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ABSTRACT

In this paper we present the results from a series of focus groups on
the visualization of uncertainty in Equation-Of-State (EOS) mod-
els. The initial goal was to identify the most effective ways to
present EOS uncertainty to analysts, code developers, and mate-
rial modelers. Four prototype visualizations were developed to pre-
sented EOS surfaces in a three-dimensional, thermodynamic space.
Focus group participants, primarily from Sandia National Labora-
tories, evaluated particular features of the various techniques for
different use cases and discussed their individual workflow pro-
cesses, experiences with other visualization tools, and the impact
of uncertainty to their work. Related to our prototypes, we found
the 3D presentations to be helpful for seeing a large amount of in-
formation at once and for a big-picture view; however, participants
also desired relatively simple, two-dimensional graphics for better
quantitative understanding, and because these plots are part of the
existing visual language for material models. In addition to feed-
back on the prototypes, several themes and issues emerged that are
as compelling as the original goal and will eventually serve as a
starting point for further development of visualization and analysis
tools. In particular, a distributed workflow centered around mate-
rial models was identified. It was also found that users of material
models contribute and extract information at different points in this
workflow depending on their role, but encounter various institu-
tional and technical barriers which restrict the flow of information.
We expect the identification of this workflow, as well as the poten-
tial bottlenecks, to influence the development of visualizations to
improve communication across this workflow and effectively ex-
press the uncertainties within the material models community.

Index Terms: H.5.1 [Information Systems]: Multimedia
Information—Evaluation/methodology; J.2 [Computer Applica-
tions]: Physical Sciences and Engineering

1 INTRODUCTION

The research objective of this project is to develop effective Ma-
terial Model Uncertainty Visualization (MMUYV) techniques, with
the eventual goal of providing a software tool to users in the in ma-
terials modeling community. In order to identify and evaluate the
best methods for visualization, we decided to conduct a series of
focus groups aimed at modelers, analysts and code developers. The
focus group approach was chosen to better understand the needs of
the community and ensure the usability, utility, and adoptability of
the software produced.

Material models describe the behavior of a specific material or
class of materials and are used as inputs to multiphysics numerical
simulations. Because the models are based on theory, they often re-
quire empirical information to calibrate or specify free parameters
and results from the models may define ranges of possible values or
a collection of valid scenarios. Sources of uncertainty within sim-
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ulations are abundant; this work focuses on the uncertainty arising
from variability in the material models and aims at understanding
how users comprehend, incorporate, and utilize this qualitative in-
formation and how to enhance understanding through visual repre-
sentations.

The domain of “material modeling” is extremely complex. Ma-
terial models range from the relatively simple to the highly com-
plex, and model formulation can vary depending on the problem of
interest. For example, the models selected for use in structural anal-
ysis may be quite different from those chosen for a fluid dynamics
calculation. Models may also have different modes; a structural
analysis may require models for plastic deformation, fracture, and
crack propagation. In addition, an engineering application often
requires several models for each material, and the development of
each mode and type of model requires significant specialized ex-
pertise.

The material models of interest in this work fall into two classes,
Equation-of-State and solid mechanics. Equation-of-state (EOS)
models describe relationships between thermodynamic variables
such as pressure, density, temperature, internal energy, and the
speed of sound in a material. Solid mechanics models describe re-
lationship between the stress state and the strain (or deformation) of
a material in the solid state. Our research focused on EOS models
because we have existing techniques for visualizing EOS surfaces,
such as the pressure as a function of density and temperature. Solid
mechanics models are more complicated because stress and strain
are 3 x 3 tensor quantities, and because solid mechanical behavior
is often dependent on the deformation history of the material. Visu-
alizing solid mechanics models, or at least the quantities of greatest
interest to analysts, will be the subject of future work.

Material model domain complexity makes the development of
useful and usable uncertainty visualizations quite challenging. Un-
certainty is an abstract concept, even when the domain of inter-
est and its associated uncertainties are relatively uncomplicated
and/or well-studied. Material science is complicated and significant
knowledge gaps and aleatory uncertainties exist for most materials;
yet all technology development requires at least minimal character-
ization of material behavior and properties.

