
Eurographics/ IEEE-VGTC Symposium on Visualization 2010

G. Melançon, T. Munzner, and D. Weiskopf

(Guest Editors)

Volume 29 (2010), Number 3

Visualizing Summary Statistics and Uncertainty

K. Potter1, J. Kniss2, R. Riesenfeld3, and C.R. Johnson1

1Scientific Computing and Imaging Institute, University of Utah
2Department of Computer Science, University of New Mexico

3School of Computing, University of Utah

Abstract

The graphical depiction of uncertainty information is emerging as a problem of great importance. Scientific data

sets are not considered complete without indications of error, accuracy, or levels of confidence. The visual por-

trayal of this information is a challenging task. This work takes inspiration from graphical data analysis to create

visual representations that show not only the data value, but also important characteristics of the data including

uncertainty. The canonical box plot is reexamined and a new hybrid summary plot is presented that incorporates

a collection of descriptive statistics to highlight salient features of the data. Additionally, we present an exten-

sion of the summary plot to two dimensional distributions. Finally, a use-case of these new plots is presented,

demonstrating their ability to present high-level overviews as well as detailed insight into the salient features of

the underlying data distribution.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech-

niques

1. Introduction

As computational power, memory limits, and bandwidth

have inexorably increased, so has the corresponding size and

complexity of the data sets generated by scientists. Because

of the reduction of hardware limitations, simulations can be

run at higher resolutions, for longer amounts of time, and us-

ing more sophisticated numerical models. We can compute

more exhaustively, store more abundantly, and access data

more rapidly, all of which leads researchers to create more

complex systems to increase the accuracy and reduce the er-

ror in scientific simulations.

As data becomes increasingly large and complex, visu-

alization and data analysis techniques are required that not

only address issues of large scale data, but also allow sci-

entists to better understand the processes that produce the

data and the nuances of the resulting data sets. Uncertainty,

in the form of confidence, variability, and error, as well as

model bias and trends, is regularly included within data sets

and is used to express descriptive, qualitative characteristics

of the data. Because uncertainty is crucial in understanding

the reliability of information and, thus, in objectives such

as decision making, its absence can lead to misrepresenta-

tions and incorrect conclusions. Too often, traditional visu-

alization approaches overlook available uncertainty informa-

tion [JS03, Joh04]. As the importance of visualizing these

large, complex data sets grows, the actual task of visualiz-

ing them becomes more complicated; incorporating the ad-

ditional data parameter of uncertainty into the visualizations

becomes even less straightforward. Difficulties in applying

preexisting methods, additional visual clutter, and the lack

of obvious visualization techniques leave uncertainty visual-

ization an unsolved problem.

The goal of this work is to create a summary plot that

incorporates higher order descriptive statistics to concisely

present data with uncertainty information. This work takes

inspiration from the visual devices used in exploratory data

analysis and extends their application to uncertainty visual-

ization. The statistical measures often used to describe un-

certainty are similar to measures conveyed in graphical de-

vices such as the histogram and box plot. This research in-

vestigates the creation of the summary plot, which combines

the box plot, histogram, a plot of the central moments (mean,

standard deviation, etc.), and distribution fitting. The box

plot has a canonical feel; the “signature” of the plot is easily

recognizable and does not need much explanation to allow

for a full understanding. The focus of this work is to create a
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summary plot that similarly incorporates higher-order infor-

mation, allowing for the quick identification of characteris-

tic features. This higher-order signature provides at-a-glance

recognition of variations from normal and allows easy com-

parison of data distributions in detail. In addition, a 2D ex-

tension of the summary plot is presented, which provides for

the comparison of correlated data. Finally, an exemplary ap-

plication of the method demonstrates the ability of the sum-

mary plot to highlight variabilities in a data set.

2. Background

Understanding data sets is an essential part of the scien-

tific process. However, discerning the significance of data

by looking only at numerical values is a formidable task. De-

scriptive statistics are a quick and concise way to extract the

important characteristics of a data set by summarizing the

distribution through a small set of parameters. Measures of

central tendency, variation, and quantiles are typically used

for this purpose. The main goal of descriptive statistics is to

quickly describe the characteristics of the underlying distri-

bution of a data set through a simplified set of values. Often

these parameters provide insights into the data that would

otherwise be hidden. In addition, data summaries facilitate

the presentation of large scale data and comparison of mul-

tiple data sets.

