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ABSTRACT
The rapid and continuing increase in available high-performance
computing resources has driven simulation-based science in two di-
rections. First, the simulations themselves are growing more com-
plex, whether in the fidelity of the models, spatiotemporal reso-
lution or (more frequently) both. Second, multiple instances of a
simulation can be run to sample the results of parameters within
a given space instead of at a single point. We name the results of
such a family of runs an ensemble data set. In this paper we discuss
the properties of ensemble data sets, consider their implications for
analysis and visualization algorithms, and present a few insights
into promising avenues of investigation.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Scien-
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1. INTRODUCTION
Simulations are playing an ever-increasing role in the study of

physical phenomena because of the advantages they offer over lab-
oratory experiments. A simulation is:

• Repeatable: Instead of preparing new experimental samples
one need only re-run the software.

• Free of physical constraints: Any environment may be mod-
eled no matter how large, small, hostile or physically plausi-
ble.
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• Measurable: Data values can be extracted at every simula-
tion point instead of at a tiny handful of sensor positions.

• Not tied to real time: Fast phenomena may be slowed down
and slow phenomena may be accelerated. Events that hap-
pen on nanosecond scales are as accessible as those that take
millions of years to evolve.

At the same time, however, the nature of a simulation necessarily
brings disadvantages. A simulation is further:

• Inaccurate: Its results can only be as accurate as the under-
lying physics equations and numerical approximations.

• Coarse: The necessarily finite resolution always omits detail
that may have profound effects on the results.

• Fallible: In addition to the approximations in the physics
implementation, bugs in the simulation code are very difficult
to rule out completely.

Nonetheless, for phenomena that are difficult or impossible to
produce in the laboratory, simulations are often the best available
tool to explore the consequences of a given set of starting condi-
tions under a given model. They come fully into their own when
we conduct “what if” experiments to guide processes of design and
decision-making. In this paper we discuss the challenges of analyz-
ing ensemble data sets and offer our opinions on some of the pri-
mary research issues. We illustrate the discussion using examples
from recent investigation into climate and weather analysis tools
[10].

1.1 Predictive Capability and Uncertainty
One increasingly common and important use case for simula-

tions is the exploration of phenomena with uncertain input con-
ditions. This uncertainty can be aleatory, or fundamentally irre-
ducible, arising from quantities that cannot be known in advance;
or epistemic, arising from a lack of data that could (potentially) be
remedied with more measurements [3]. In either case the goal is to
predict a set of possible outcomes in spite of the uncertainty. Given
a set of samples from the space of possible parameters and the sim-
ulation output corresponding to each set of inputs, we can consider
the aggregate of the results to be an approximation of the space of
possible outcomes. We refer to such aggregates as ensemble data
sets.

1.2 Organization
In section 2 we discuss in more detail what ensemble data sets

are and what distinguishes them from any other simulation result.
In section 3 we outline common driving questions that lead to the
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creation of ensemble data and the research issues that those ques-
tions imply. In section 4 we offer a few insights gleaned from early
work with weather and climate ensembles. We conclude in section
5.

2. WHAT IS AN ENSEMBLE?
In this section we go into more detail about the properties of

ensemble data sets in order to frame the driving questions and re-
search issues discussed in the rest of the paper.

Ensemble data sets typically arise as part of a predictive anal-
ysis of some real-world phenomenon with uncertain inputs. The
process begins with the real-world physical processes being mod-
eled and input parameters such as material properties, physical con-
stants and ambient conditions. Without full documentation for all
of physics, every step beyond this starting point is necessarily an
approximation that introduces error. The result is one or more nu-
merical models of the process of interest and one or more sets of in-
put parameters (called input decks for convenience). An ensemble
data set is created when each model is executed using each input
deck. We refer to the individual simulation results that compose
the ensemble as its members. The result is used to gain insight into
the likely outcomes of the simulation given the uncertainties in the
input.

An ensemble data set typically has all of the following proper-
ties.

• Ensembles are large. Small data sets such as the NOAA/NCEP
Short-Range Ensemble Forecast [1] yield about 20GB of data
each time they are executed. Larger systems such as global
climate models can easily generate hundreds of terabytes of
results. These numbers continue to grow without bound.

• Ensembles are multivariate. The SREF ensemble contains
more than 400 state variables sampled at every grid point.
Global climate simulations often have on the order of 100
state variables and tens of input parameters. Thermal or me-
chanical finite-element simulations often have fewer than 10
parameters and outputs.

