Visualization of Summary Statistics and Uncertainty

Kristin Potter,
Joe Kniss, Richard Riesenfeld,
and Chris R. Johnson

Scientific Computing and Imaging Institute
University of Utah

EuroVis
June 9, 2010
Data & Uncertainty

• Larger, more complex datasets common
• Error, accuracy, confidence level
• Scientific data are incomplete without indications of *uncertainty*
Uncertainty Visualization

- Visually depict uncertainties
- Faithfully present data
- Improve visualization as a decision making tool
- Often displayed as mean & standard deviation (variance)
Mean & Variance is Not Enough

- Standard deviation only gives a measure of data variation
- Mean may not be a valid data value
Traditional Display

- Boxplots
 - Show range of data
 - Quartile range, including median
 - Outliers
Boxplot Modifications - 1

• Visual Modifications
 - Refinement for aesthetic purposes

Boxplot Modifications - 2

• Density indications
 - Use the box sides to encode density information

★ Yoav Benjamini.
 Opening the box of a boxplot.

★ W. Esty and J. Banfield.
 The box-percentile pot.
 JSS, 8(17), 2003.

๏ J. Hintze, and R. Nelson.
 Violin plots.
 TAS, 52(2), 1998.
Boxplot Modifications - 3

- Data Characteristics
 - sample size, confidence levels

• Additional Statistics
 - skew, modality

The Summary Plot

- Augment boxplot with numerous display techniques
- Emphasize characteristics other than mean/variance
- Indicate quantity & location of uncertainty
Anatomy

Quartile Plot

Density Plot

Summary Plot

Moment Plot

Distribution Fitting

SCI INSTITUT
Abbreviated Box Plot

- Visual reduction of the box plot
- Minimize density assumptions
- Outliers not removed
Moment Plot

- Statistical measures of feature characteristics
- Signature similar to boxplot
- Can express features hidden by boxplot (e.g. asymmetry)
Density Plot

- Redundantly encode density through colormap and width
- Symmetric display on either side of plot
- Type of estimator influences display

Kernel Density Estimation
Emmanuel Parzen.
On estimation of a probability density function and mode.
1962.
Distribution Fitting

- Fit to canonical distributions from a library
- Find a best fit
- Or fit to a chosen distribution
2D Box Plots

- Data with correlation relationships
- 2D+ statistics not trivial
RangeFinder Plot

- 1D boxplot in each dimension
- independent in each dimension

Variations on 2D boxplots - 2

2D Box Plot

- robust line through data
- partition data into 3, find median of outer partitions

Bag plot

- half space depth
- spatial equivalent to quartile statistics

2D Summary Plot

- Statistics similar to summary plot
- Highlight correlations
Joint Histogram

- Joint Histogram
- Mean & standard deviation of each 1D boxplot
Covariance & Skew Variance

Covariance
- relational variation
- warp ellipse based on covariance matrix

Skew variance
- highlight asymmetries
- arrows scaled by skew variance
Multiple 2D Plots

- Show trends in data
- Covariance and skew variance glyphs distinguish between plots
- 1D summary plots on each side for orientation
User Interface

• User controlled visualization results
• Visual clutter reduction
• Combine the best plots for specific application
Using the Summary Plots

Short-Range Ensemble Forecasts (SREF)

- Domain across North America
- Forecast weather variables out to 87 hrs
- 4 models using various perturbation schemes (21 members)

Variance Based Clusters

Mean

Standard Deviation

Cluster Locations
Summary Plots on Clusters

Temperature at 2M above ground, 03/03/2009, Valid Hour 27
Conclusion

• Interactively explore data distributions
• Highlight salient features

Future Work

• More sophisticated statistics
• Higher spatial dimension
• Parameter investigations

Coming Soon!! R Package (June 2010)
http://www.sci.utah.edu/~kpotter/software/kpplots/
(available now, but very very alpha)
Thanks!

This work was funded in part by

- DOE SciDAC Visualization and Analytics Center for Enabling Technologies (www.vacet.org),
- NIH NCRR Grant No. 5P41RR012553-10
- and KAUST (KUS-C1-016-04)