In addition to domain complexity, organizational complexities
exist. The material modeling stakeholder community comprises di-
verse classes of experts. A minimum set includes researchers who
develop and refine models of materials; simulation code develop-
ers whose libraries incorporate material models to support compu-
tational engineering analyses; and engineering analysts developing
and running simulations for which material models are an important
input. Within these broad categories there is considerable diver-
sity in research problems and work practices, ensuring that a single
visualization is unlikely to support all user activities. Moreover,
members of the stakeholder community are dispersed throughout
Sandia and often work on a diverse range of projects that have both
internal and external partners and customers. Although the work of
material modelers affects the work of code developers and analysts,
it is likely that neither the modelers nor the consumers (code de-
velopers, analysts) fully recognize the organizational, conceptual,
or practical dependencies among the work products they generate.
As a result, eliciting how material modelers and the users of ma-
terial models conceptualize, represent, and analyze uncertainty is a



highly challenging problem.

1.1 Equation-of-State Models

An equation of state describes relationships between thermody-
namic variables for a given material. Given any two variables, all
other variables can be computed through the EOS under the as-
sumption of thermodynamic equilibrium. EOS models can cover
a very wide range of conditions, and different physical phenomena
dominate material behavior in different regimes [4]. The relevant
physics leads to a model for the EOS in that regime. Sometimes
the boundaries between regimes are sharp, such as between ice and
water, but in other cases there is a gradual transition, for example
between liquid and gas phases above the temperature where three
phases co-exist in thermodynamic equilibrium (or triple point). For
a multiphase material model, EOS models for different regimes are
blended or combined to describe the behavior over many regimes.

The various theories often have parameters that must be provided
to fully specify the EOS. In many cases, the particular parameter
values distinguish one material from another, but some parameters
may be independent of the specific material. When a theory does
not provide the parameter values, they must be determined by ex-
perimental measurements or by more sophisticated theories.

Material models are input data for engineering simulation codes;
the material model is not a result of the simulation. The results
of the simulation are influenced by the EOS, and of course poor
EOS models generally lead to inaccurate simulation results. In en-
gineering simulation codes, EOS models are often stored in tabu-
lar form, e.g., pressure values are stored for a number of discrete
density-temperature points. The points are arranged in a grid. For
an arbitrary density and temperature, the pressure is interpolated
from nearby points in the table. Over the range of densities and
temperatures, the pressure can be shown as a surface. Most tabu-
lar EOS models contain several thermodynamic variables; the most
common are density, temperature, internal energy, and pressure.

In this work we have used a Mie-Griineisen (MG) model for alu-
minum to provide test data for prototype visualizations. The MG
EOS describes a single phase, and has a number of parameters that
engineering codes allow the user to specify. The model is defined
by
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where p is the density, P is the pressure, E is the internal energy,
T is the temperature, I'g is the Griineisen parameter, py is the ref-
erence density, and Cy is the heat capacity. The last three are con-
stants. The MG model relates the pressure and energy to a reference
Hugoniot, a special curve comprised of the locus of shock states
given an initial state; the subscript R denotes the reference Hugo-
niot. For many metals in the solid phase, a linear Hugoniot relation
expressed in the shock velocity, Us, and the particle velocity, U,
provides an excellent fit to experimental data:

Us:Cs+SlUp (3)
where C; is the speed of sound at reference conditions and S is

the slope of the linear relationship (both constants.) The Hugoniot
relations can be used to derive
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where L = 1 — po/p and Py, Ep, and Ty are the initial state.

1.1.1  Sources of Uncertainty in Materials Models

Uncertainties are abundant throughout the materials models work-
flow. Due to the complexity of a materials model, and the expertise
and time required to create an accurate model, a simple source of
uncertainty comes from poor models. Unfortunately, better mod-
els can suffer from poor parameter settings which can come either
from experimental measures or theoretical conditions. Changes in
phase are modeled by either strict or blended boundaries and can
cause uncertainties in important areas of the model. Often, there
exists multiple models for a single material and it is not always
clear which model to use in a particular situation, nor is it obvious
the ramifications of choosing a specific model. Finally, the storage
of these models as tabular data can impose interpolation errors and
resolution limitations. Because these models act as inputs to simu-
lations, traditional simulation uncertainties, such as discretization,
are multiplied by uncertainties propagated from the material mod-
els. Understanding the sources and developing methods for quan-
tifying, displaying and analyzing the uncertainty will have great
impact throughout the materials modeling community.

