Uncertainty and Parameter Space Analysis in Visualization | Oct 15, 2012 http://tinyurl.com/8hwtzzr

STATISTICAL UNCERTAINTY From Quantification to Visualization

Kristi Potter Scientific Computing and Imaging Institute University of Utah

VisWeek 2012 Tutorial

Statistical Uncertainties

random fluctuations of measurement

Sources of Uncertainty

Parameter Uncertainty

- influence of model parameters
- (exact, correct, best) values unknown
- cannot be controlled by experiment

Model Inadequacy

- aka model bias, model discrepancy
- model is an approximation
- lack of knowledge of the underlying problem
- accuracy discrepancy of the model to reality

Algorithmic Uncertainty

- aka numerical uncertainty
- numerical errors, approximations
- translation of mathematical model to the computer

Experimental Uncertainty

- aka observational error
- variability of experimental measurements
- non-determinism

INTERPOLATION UNCERTAINTY

- lack of available data
- interpolate/extrapolate for desired response
- choice of interpolation method

Categories

Epistemic Uncertainty

- aka systematic uncertainty
- things we could in principle know but don't in practice
- i.e. insufficient measurement or modeling, missing data

REDUCIBLE: can be alleviated by better models, more accurate measurement

Categories

Aleatoric Uncertainty

- aka **statistical** uncertainty
- unknowns that differ on each run
- i.e. throwing dice

Irreducible: cannot be eliminated through improvements in models or measurements

Quantification

reduce epistemic uncertainties to aleatoric get to a relatively straightforward quantification

use statistics for quantification

Statistical Uncertainties

common representations for visualization

Probability Distribution Functions (PDFs)

approximate outcome through a probability function

Probability Density continuous random variables frequency of outcome values

Probability Distribution Functions (PDFs)

approximate outcome through a probability function

Categorical Distribution discrete random variables finite set of outcome values

Mean expected value, arithmetic mean

Median middlemost value

Standard Deviation spread of values

Mode most frequently occurring value

SUPPORT/RANGE

interval where value probability is not zero

Uncertainty in Data

Ensembles

Multi-Run Simulations

- explore space of parameters
- mitigate model error
- cover range of initial conditions / outcomes
- combine multiple models

Ensembles

Collection of Datasets

- members, realizations
- full simulation run for each parameter set/input condition

Ensembles

Multi-

• dimensional

spatial domain & time

• variate

simulate over many variables

valued

many vales for each variable/location

Graphical Data Analysis visual indication of pdf

Ambiguation

numeric interval guaranteed to contain data value
no assumptions about the pdf within the interval

Statistical Uncertainty

Bounded Uncertainty

Visualizing Data with Bounded Uncertainty. C. Olston, J.D. Mackinlay. InfoVis, 2002.

Information Uncertainty

Employment in California Employment in California Employment (millions) Employment (millions) 18 18 17 17 16 16 15 15 92 94 96 98 00 02 04 06 08 92 94 96 98 00 02 04 06 08 Yea Average Growth **Estimated Growth**

A Spreadsheet Approach to Facilitate Visualization of Uncertainty in Information. A. Streit, B. Pham, R. Brown.TVCG 14(1), 2008.

of known

 indication of known information

• qualitative rather than quantitative

 spreadsheet interface characterizes the data

Error Bars

convey accuracy by amount of +/- error std dev or std error

Boxplots

• quartile range including median, outliers

• assume Gaussian

cross-correlation coefficient

Visual Modifications refinement for aesthetic purposes

range bar

Charting Statistics. Mary Eleanor Spear. McGraw-Hill, 1952.

Visual Modifications refinement for aesthetic purposes

boxplot

Exploratory Data Analysis. John W.Tukey. Addison-Wesley, 1977.

Visual Modifications refinement for aesthetic purposes

inner-quartile plot

The Visual Display of Quantitative Information. Edward Tufte. Graphics Press, 1983.

DENSITY MODIFICATIONS add indication of value prevalence

Opening the Box of a Boxplot. Y. Benjamini. The American Statistician, 42(4), 1988.

DENSITY MODIFICATIONS add indication of value prevalence

The Box-Percentile Plot. W. Esty, J. Banfield. Journal of Statistics Software, 8(17), 2003.

DENSITY MODIFICATIONS add indication of value prevalence

Violin Plots. J. Hintze, R. Nelson. The American Statistician, 52(2), 1998.

Data Characteristics sample size, confidence levels

Variations of Box Plots. R. McGill, J.W. Tukey, W.A Larsen. The American Statistician, 32(1), 1978.

Boxplot Modifications

Additional Statistics

• moments, modality

Can the Box Plot Be Improved? C. Choonpradub, D. McNeil. Songklanakarin J Sci Technol, 27(3), 2005,

Boxplot Modifications

Summary PLOT combine 4 plots into one

augment with more descriptive statistics indicate quantity & location of uncertainty

Visualizing Summary Statistics and Uncertainty. K. Potter, J. Kniss, R. Riesenfeld, C.R. Johnson. CGF 29(3), 2010.

2D Data

- Scatter plot of 2D position of samples
- William Playfair (1759–1823) pie charts line graphs bar charts

The Early Origins and Development of the Scatterplot Michael Friendly and Daniel Denis Journal of the History of the Behavioral Sciences, Vol. 41(2), 103–130 Spring 2005

2D Box Plots

RangeFinder Plot I D boxplot per axis

Rangefinder box plots. S. Becketti, W. Gould, TAS 41(2), 1987.

2D Box Plots

Two-Dimensional Boxplot *Robust line partition*

2D Box Plots

Bagplot Halfspace depth (spatial quartiles)

The Bagplot: A Bivariate Boxplot. P.J. Rousseeuw, I. Ruts, J. Tukey. TAS, 53(4), 1999.