Creating graphics for data presentation is a difficult task

involving decisions not only about data display, but also

about data interpretation. The graphic is often intended to

show specific characteristics of the data, and the presenta-

tion style should make these characteristics clear. Numer-

ous sources outline design practices for effective data visu-

alization [CCKT83,Cle94,Tuf83,Wil99b]. These references

not only direct the researcher towards the “correct” graphi-

cal technique for specific data types, but also describe how a

visualization may be interpreted by the viewer and suggest

methodologies to influence this interpretation.

One of the most common approaches to graphing sum-

mary statistics is the box plot [Hae48,FHI89,Spe52,Tuk77],

which is the standard technique for presenting the 5-number

summary, consisting of the minimum and maximum range

values, the upper and lower quartiles, and the median,

as demonstrated in Figure 1(a). This collection of values

quickly summarizes the distribution of a data set, includ-

ing range and expected value, and provides a straightforward

way to compare data sets. Figure 1(b-d) shows various visual

modifications on the box plot, and surveys on its introduction

and evolution can be found in [CM05, Pot06].

The box plot is often adapted to include information about

the underlying distribution, as demonstrated in Figure 1(e-

j). The most common modification adds density informa-

tion, typically through changes to the sides of the plot. The

hist plot [Ben88] extends the width of the cross bars at the

quartiles and median to express density at these three loca-
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Figure 1: Variations on the box plot. a) Abbreviated box

plot. b) Range plot [Spe52]. c) Box plot [Tuk77]. d) In-

terquartile plot [Tuf83]. e) Variable width and notched box

plots [MTL78] expressing sample sizes and confidence lev-

els. f) Hist plot [Ben88] g) Vase plot [Ben88] h) Box-

percentile plot [EB03]. i) Violin plot [HN98]. j) Skew and

modality plots [CM05].

tions. The vase plot [Ben88] instead varies the “box” contin-

uously to reflect the density at each point in the interquartile

range. Similarly, the box-percentile plot [EB03] and violin

plot [HN98] show density information for the entire range

of the data set. Density can also be shown by adding dot

plots [Wil99a], which graph data samples using a circular

symbol. The sectioned density plot [CC06] completely re-

constructs the box plot by creating rectangles whose col-

ors and size indicate cumulative density, and placement ex-

press the location of the quartiles. Sample size and confi-

dence levels can be expressed through changing or notching

the width of the plot [MTL78] or by using dot-box plots,

which overlay dot plots onto box plots [Wil99b]. Other de-

scriptors, such as skew and modality, can be added by mod-

ifying the width of the median line [MTL78], thickening

the quartile lines [CM05], and adding beam and fulcrum

displays [DT00] alongside. Multivariate extensions of the

box plot expand the plot into two dimensions [BG87, GI92,

RRT99, Ton05].

3. The Summary Plot

The hybrid box plot we are introducing can be more formally

titled the summary plot. This display includes not only the

quartile information present in the form of a modified box

plot, but also a collection of descriptive statistics and den-

sity information. As shown in Figure 2, we use an abbrevi-

ated form of the traditional box plot to convey the 5-number

summary and a symmetrically drawn histogram to convey

density information. While this technique is similar to that of

the violin plot [HN98], we have extended it to include min-

imum and maximum, rather than truncating extreme values,

and incorporated a colormapped histogram to further aid the

understanding. We express descriptive statistics in the form
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Figure 2: Anatomy of the summary plot. The abbreviated

box plot displays the range of the data distribution. The mo-

ment plot shows higher order moments which describe fea-

ture characteristics. The histogram estimates the density of

the distribution and is displayed using a symmetric display

and a redundant colormap. Distribution fitting allows the

user to compare the data against well-known distributions.

of mean, standard deviation, and higher-order moments as

glyphs, with the design of each reflecting the semantic mean-

ing of the statistic. Finally, we add distribution fitting capa-

bilities to allow the user to compare against and find a best

fit from a library of well-known distributions.