1.2 Research Method

A focus group is a structured group interview, facilitated by a mod-
erator, in which participants explore an issue or set of issues of re-
search importance. Because so many disciplines use focus groups,
approaches to designing, deploying, and analyzing focus groups
vary tremendously. However, all focus groups begin with the same
basic principle: that exchanges among participants facilitate the
expression of ideas, knowledge, behaviors, and opinions that may
be invisible to individualized methods (such as a questionnaire or
a one-on-one interview). Groups enable researchers to access a
broader range of skills and experiences than a single respondent;
listening to others express ideas and opinions can spur participants
to remember and share information that might not have emerged
in a one-on-one setting. Not surprisingly, focus groups are an ex-
cellent way of eliciting the kinds of information that people natu-
rally express in group settings; or for documenting how knowledge
emerges in the context of group interactions.

Focus groups play an important role in computer science re-
search and software engineering, in ways that are germane to the
goals of the MMUYV project. Studies of software engineering pro-
cesses have used focus groups to gather data about workflow pat-
terns in engineering teams [6]. User- and interaction-oriented de-
sign paradigms suggest the use of focus groups to gather qualitative
data on user expectations and system requirements, and to evaluate
prototype interfaces [11, 3, 7]. For technology developers, focus
groups also afford the opportunity to demonstrate sincere interest in
user concerns. In that sense, focus groups can enhance relationships
between the user community and the technology developers by es-
tablishing a foundation for ongoing communication and exchange
of information. Over time, the user community perceives itself as
a dedicated stakeholder in the work of the technology developers,
instead of recipients of a product tossed over the proverbial fence.

The focus group approach does have significant drawbacks:
while participants often generate excellent contextual insights, fo-
cus group data is less useful for analyzing long-term trends or gen-
eralizing about large populations. Moreover, focus groups are prone
to groupthink bias and social dominance bias (i.e., when one of the
group members exerts undue influence on the interactions or con-
tent of the group, either consciously or unconsciously [8]. A struc-
tured script, pilot runs, careful moderation, and a sound qualitative
sampling strategy can enhance the quality and dependability of fo-
cus group findings. Even so, software developers should treat fo-
cus groups as a starting point for technology design and evaluation,
if only because because focus groups only capture information on
what users “say they do — not how they actually do it” [9]. Other ap-
proaches, including observation, user participation in design teams,



multiple prototyping and iterative re-designs, are necessary to de-
velop technologies that people perceive as truly adoptable.

1.3 Focus Group Process

As noted above, one of the major goals of the MMUYV project was
the design and development of visualizations that would be usable
and useful to experts who generate, interact with, or rely on material
models in their work — what we have described above as the “stake-
holder community.” The domain complexity of material modeling
and the organizational complexity of the stakeholder community
are precisely what makes material modeling an interesting compu-
tational science, information visualization, and technology design
problem; but they also make it difficult to understand what “usabil-
ity” and “utility”” mean in the many contexts of work where material
model visualization might be useful. Accordingly, we decided to
use focus groups as a way of gathering expert knowledge about ma-
terial modeling challenges at Sandia, and as a way of opening a di-
alogue with the user community so that we could better understand
the current state of practice. For specific feedback on representing
uncertainty in EOS models, four visualization prototypes were de-
veloped by the MMUYV project. In May, June, and July of 2011, we
conducted four focus groups with participants representing the var-
ious material modeling stakeholder communities described above.
Participants were technical staff at Sandia National Laboratories or
in some way affiliated with Sandia.

The diversity of the material modeling stakeholder community
made composition of the focus groups a bit challenging, since mem-
bers of the stakeholder subcommunities tend not to interact with
each other on a regular basis (more on this issue below). The suc-
cess of a focus group depends on the composition of the participant
pool; people need to have enough common ground that they can
communicate productively about the topic of discussion, but diver-
sity of perspective can spark insights that might not emerge in a ho-
mogeneous group. All four focus groups included representatives
of each of the three primary subcommunities described above. To
recruit participants, we drew on contacts from our own Sandia net-
works. We scheduled the focus groups and invited participants but
offered no additional incentives (neither snacks nor money), and all
participation was completely voluntary.

In moderating the groups, we decided to use a team facilitation
approach, in which a technical leader (Weirs) and a process leader
(McNamara) managed the group logistics and flow of conversation.
To ensure a smooth process, we developed a script with timing no-
tations to ensure adequate and balanced coverage of the topics of
interest. In this script, we split the focus groups into four phases
of discussion: an introduction, a general discussion about mate-
rial modeling and uncertainty; presentation of the prototypes; and
a wrap-up discussion. Rather than ask participants to dive right
into assessing the MMUYV prototypes, we decided to prime the dis-
cussion by asking the participants to talk about the role of mate-
rial modeling in their work. In doing so, participants exchanged
observations about the importance of material models for engineer-
ing analyses; identified key sources of material model uncertainties;
discussed the impact of material uncertainty on their work; and de-
scribed strategies for representing and managing uncertainty. These
exchanges set the stage for the second half of the focus group, dur-
ing which Otahal, Fabian and Potter took turns presenting and dis-
cussing their prototype designs with the group participants. As ex-
pected, putting prototype designs in front of the experts generated
intense discussion about the problem of understanding and manag-
ing uncertainty in material models.