Functional Box Plot

Boxplot statistics on 2D functions

defined on the function, rather than point-wise

Functional Boxplots. Ying Sun, Marc G. Genton. J. of Comp. and Graphical Statistics 20:2, 2011, 316-334.

Functional Box Plot

Band Depth

the amount of time a function lies within the set of functions

Functional Boxplots. Ying Sun, Marc G. Genton. J. of Comp. and Graphical Statistics 20:2, 2011, 316-334. (a) Functional Boxplot

Surface Box Plots

Extension to 3D

- images rather than curves
- volume-based band-depth

INSTITUTE

Visualization

incorporate uncertainty information into data display

Challenges

Increased complexity

- Visual clutter
- Data concealment
- Confusion

Information-Seeking Mantra

"Overview first, then zoom and filter, and finally, details on demand." -Ben Shneiderman

Overview vs Summary

Overview

- Show all data at once through many charts
- Manual search for patterns
- Finite screen resolution

Overview vs Summary

Summary

• Aggregate data along some dimension

- Automation summaries
- •Have an idea of the questions

Aggregation for Visualization

Reduce Data Using Summaries

• mimic human visual system

• done implicitly

phenomena modeling floating pt quantization limited # of pixels

Aggregation for Visualization

BUT How?

- In what dimension do we summarize?
- Is mean/standard deviation appropriate?
- Do we need multiple summarizations?

Ex:Weather Forecast Data

Weather Forecasting

Short-Range Ensemble Forecasts (SREF)

NOAA / NCEP

- Domain across North America
- Forecast weather variables out to \sim 3.5 days

GOAL

• Public notification, warnings, aviation

Data

•Study the variations of output between models

•Vary input parameters, initial conditions

Ex: Forecast Data

Questions

- what is the the weather going to be tomorrow?
- what information is available from this data?

Ensemble-Vis

User-driven, component-based framework

- Combine multiple summaries
- explore range of possible forecasts
- reveal probabilities of outcomes
- interrogate the ensemble

Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data. K. Potter, A. Wilson, P.T. Bremer, D. Williams, C. Doutriaux, V. Pascucci, and C. R. Johnson In IEEE Workshop on Knowledge Discovery from Climate Data: Prediction, Extremes, and Impacts, pp. 233-240, 2009.

Global Summaries

Questions

•What is the average model temperature at a given time step?

• Where do the models vary?

Global Summaries

• Aggregate over models at each grid point

- Colormap & contour
- Single timestep

Time Summaries

Questions

- How does the temperature change across time?
- What time step am I most interested in?

Time Summaries

Small multiples

- User interaction to scroll through time
- Select step of interest, reflect to overview

Contour Summaries

Questions

• Where does a particular value exist for each model?

•Where does that value move across time?

Contour Summaries

• Isocontour of value across spatial domain for each model

• Model bundle shows variation, outliers, divergence

Spatial Summaries

Questions

•What is the trend of the models over a region?

•What is the average trend?

Spatial Summaries

- summarize over user selected region
- average per model
- overall average/ boxplot statistics

Query Summaries

Questions

- Where does the data express particular characteristics?
- What fraction of the data expresses it?

Query Summaries

• SQL type queries to filter the data

• contours of ensemble fraction that predicts the condition

Are we asking the right questions?

Ex:Torso Potentials

Electrical Conductivity of the Heart

Goal

• Simulate how signals from the heart propagate across the torso

• Distinguish normal changes (breathing, movement) from abnormal heart function

Data

•Study the impact of variation on input conductivity

•Vary lung conductivity uniformly +/-50% from the reference

• 10,000 realizations of potentials

Ex:Torso Data

Questions

• what is the average potential across the domain?

• what is the variation of potential across the domain?

Mean

Standard Deviation

Global Summary

Questions

• what is the average potential across the domain?

• what is the variation of potential across the domain?

But is it meaningful?

• are mean & standard deviation appropriate statistics?

• can we look at the data without individually inspecting each grid point?

Torso Data

New Questions

- what do the PDFs look like across the domain?
- where are the PDFs similar or different?

ProbVis

VISUALIZATION & EXPLORATION FOR DISTRIBUTIONS

• show differences between PDFS

• summarize all data in a single view

COMPARISON BETWEEN TWO PDFS

- compare all data points to a single PDF
- get a single metric for each data point
- compare between points

LIBRARY OF CANONICAL DISTRIBUTIONS

uniform gaussian beta

DEFINE A DIFFERENCE MEASURE shape: L1 Norm or Hellinger Distance

DEFINE A DIFFERENCE MEASURE interval: (range of sample values)

Visualization

Colormap distance measure

Visualization

Colormap distance measure

Interactivity

What about Categorial Data?

Ex: Brain Segmentation DISCRETE DISTRIBUTIONS

- 11 possible tissues
- 11 distributions, one for each tissue type, describing every voxel
- statistics such a mean are not defined

Measures other than mean

Entropy (information theory)

- describes the randomness of a voxel
- i.e. 0 entropy a tissue's type is defined
- higher entropy, more uncertainty

2D Display

Background CSF Grey Matter White Matter Fat Muscle & Skin Skin Glial Matter Connective Tissue Lesion

3D Display

In Conclusion

Aggregation takes place everywhere

- required for visualization
- controllable for certain questions

Future Directions

Let's keep working!

- increase our vocabulary of uncertainty measures
- further the visual metaphors used for uncertainty
- interaction will be required for most applications

Thanks!

Questions

KAUST No. KUS-C1-016-04DOE NETL DE-EE0004449

Uncertainty

Face it kid, Not even Mr. Owl knows how many licks it takes.

http://tinyurl.com/8hwtzzr