3.1. The Abbreviated Box Plot

As discussed, the traditional approach to presenting sum-

mary information is through the box plot, which has been

refined numerous times in efforts to maximize the ratio of

information to ink consumption and improve aesthetics. We

have chosen to refine the plot further, as shown on the left of

Figure 2. Our plot builds on Tukey’s box plot [Tuk77] (Fig-

ure 1(c)) with a few important distinctions. The first modi-

fication removes the sides of the interquartile box. This not

only reduces the visual real estate of the plot, but also re-

moves possible assumptions incurred from the sides of the

box about the density of the distribution. The prevalence of

using the sides of the plot to indicate density is due to the

visual metaphor created by the box itself. Since 50% of the

data samples lie within the box, it is easy to assume a density

distribution that resembles the plot itself, with the highest

densities falling close to the median. However, this restricts

the plot to normal or Gaussian-like distributions, which is

not always the case. Often, the mode (or most frequently oc-

curing sample value) lies outside of the interquartile range,

which is only evident when the box plot is combined with

a density display. The next modification extends the median

lines outward in order to emphasize the position of the me-

dian and ensure this position does not get lost with the addi-

tion of more information. Finally, outliers are not removed

from the plot. While this choice may stretch the plot to ex-

treme values, we prefer to express the entire range of the

data set within the plot, rather than add additional glyphs to

indicate outliers which will increase the visual complextity

of the plot.

3.2. The Histogram

Density information is added to the summary plot as a

histogram, which is displayed using quadrilaterals whose

widths are varied with the density at each bin location. The

colormap used for the histogram was designed to be both

redundant and non-intrusive. Each color channel uses a dis-

tinct mapping, which when combined, clearly emphasizes

areas of high density without overpowering the plot with

color. The color channel is defined as follows: red is nor-

malized log density, green is normalized density, and blue

is normalized linear density. Each color channel can be seen

in Figure 2 (inset). The distinction between the maps for the

individual channels is subtle and intended to encode the den-

sity information in a manner that is reiterative, aesthetically

pleasing, and subdued so as to act as a backdrop for the more

saturated color scheme used for other plots.

3.3. Moments

The following is a list of the equations used to calculate the

various moments, and the notation that will be used through-

out the paper:

Given a data set {xi}N
i=1, we define the following quantities:

kth Central Moments: µk ≃ 1
N ∑

N
i=1(xi −µ1)

k

Mean: µ1 ≃ 1
N ∑

N
i=1 xi

Variance: µ2 ≃ 1
N ∑

N
i=1(xi −µ1)

2

Standard Deviation: σ =
√

µ2

Skew: γ = µ3

σ3

Kurtosis: κ = µ4

σ4

Excess Kurtosis: κe = κ−3

Tailing: τ = µ5

σ5

where N is the number of data samples.

The moments of a distribution are statistical measures

of feature characteristics. The main distinction between the

summaries presented by the box and the moment plots is

that the quartiles give information about the location and

variation changes in the data, while moments express de-

scriptive characteristics of the look of the distribution such

as “peakedness.” These measures not only highlight uncer-

tainty through the standard deviation, but also give indica-

tions as to where the variation in the data set stems, such as

subsets of the data diverging from the mean.

One of the drawbacks of using only a box plot to sum-

marize a distribution is that multiple, distinct distributions

can have the same box plot signature. For example, one

may come across two distributions, one unimodal (having
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one data value occurring most frequently) and the other

multimodal (multiple most frequent values), having identi-

cal quartiles and thus indistinguishable box plot signatures.

Adding moment information exposes differences between

distributions and allows for the expression of non-Gaussian

distributions, while maintaining the simplistic nature of the

original box plot.

Figure 3: Moment arm abstraction from which we designed

the moment plot. Using the balance bean metaphor, each

glyph is placed so as to stabilize the weight on the beam.

The use of moments in physics provides valuable insight

into how moments express characteristics of a data distribu-

tion (Figure 3). In this example, a beam is placed on a ful-

crum, the position of which is dictated by the mean [BE92].

The moments can then be thought of as weights used to

balance the beam, each moment having a specific role in

dynamically balancing the system. While this approach is

not meant to be a physically-based explanation of moments,

those unfamiliar with the role of moments in statistics may

find this abstraction helpful.