In the following sections, we describe the focus groups and sum-
marize key themes. The prototypes are described in Section 3. The
participants provided detailed comments on these prototypes and
concrete suggestions for enhancing visualization utility and interac-
tivity, as discussed in Section 4. However, the participants’ discus-

sions also illuminated the complicated organizational and technical
relationships through which information about material properties
and performance is exchanged and incorporated into Sandia’s en-
gineering research and development; since it provides the context
for all of the participants’ comments, we begin with an overview of
these relationships in the next section.

2 THE DISTRIBUTED WORKFLOW OF MATERIAL MODELING

The focus group sessions revealed a great deal about the state of
practice in material modeling and the use of material models in
Sandia’s research and engineering domains. Material model de-
velopment and use exist in a distributed information workflow: a
particular material model is developed by material modelers, in-
corporated into a continuum engineering simulation code by code
developers, used by analysts when they run simulations for specific
applications, and finally, a decision maker chooses actions that are
informed by those simulations. Each of these different groups is
a stakeholder in the material model, but their knowledge about the
material behavior and their use of the material model vary widely.
Naturally, the meaning of material model “uncertainty” also varies
widely across these stakeholder roles.

Material model development begins with theories that may be
incomplete, contain acknowledged gaps in applicability, or have
other known deficiencies. A typical model has a number of pa-
rameters that must be determined for each particular material; these
parameters are calibrated to match available experimental data, or
lacking that, to data from simulations of more fundamental mod-
els such as density functional theory (DFT) or molecular dynam-
ics (MD) simulations. Finally, while a material model may have a
functional interface that accepts input values and returns output val-
ues, in many cases the model is incorporated into the engineering
code in precomputed, tabular form and output values are interpo-
lated. For a material modeler, each of these steps is a source of a
different kind of error that contributes to the overall uncertainty of
the model. Some material modelers in our focus groups were hes-
itant to even attempt to put a number on the sum uncertainty for
any model, because they saw no constructive value in, essentially,
guessing. With that said, serious efforts are underway for quanti-
fying model form uncertainty, parameter uncertainty, uncertainty in
experimental data, and errors in discretization, and providing this
information in a form that is accessible to the engineering simula-
tion codes.

The code developers in our focus groups are programmers, but
their educational degrees were PhDs in various engineering disci-
plines, physics, or applied math. Development and maintenance of
engineering simulation codes require a solid foundation in numer-
ical discretization techniques as well as domain-specific expertise.
While many are familiar with basic material modeling, code devel-
opers typically treat material models as black boxes and focus more
on the interface between the models and discretization techniques.
One reason for this separation of concerns is that the material model
may have been developed at a different place, at an earlier time, or
for a different code. Code developers often know some material
modelers, but rarely do they know the authors of all the material
models included in their code.

The essential concern of code developers is the interaction be-
tween the material models and the discretization algorithms. The
discretization algorithms assume the EOS possesses certain prop-
erties, such as convexity, or a positive speed of sound. Likewise,
the EOS assumes it will only be given valid input data, e.g., den-
sity and temperature points for which the EOS has been validated.
In practice both sets of assumptions are sometimes violated, and
occasionally the code crashes and does not produce a solution. In
engineering codes, developers address these cases with a number of
techniques that vary widely in their theoretical credibility.

Analysts are quite interested in how the uncertainty of the mate-



rial model affects their simulation results, and less concerned about
the material model uncertainty itself. Unfortunately, the effect on
each simulation result is highly dependent on the details of the sim-
ulation, as well as on the specific material models used. These
details determine the various regions of thermodynamic space (for
EOS models) that are sampled during the simulation, and the EOS
uncertainty varies significantly through the thermodynamic space.
For most solid mechanics models, the situation is even more com-
plicated — the response of the material is dependent on the path of
a material element through, e.g., stress-strain space. For analysts,
material model uncertainty is just one contributor to the overall un-
certainty in their simulations. Analysts have minimal access to in-
formation about material models and minimal contact with material
modelers. A disturbing theme, heard repeatedly, was that analysts
have little guidance on choosing among the EOS models available
for the same material, and do not have the resources to investigate
this source of uncertainty among all the other uncertainties that af-
fect their simulation results.

