacent memory pages need to be active (i.e. the
edge-adjacent pages (+x,−x,+y,−y)). Each substream pass
computes a client-specified function, IsNeighborActive,
across the page boundary orthogonal to the page edge being
rendered and writes the boolean result to the correspond-
ing output component of J. The second computation calls
IsNeighborActive for the pages above and below the
active one. Note, however, that because the neighboring pages
are face-adjacent, this computation is performed at all data
elements in the page instead of just the edges. The computation
also writes a true value to the J component representing the
active page itself if the client’s IsSelfActive function
returns true. The value of the eighth bit is filled by the result
of the client’s IsEighthBitTrue function.

Steps B and C of the allocation-request algorithm com-
press the two, J buffers into a small (≤ 64kB) active-page
message. This compressed message serves as the memory
allocation/deallocation request that is sent to the CPU. The

compression is accomplished by rendering a quadrilateral of
size S[GP] with the automatic mipmapping option enabled on
the neighbor-information buffers (Step B). The render pass
also uses a fragment program designed to create a bit code at
each pixel value (Step C). Each pixel in the resulting small
image corresponds to a physical memory page. The value of
each pixel contains an eight-bit code of the same form as
the eight-value code produced in step A (i.e. the J vector).
This eight-bit code completely determines if the memory page
and/or any of its six cardinal neighbors in virtual page space
are to be active on the next pass.

The automatic mipmapping performs a box-filter averaging
of the values written in Step A. The result is that if any data
element in the memory page set a value to true in Step A, the
down-sampled value will also be true. The fragment program
inspects these down-sampled values. It sets the corresponding
bit in the output value to true for each non-zero input. The
bits are set via an emulated bitwise OR operation. Current
fragment processors do not support bitwise operations, but an
OR is emulated by conditionally adding power-of-two values
to the output value.

In Step D.1, the CPU reads the bit-code message from the
GPU. Step D.2 begins by the CPU wrapping the message
buffer with a bit-vector accessor. The resulting bit vector
is a linear representation of the physical page space, GP,
where each byte represents the information for a page. Two
auxiliary bit-vectors are allocated–each a bit-addressed, linear
representation of the virtual memory page space, VP. The first
is the newActiveSet bit vector, and the second is the client-
specific eighthBitSet bit vector. After the allocation mes-
sage is decoded, a true bit in the newActiveSet bit vector
will denote an active virtual page.

In the next stage of Step D.2, the CPU decodes the bit-vector
message. For each 8-bit sequence, the current linear index
is converted to a physical page number (PPN). The inverse
page table then converts the PPN to a VPN. Because each
bit in the bit-code message represents an offset direction from
the current virtual page, the decoder can easily reconstruct
the VPN for each neighbor of each active page. The decoder
then reads the seven spatial page bits. It then computes the
VPN for the page represented by each true bit and sets the
corresponding bit in the newActiveSet bit vector to true.
If the eighth bit is true, the eighthBitSet is set to true for
the corresponding virtual page.

The virtual memory system next determines which virtual
memory pages to deallocate and which to allocate (Steps D.3
and D.4). The set of newly deactivated pages is constructed by
performing a set-subtraction of the newActiveSet from the
oldActiveSet. The set of pages that need to be allocated
for the next pass is created by computing the opposite set dif-
ference. Each deallocated memory page is pushed onto a stack
of free memory pages. The page table are updated based on
the client’s implementation of ReleasePage function. Each
newly activated page is mapped to a physical memory location
by popping a page from the free page stack. The physical
page is mapped in the page tables and the geometry engine
is appropriately updated. The new physical memory is then
initialized via the client’s InitNewPage implementation.
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B. Level-Set Solver Implementation Details

For Step A of the update algorithm described in Section IV-
D and the preceding subsection, the level-set solver defines the
functions IsNeighborActive and IsSelfActive. The
IsNeighborActive reads the previously computed, one-
side derivative that crosses a page boundary onto a specific
neighbor. The function returns true if the derivative is non-
zero. The IsSelfActive function returns true if any of the
six, cardinal, one-sided derivatives are non-zero. The level-
set solver simply writes the value of the level-set embedding
to the eighth data value. This is used to determine if a
newly deactivated page is inside or outside of the level-
set surface. The IsEigthBitTrue function used by the
fragment program in Step B returns true if the eighth data
value is greater than zero. If a page becomes inactive, it is
guaranteed to be either all black or all white. The down-
sampled level-set embedding for the page will thus be either
pure black or pure white.

The eighthBitSet used in the bit-code message decod-
ing stage (Step D.2) is used to determine if a newly deactivated
memory page is inside or outside the level-set surface. If the
bit for the page is true, then the page is inside the surface.
Otherwise it is outside. This information is used by the solver’s
ReleasePage function to map deactivated pages to the
correct static physical page (white or black). As described
in Section IV-A, these static mappings ensure that derivatives
across boundaries of the active domain are correct.

The solver’s InitNewPage function initializes newly al-
located physical memory. The memory is initialized to either
white or black depending on the inside/outside setting in the
page table entry. Note that no level-set data is transferred to
accomplish the update. The entire level-set solution resides
only on the GPU for the duration of the computation. Our
current implementation also has to send pre-computed speed
pages to the GPU when new pages are added. This could be
optimized for many speed functions, however, by computing
the function on the GPU.