• Ensembles are multivalued. By their nature they contain
multiple values for each variable at each point – one per
member of the ensemble. Given enough information about
the input uncertainty, these multiple values can be consid-
ered as samples of a probability distribution function (PDF)
at each output point. There is as yet little work in visualiza-
tion for PDF-valued data. Most efforts [6, 8, 4] have focused
on the meaning of the set of values in the context of the an-
alytical task instead of applying a general approach to a spe-
cific task. We consider this a strong argument for domain
specificity as we will discuss later.

• Ensembles are expensive to generate and store. Because
they incorporate multiple runs of a simulation, they multiply
both the computation time and the storage requirements of a
single simulation by the number of members in the ensemble.

• Ensembles are time-varying. All of the common use cases
that lead to ensemble data involve the evolution of a system
over time. Moreover, the transient events in the system are
often of greater interest than the end state or instantaneous
maximum of some variable.

• Ensembles are awkward. There are few deployed tools with
the capability to handle the whole of an ensemble with rea-
sonable interactivity and analytic power. Scientists will often

pick a few locations that they deem good surrogates for the
behavior of the whole, extract data from those locations, and
discard the rest of the ensemble. The resulting files are triv-
ially small and easy to manipulate but neglect the wealth of
information and context that was thrown away. This can be
dangerous if the choice of surrogate points was incorrect.

2.1 How Ensembles Mitigate Uncertainty
Uncertainty arises in every phase of the simulation process from

the initial model through to the (hopefully rare) data errors caused
by undetected hardware errors. In such situations any single simu-
lation has a fundamental limitation: it gives results only for a single
numerical model and a single set of parameters and initial condi-
tions. However, we can use ensemble data sets to bound and miti-
gate the effects of such uncertainty in the following ways.

• Multiple models: There are usually many choices for how
to design a simulation. For example, finite element models
can use Lagrangian or Eulerian meshes. Climate models can
incorporate different equations for land, sea, atmosphere and
ice. Weather simulations may incorporate multiple models to
balance out the strengths and weaknesses of any one. There
may be a computationally inexpensive model that is accurate
enough for most situations and a far more detailed one that
can cover the difficult cases. An ensemble data set can ac-
commodate any or all of these cases to combine the strengths
of different approaches.

• Multiple grids: In any simulation there is often a spatial or
temporal resolution that is “good enough”; that is, increased
resolution will not yield increased detail. Ensemble data
can reduce the uncertainty due to insufficient resolution by
demonstrating convergence to such a sufficient resolution.

• Multiple inputs: Using different input decks for each mem-
ber of an ensemble serves two functions. First, by sam-
pling the breadth of an input parameter space, the outputs
can convey the breadth of possible responses as well as the
likelihood of each one. However, it is generally not possi-
ble to enumerate the entire output space. This is trouble-
some in cases where high-impact events occur in small, low-
probability, unvisited regions of the input space. Second,
in simulations that start from measured data, the inputs can
sometimes be deliberately skewed to compensate for weak-
nesses in the numerical models.

3. RESEARCH FRAMEWORK
Since ensembles are used mainly as a tool to reduce and mitigate

the effects of uncertainty, we can observe common factors in the
typical analytical questions that lead to their creation. This leads in
turn to a set of common research issues that occur across different
analytical domains. In this section we outline common elements
in analytical questions across domains and discuss broadly the re-
search issues that arise as we begin to address them.

3.1 Driving Questions
The most basic question common to all ensemble analysis tasks

is the one posed by the simulation itself:

What conditions or events are predicted by this range of
possible input conditions?

The vagueness of the question suggests that we cannot address it
directly at this level of abstraction. Instead, concrete answers must
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Figure 1: Prototype weather ensemble analysis tool incorpo-
rating multiple views. By displaying multiple facets of the data
at once – summary statistics at right, multiple timesteps at bot-
tom and comparative isocontours at top left – we convey a more
complete picture than any one display metaphor could alone.

arise from within each concrete domain as in the following exam-
ples. In climate simulations we may be interested in surface tem-
perature and sea level. In finite-element simulations of car crashes
we may look for the maximum stress on critical components. In
weather simulations during summer we may care most about se-
vere storms.

Although this overarching question is too abstract to be tractable
without domain knowledge, some of the questions that support it
immediately suggest algorithms. Moreover, those algorithms re-
semble database queries. For example:

Where and when does some condition occur in the ensemble?
We can answer this by finding node or element IDs where all the
specified conditions occur in the state variables. This is a simple
Boolean query evaluated node by node during a scan through the
ensemble. In many cases it can even be answered using summary
statistics or by the kind of range index constructed by FastBit.

What is the relative probability of some set of conditions?
An answer to this question subsumes an answer to the above. The
relative probability at any point in the ensemble can be computed as
the number of member data sets that satisfy the analyst’s conditions
divided by the total number of member data sets. However, this
will usually require a full scan through the data since the summary
statistics are necessarily too coarse.