The dependence of simulation outputs on some material model
uncertainties can be examined. The uncertainty of an input (e.g.,
a material model parameter) is described by a probability distribu-
tion, and a variety of techniques are available to propagate a num-
ber of input uncertainties to the uncertainty of a simulation output.
Nonintrusive methods rely on running a number of simulations for
different input values and examining the distribution of the output
quantity. Intrusive techniques are also available but are very diffi-
cult to retrofit to existing engineering codes. Considering uncertain
material models, this approach is effective for examining parame-
ter uncertainties and to a lesser degree, the uncertainties that can
be represented by discrete inputs. The effects of model form uncer-
tainty and interpolation error for tabular EOSs on simulation results
are not accessible in this approach.

3 PROTOTYPES

To facilitate discussion within our focus groups, we developed four
visualization prototypes, each of which present uncertainty within a
material model in a unique way. Participants evaluated specific fea-
tures of each prototype and described scenarios in which different
elements could prove helpful. We present each of the prototypes
used in the focus groups, using results from a simplified equation
of state simulation which produced seven realizations of a material
surface.

The Mie-Griineisen EOS was used to generate seven different
realizations of the pressure surface. Parameter values were chosen
to represent aluminum. The two parameters in the reference Hugo-
niot, Cy and S| were viewed as uncertain, and were simultaneously
varied within about 1% of the nominal values for aluminum. In
some of the prototypes the uncertainty may be rescaled or exag-
gerated to improve the display. (In a production tool this would be
controlled by the user.) Recall that the goal of the MMUYV pro-
totypes is to visualize the uncertainty in the material model itself,
and not the uncertainty in engineering simulation results. We ex-
pect that simulation data (with or without uncertainty information)
would be displayed in addition to the material model uncertainty.

The uncertainty in the EOS can be represented in a number of
ways. In our example data, we must compute a measure of the un-
certainty from the seven surfaces — the uncertainty is not explicitly
defined. Knowing that the different surfaces were generated from
particular distributions of Cy and S informs the computation of the
uncertainty, but this information is not always available. Alterna-
tively, material modelers might provide an uncertainty surface for
each thermodynamic variable. For developing visualization tech-
niques, the source or definition of the uncertainty is not important;
however, for analysts interpreting the visualizations it is critical to
understanding what they are seeing.

3.1 Point Cloud

The first prototype implements a technique presented in [5] that
renders a cloud of three dimensional points at a variable distance
normal to a surface. The emphasis of this prototype is to show un-
certainty in the exact location of the surface. The distance each
point is away from the surface is random within a range defined by
the amount of uncertainty about the surface location at a particu-
lar point. The algorithm creates a cloud of points that are further
away from the surface in regions of high uncertainty, and closer
to the surface in regions of lower uncertainty. Additionally, the
transparency of each point can be varied with the uncertainty, thus
points of higher uncertainty become more transparent. This cre-
ates a visual effect that feeds the expectation of the human visual
system, where regions of low uncertainty appear crisp and solid,
and regions of higher uncertainty appear hazy and indistinct. In ad-
dition, the points can be colored by another scalar value, such as
temperature, and thus simultaneously convey data and uncertainty
information.

Figure 1: View of the point cloud prototype. The mean surface of the
dataset can be seen in the middle of the point cloud. The point cloud
is blue and opaque in regions of lower standard deviation and more
red and transparent in regions of higher standard deviation, near the
top of the figure.

3.2 Surface Animation

The second prototype is based on a technique described by [2] that
uses animated visual vibrations of the points defining a surface to
show uncertainty in the surface location. The animation draws a
fixed semi-transparent surface at the mean and sweeps another solid
surface through one standard deviation above and below the mean
surface, with the animation transition defined by the sinusoid equa-
tion:

Vv csin(2mpt+5) +1
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where V is the location of the vertex along the surface normal, ¢
is the amplitude of the oscillation, p is the period, f is the floor of
the oscillation, and ¢ is time. The sinusoid defines a smooth tran-
sition between the floor and amplitude over time for each vertex in
the surface mesh. If the floor and amplitude for each vertex cor-
responds to the uncertainty at that point on the surface, then the
viewers eye will naturally be drawn to areas of high uncertainty
as the surface animates. Other oscillation functions could be used
that cause more rapid transitions between states, such as step and
sawtooth functions. Figure 2 shows three frames of the animation.
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Figure 2: Three frames of the surface animation. The transparent surface represents the fixed mean surface and is visible in every frame for
reference. The opaque surface sweeps through a region defined by one standard deviation distance above and below the mean surface. Here,
we show the minimal, mean, and maximal position of the animated surface. Both surfaces are colored by standard deviation, with the largest
point of deflection away from the mean surface existing in the red area of the bottom surface.

3.3 Bounding Statistics

The third prototype uses statistics similar to the traditional box-
plot [10] to bound the valid regions of the simulation. The mini-
mum, maximum, and mean surfaces are calculated point-wise, as
well as the standard deviation between all surfaces in the simula-
tion. The user is given control over the display of the statistical sur-
faces through a graphical interface which also provides options to
show each of the simulation surfaces and contextual surfaces such
as the mean +/- standard deviation. Data values can be colormapped
onto the mean surface and the user may choose which data values
are displayed. Figure 3 shows a screenshot of the prototype. The
mean surface is shown centrally and flanked by the minimum and
maximum surfaces which have reduced transparency to reduce vi-
sual clutter. A single surface from the simulation is shown in blue,
below the mean surface. The main goal of this prototype is to show
the range of possible outcomes, as well as indicate where the data
is most likely to reside.
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Figure 3: Prototype using bounding statistics and a graphical user
interface to explore the dataset. The mean surface is shown cen-
trally along with the minimum and maximum surfaces (with reduced
transparency) and a single surface from the simulation (in green).
Through a series of buttons, the user can control which statistical
surface to display, contextualize surfaces within statistical bounds,
and show the original simulation surfaces.

3.4 View Dependent Opacity

The final prototype uses a model similar to the Blinn lighting
model [1], in that the view angle is compared with the normal of the
surface at each individual point. Instead of using this to modulate
the lighting, it is instead used to modulate the opacity of the surface
at each point, as shown in Figure 4. At a high level this technique

is used to represent a collection of surfaces, each rendered individ-
ually with a transparency associated to confidence in the surface.
Thus, when the viewer is directly above the surface, the opacity
is determined entirely by the surface’s transparency, e.g., Oxy/N.
When the viewer is at an oblique angle, the surface becomes solid,
regardless of the underlying surface’s transparency. In the case of
this prototype, the transparency is established by the standard de-
viation of the surfaces as a whole at each position and is divided
evenly between all surfaces, that is oy /N, where N is the number
of surfaces rendered.

Figure 4: Screenshot of the view-dependent opacity prototype show-
ing a spherical object embedded within two EOS datasets. The opac-
ity of the surfaces making up the datasets depends both on the view-
point as well as the uncertainty values. Thus, as the surface normal
aligns with the view direction, the opacity is reduced with uncertainty
to allow the user to easily determine the position of the object and
the confidence along the surface. As the view direction diverges, the
surface becomes opaque, allowing the user to clearly see the space
occupied by all of the surfaces and locate the embedded objects po-
sition along the normal of each of the surfaces.

Intuitively, the motivation behind this approach can be under-
stood by considering objects embedded within this collection of
surfaces. When viewed from nearly overhead, the surfaces are
transparent and objects inside are clearly visible. This allows the
viewer to easily determine where the object is positioned on a 2D
plane normal to the surfaces. When viewed from the side, because
the surfaces become opaque, the embedded object’s position along
the normal of each of the surfaces becomes more apparent. This
approach is not useful when the surfaces are very close together
relative to the size of the surfaces.



4 ROLES FOR MATERIAL MODEL UNCERTAINTY VISUAL-
IZATION

After reviewing and analyzing the feedback from the focus groups,
several themes emerged. In this section we begin with the themes
more closely tied to the prototype visualizations, then move to the
broader role visualization can play in addressing the needs of the
material model stakeholders.

4.1 The different prototypes were suited to different
uses

Each visualization prototype has different features. Participants
found that the features could be be positive or negative, depend-
ing on the use case. The point cloud prototype was effective at
showing how the uncertainty varied in different areas of the domain.
As intended, the points immediately conveyed a sense that the sur-
face was not known precisely. However, because points represented
the uncertainty of the material model, participants thought another
mechanism would be needed to show simulation data, which would,
most naturally, also be represented by points. A second concern,
particularly for material modelers, was that important correlations
were lost through the statistical processing of the EOS data — all
the individual surfaces were averaged to compute the mean surface,
and the point cloud was generated from the standard deviation with
respect to the average surface.