What conditions lead to some event of interest?
Whereas the previous two questions can be satisfied with simple
scans through the data, this one requires exploration. The event it-
self can presumably be detected with the methods described above.
However, the conditions leading to it are usually a higher-order
phenomenon inferred from the data instead of being directly present
in the ensemble. For example, in an analysis of projected rising sea
levels, we might choose to look first at which ice masses melted to
contribute to the rise. Given that answer we could drill down fur-

Figure 2: By displaying multiple timesteps side-by-side in-
stead of in sequence we make it easier to simultaneously ob-
serve changes in several different areas of the data. This im-
age shows cooling across the western United States as simulated
time crosses from day to night.

ther to ask what caused temperatures in those regions specifically
to rise. The chain of reasoning continues until the analyst has as
complete an explanation as desired or possible.

What events occur that the analyst did not expect?
Discovering the unexpected is a purely exploratory task. Since it
depends wholly on the analyst’s beliefs regarding the ensemble, it
is incumbent upon the analyst to search through the data visually
and numerically to verify that those beliefs are correct – or at least
not contradicted.

3.2 Research Issues
The driving questions above suggest a set of capabilities neces-

sary for scalable analysis and visualization of ensemble data sets.
We treat these in no particular order. Our opinions on the most
effective ways to treat each issue are set out in section 4.

3.2.1 Data Management
The sheer size of ensemble data sets poses major challenges.

Specifically, the ’simple linear scan’ we refer to in the previous
section can take many hours – a cost incompatible with the notion
of interactive analysis.

3.2.2 Many-Valued Data
When considering the data values themselves we can view an

ensemble from two perspectives. On one hand, each state variable
can have a collection of time-varying scalar (or vector or tensor)
values at each point. On the other hand we can claim that each state
variable has only a single value at each point and that the value is
a distribution. The former view is most useful when we want to
examine the behavior of individual ensemble members. The latter
comes into play when we consider aggregate behavior.

3.2.3 Multidimensional Data
An ensemble is properly a multidimensional data set. It com-

prises (usually) two or three spatial dimensions, one dimension of
time and one-to-many of the input parameter space. However, We
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only have two dimensions available for display. We must somehow
reduce and project the data until a 2-dimensional representation can
capture and exhibit a property of interest.

4. A FEW INSIGHTS
We maintain the assumption that the actual data for the ensemble

is too large to fit into main memory. Moreover, since it is not pos-
sible to render all the data on screen, let alone inspect it directly,
doing so is inefficient. Our approach in working with ensemble
data has been to precompute summary statistics such as the mo-
ments about the mean and approximate quantiles [13, 7] that will
fit in main memory. We then use those statistics to generate as much
of what the user sees as possible. In many cases such as the view
shown in Figure 3 the summary statistics are entirely sufficient to
present an accurate view to the user. When queries arise that cannot
be answered accurately with just the summary statistics, we rely on
indexing schemes (including those summary statistics) to restrict
I/O to only those parts of the data that we actually need.

In this section we discuss lessons we have learned from building
tools for ensemble analysis for finite-element, weather, and climate
data.

4.1 Storage and Retrieval
We think of the data store containing an ensemble as being more

like a relational database with indices and query capability than as
a serialized representation of simulation data structures. We are
willing to trade a certain amount of storage overhead for efficient
random access, especially if these storage schemes allow multires-
olution or stream-like access to the raw data as in Pascucci and
Frank [9]. We can pursue the database metaphor further with in-
dexing schemes such as FastBit [12] that accelerate range queries.

The danger of summary structures and indices is that as they
grow more detailed they can become large enough to pose data
management problems in their own right. We believe that the most
effective way to address these problems for the original ensemble
data as well as acceleration or summary structures is by bringing
hardware parallelism to bear. Here we consider immediately avail-
able approaches as well as ongoing research.

First, if we take the database metaphor literally then we can ap-
ply off-the-shelf parallel database warehouse hardware and soft-
ware. These systems partition a data set across many disks and
structure query execution to minimize the amount of data move-
ment between disks. Database warehouse appliances were designed
for business analytics queries whose hallmark is relatively sim-
ple computation over very large volumes of data with complex
schemata. While this model does not match ensemble analysis per-
fectly we have found it expressive enough to efficiently execute all
the queries we have encountered so far. Another advantage of this
approach is that there are several companies that design and market
parallel database appliances. As of late 2009 these include Netezza,
TeraData, XtremeData and Greenplum, among others.

Second, we can use frameworks such as MapReduce [2] and
Hadoop [11] to scatter the processing load across clusters of com-
modity hardware. This is most suitable in situations where we al-
ready have a cluster with enough local disk capacity to hold the
entire ensemble. Like the relational model, MapReduce is not a
perfect fit for ensemble analysis but is expressive enough to handle
nearly all of our queries.

Finally, we anticipate the results of research efforts aimed specif-
ically at creating repositories and tools for scientific data manage-
ment such as the SDM Research Center at Lawrence Berkeley Lab-
oratory. While these efforts are not as immediately available as the
existing software and hardware mentioned above, in the longer run

they will provide us with tools well adapted for the particular needs
of scalable ensemble analysis.

4.2 Data Manipulation for Visualization

4.2.1 Distributions as Point Values
Visualization of spatially- and time-varying PDF-valued data is

still an area of open research [6, 8, 4, 5] Moreover, extant work
in this area concentrates on relatively small data sets from the per-
spective of ultrascale visualization. It is unclear how well existing
algorithms will scale to data sets with millions or billions of ele-
ments. We believe that like other multiresolution algorithms we
will need some sort of aggregate encompassing a set of underly-
ing distributions. A simple sum is attractive but will also sup-
press small, interesting features. The literature on topology- and
curvature-preserving geometric simplification provides helpful in-
spiration here.

4.2.2 Multiple Dimensions
As stated before, we must somehow reduce an ensemble data set

to two dimensions before it can be displayed on a screen. We think
of this process as the repeated application of one of three operators,
each of which eliminates one or more dimensions at a time. Those
operators are as follows:

Select: Eliminate a dimension by choosing a single value (e.g. a
single timestep or ensemble member) and extracting a slice through
the ensemble at that value.

Aggregate: Eliminate a dimension by ignoring it. For example,
when computing a mean at a given point we ignore the ensemble
member ID and average across all the members. Similarly, when
computing summary statistics for a region we ignore both the en-
semble member ID and spatial location.

Project: Eliminate one or more dimensions by projecting into a
lower-dimensional subspace using methods like singular value de-
composition (SVD). While this is more commonly applied to data
sets with thousands of dimensions such as the term/document fre-
quency matrices that arise in text analysis it can also be applied
here. We consider the standard rendering pipeline to be a special
case of this operation.

The particular choice of which dimensions to preserve and which
to eliminate depends on the particular question being asked by the
analyst.

4.2.3 Visualization
Our position on the best overall visualization is that one does not

exist. Instead, we advocate the use of multiple linked views (Fig.
1), each of which conveys a different facet of the data. This allows
the incorporation of representations already familiar to the analyst
(e.g. isobar plots for meteorology) along with standard statistical
plots and novel visualization algorithms. We also prefer to display
evolution over time by laying out multiple timesteps on screen at
once as shown in Figures 1 and 2 instead of by animating a single
view. Ensemble data is so complex both visually and conceptually
that visual working memory is scarcely ever sufficient to hold the
state of the data and its evolution. At the same time we note that
there are phenomena where the visual system excels at extracting
pattern from chaos via motion. This is especially common in me-
teorology. Where a still images of Doppler radar may show only
rougly congruent blobs of color, an animation immediately reveals
the progression of a severe storm as it moves across an area. Sim-
ilarly, while individual satellite images of a hurricane reveal fas-
cinating structure, a short animation illustrates the entrainment of
weather systems for hundreds of miles in all directions.
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Figure 3: This summary view of global temperature data can
be constructed entirely using low-resolution summary statis-
tics. We precompute and cache this summary information in
main memory for use as an index and as a way to explore the
ensemble’s overall behavior.

5. CONCLUSIONS AND OPEN QUESTIONS
Tools for visual analysis and interrogation of large ensemble

data sets are still in early development. Many of the efforts to
date have been demonstrated on relatively small ensembles that fit
comfortably in main memory on a workstation. With the growth
of tera- and petascale simulations, however, we may not even be
able to load the ensemble on a large parallel machine, let alone
a single-user workstation. Rendering all the data is similarly im-
practical. Instead, we must construct systems and algorithms that
combine aspects of databases, simplification, statistical visualiza-
tion and stream processing to create scalable solutions. In this pa-
per we have highlighted the following pertinent questions:

• How should we store, summarize and access the data?

• What elements or algorithms are common across ensemble
analysis in different domains?

• How should we assemble ensemble visualizations?

• How should we reduce a multidimensional ensemble to the
two dimensions that can be displayed on a screen or on pa-
per?

We believe that the area of ensemble visualization and analysis is
quite young. While some of the major research issues are becoming
clear, robust, scalable solutions applicable across a range of appli-
cation domains are still developing. Although ensemble visualiza-
tion research is relatively new, ensembles have already established
their power as analytical tools in scientific domains of critical im-
portance. For this reason we believe that the need for interactive
visual tools for analysis and exploration will remain indefinitely.
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