The bounding statistics prototype also applied statistical process-
ing, but maintained the original surfaces. While the emphasis of
the prototypes was on visualization techniques, participants vocally
supported the ability to display or hide the individual surfaces and
statistically generated surfaces. The bounding surface technique
worked well for this dataset, but participants were not sure how ef-
fective it would be for a larger number of surfaces or for multiphase
surfaces, which have more geometric complexity.

The surface animation prototype was developed after the others,
in response to participants’ desire to see individual surfaces and
variation within the set, but without overwhelming the viewer with
all the information. The view-dependent opacity prototype was less
intuitive to participants because initially, it wasn’t clear why the
opacity changed with the viewing angle. However, the representa-
tive point of simulation data allowed participants to grasp the value
of seeing the EOS surface, the associated uncertainty, and simula-
tion data at the same time — as the uncertainty increased the surfaces
became more transparent, and one would see simulation data more
clearly when it moved into an uncertain region, identifying a cause
for concern.

4.2 Surface data is not enough

The EOS surface, whether for pressure, energy or another thermo-
dynamic variable, provides an overview of the material behavior,
but the surface in and of itself provides just the context. Participants
expressed the need for various types of references to connect the
surface to their understanding of the material behavior. Axes and
contours labeled with numerical values would provide quantitative
references. Domain-specific landmarks, such as phase boundaries,
Hugoniots, isentropes and isotherms would provide a link back to
traditional two-dimensional plots (see below.) For analysts, simu-
lation results must be displayed on the surface to identify the re-
gion of interest; and the EOS uncertainty, while highly desired,
is only meaningful to analysts in relation to the simulation data.
Even when quantified uncertainty is not available, plotting the ex-
perimental data to which the model was calibrated would suggest
aregion of higher confidence to an analyst. For material modelers,
simulation data is still informative, but curves with physical mean-
ing (Hugoniots, isentropes, etc.) are more important. A key insight
for visualization specialists is that making three-dimensional rep-
resentations usable, useful, and adoptable across the community is
likely to require careful interaction design.

4.3 Two-dimensional graphics remain the standard

The focus group participants were intrigued by the idea of hav-
ing three-dimensional, interactive visualizations to enhance their
understanding of material model dynamics. However, the partic-
ipants also indicated that two-dimensional plots of, e.g., curves in
the pressure-density plane are the existing lingua franca of material
model representation; these plots are regularly shown in textbooks
and the academic literature on the subject. The stakeholder com-
munity is already familiar with this visual form for material model
information, so this view leverages previously developed mental
models. Two-dimensional plots are relatively information impover-
ished, given the complexity and uncertainty that characterizes most
material models; but they are easy to generate, read, and share.
Three-dimensional, interactive visualizations can carry a great deal
more information, and participants valued the “big-picture” view of
the thermodynamic space. One participant remarked that he would
start with a three-dimensional view to get a qualitative feel for the
context, but wanted the ability to zoom in to a particular region
of interest and see traditional two-dimensional plots because they
were “more quantitative”. For this application, effective visualiza-
tion may depend more on the timely delivery of a key existing tech-
nique than discovering or developing a new technique.

4.4 Visualization to compare and select material mod-
els

As mentioned in the Introduction, material models are inputs to the
simulation code; that is, analysts specify the material models before
the simulations can be run. Analysts noted that selecting one ma-
terial model from several possible choices was hindered by a lack
of information about each model, and often sought out a colleague
or (if available) a material modeler for guidance. Minimally, one
would like to know the range of validity of each model. In ad-
dition, the intended application, any articles or documents on the
theory behind the model, and the experimental data used to cali-
brate the model would guide the user relative to their own appli-
cation. Analysts usually have some idea of the densities, tempera-
tures, and pressures a material is likely to experience in their appli-
cation. Comparative visualization of the different surfaces for those
conditions, particularly if uncertainty were displayed for each can-
didate model, would allow analysts to choose based on quantitative
information.

4.5 Visualization to analyze results

The most readily apparent role for visualization is to aid the anal-
ysis of the simulation results. According to the focus groups, there
are three primary use cases. The first is to “debug” a simulation that
has crashed. For some engineering codes, a majority of simulation
failures can be traced to the material model; sometimes the mate-
rial model is a poor model, sometimes the EOS is being sampled
outside (perhaps far outside) its range of validity, and sometimes
the material model catches an unrelated error committed far up-
stream. In all these cases, visualization of simulation data on the
EOS surface can provide insight and expose patterns in failures that
are difficult to identify on a case by case basis.

A second use case is to assess whether or not a simulation relies
on EOS information from a region of high uncertainty. The pro-
totypes display EOS models and their associated uncertainty; by
adding the time-dependent paths of simulation data, such as ele-
ment or cell values, or passive tracers used as diagnostics, an an-
alyst could judge whether the EOS uncertainty was important for
that particular simulation. For example, an analyst could conclude
that while regions of high uncertainty exist in the model, none of the
material in the simulation experienced conditions in those regions.
Alternatively, they might observe that a critical part experienced a
temperature near a phase transition, and the phase boundary is a



region of high uncertainty; in this case, more simulations might be
run to investigate the effect of crossing the phase boundary.

Finally, visualizing simulation data simultaneously with mate-
rial model data can provide insight into simulation results. If in
the previous example, the phase boundary was a region of low un-
certainty, the analyst might modify their design so their part came
closer to the phase transition to improve performance of the device.
Of course, these are hypothetical examples, but participants had
tried to answer similar questions about their own simulations and,
if answers were obtainable, they often required a lot of time and
effort. The material modelers who participated in the groups indi-
cated that more detailed visualizations could support better under-
standing of the sources and degree of uncertainty in various regions
of material behavior.

4.6 Visualization for Communication

Material modelers, code developers, and analysts all recognized
that communication about material models was a weak point in
their work. Analysts were concerned that they had little guidance in
choosing models for their simulations. Several code developers and
material modelers recalled frustration that they could not explain a
particular material model issue to an analyst in a way the analyst
could understand it; they could not describe a complex structure
in their own mental model to someone that did not have the same
mental model and domain-specific vocabulary. The visualization of
material models can alleviate these issues by providing a common
view for the different stakeholders. Visualization can also be used
as a training and learning tool, for more experienced practitioners
as well as those new to the field. Visualization enables analysts to
explain the reasoning and data behind their conclusions to sponsors
and decision makers. Finally, material model visualization can be
used to help researchers, managers and funding agencies identify
gaps in knowledge and prioritize resources to close those gaps.

4.7 Provenance

Our assumption has been that uncertainty is a mathematical object
that can be quantified, propagated, plotted, and visualized. But
a number of participants identified a clarity about a model’s ori-
gins and history, or provenance, as highly desirable. The lack of
provenance is a subjective uncertainty that cannot be quantified.
While quantified uncertainties for a particular model can, in prin-
ciple, be propagated across the entire distributed workflow, stake-
holders would invariably be more comfortable if the provenance of
the model were known. Provenance provides subjective confidence
not just in the model, but in the quantified uncertainty of the model.

5 CONCLUSION

The visualization of uncertainty for material models can mean dif-
ferent things to material modelers, analysts, and the code devel-
opers that incorporate the models into the engineering simulation
codes that the analysts use. The focus group approach revealed a
distributed information workflow around the development and use
of EOS models, and that information bottlenecks in this workflow
had organizational as well as technical origins. Visualization proto-
types anchored the discussions and better differentiated the perspec-
tives of the different stakeholders. There is a clear demand for a vi-
sualization capability for EOS models and their uncertainties. This
capability would improve communication across the workflow, as
well as provide an analysis tool for material modelers and, if sim-
ulation data can be incorporated, for analysts and code developers.
However, the complexity and diversity of material modeling and the
abstract nature of uncertainty make the development of an effective
tool challenging.

6 FUTURE WORK

The overall goal of this work is to develop a software tool for the
material modeling community that facilitates communication and
exposes the uncertainty throughout the workflow of users and de-
velopers of material models. The work presented here is the first
stage of this development and has provided numerous insights into
the needs of the community. While the prototypes developed were
designed mainly to spur discussion within the focus groups, we
have developed a list of specific “wants” of the participants, as well
as a better understanding of features deemed unnecessary, ineffec-
tive, or under developed. From this feedback, we will begin de-
velopment on a software tool for this community and will iterate
one-on-one with select participants on the design. A notable shift
in our original plan for the software tool is the disparity in needs
for analysts compared to modelers. We are currently unsure as to
the feasibility of satistying the needs of both groups with a single
software tool and will thus be revising our approach to reflect the
results of the focus groups.
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