3.3.1. Mean and Standard Deviation

The most familiar and frequently used moments are mean

and variance (the first and second moment). The average of

the data samples is an unbiased estimator of the mean of

the underlying distribution, or the expected value of a ran-

dom variable. Variance is a measure of the dispersion of the

data, indicating the distance a random variable is likely to

fall from the expected value. Standard deviation is simply

the square root of variance. For the summary plots, we use

only mean and standard deviation, as standard deviation is

derived from variance and is typically used as a measure of

uncertainty.

Figure 4: The mean is represented by a red cross and the

median by dark grey lines on the left and right. The mean

and median glyphs align when the values are equal, thus

easing visual comparison to normal distributions.

The addition of mean and standard deviation to the sum-

mary plot is straightforward. The mean is rendered as a dark

red cross. The width of the lines making up the cross are

constructed so that when the mean and median are displayed

at the same location, the glyphs coincide and form a straight

line across the plot. This emphasizes symmetrical distribu-

tions and quickly reveals when a distribution varies from

normal. A close up of this can be seen in Figure 4.

Standard deviation, like all even moments, is rendered as

two glyphs on the plot. Two blue curved lines are placed on

either side of the mean to express the average variation from

the mean. The glyphs are placed at mean ± standard de-

viation and mean ± 2×standard deviation. This placement

allows the user to easily see where the majority of the data

lies, as well as to identify samples outside two standard de-

viations, typically referred to as extrema.

Figure 5: Glyphs for the higher-order central moments.

Each triplet of distributions shows negative, close to zero,

and positive values for the respective moment. Each higher-

order moment is relative to the moments of a Gaussian dis-

tribution, which is the central distribution in each set.

3.3.2. Skew

Skew is a measure of the asymmetry of a distribution, or the

extent to which the data is pushed to one side or the other.

Figure 5(a) shows three distributions in which skew varies

from negative to positive. Based on the balance beam ab-

straction (see Figure 3), we use a triangle to denote skew

in the summary plot. The triangle is scaled by the absolute

value of skew, clamped so that very large skew values do not

extend the glyph beyond the the boundaries of the summary

plot. The triangle placement rests the glyph on the side of the

distribution with the highest density, pointing at the end with

the longest tail. Mathematically, we calculate the placement

of the skew glyph by first finding skew (γ) as defined above,

and placing the glyph −γ distance away from the mean, with

the apex of the triangle pointing toward the tail of the distri-

bution. Thus, the placement of the skew glyph indicates on

which side of the mean the largest spatial grouping of sam-

ples lies.
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3.3.3. Kurtosis

Kurtosis is a measure of how peaked or flat topped a distri-

bution is compared to a normal distribution. Excess kurtosis

is the standard kurtosis measure normalized by the kurto-

sis of a Gaussian. Figure 5(b) shows three distributions with

varying kurtosis, where a flat, box-like distribution can be

seen on the left. This type of distribution has large, nega-

tive kurtosis (i.e., κe < 0) and is called platykurtic. Moving

right, the kurtosis value gets very close to a mesokurtic (nor-

mal) distribution (i.e., κe = 0) and then to a highly peaked,

leptokurtic (i.e., κe > 0) distribution.

The glyphs chosen to represent kurtosis reflect the afore-

mentioned categories of kurtosis. The glyphs are rendered

using a deep purple color and are scaled so that their size re-

flects their magnitude away from 0 (excess kurtosis). To dis-

tinguish between flat and peaked, the glyphs assume a flat or

sharp shape depending on the sign of kurtosis. For a highly

positive value, the glyph is very pointy; the more negative

the kurtosis value, the flatter the glyph.

3.3.4. Tailing

The final moment added to the summary plot is what we re-

fer to as tailing, which is based on the fifth central moment,

µ5. The quantity is sensitive to distribution asymmetry far-

ther away from the mean when compared to the skew. Tailing

will have a high magnitude when there are additional modes

in the distribution or strong outliers. Like skew, tailing is

rendered as a triangle pointing in the direction of asymme-

try. However, unlike skew, the glyph is rendered on the same

side of the mean as its sign. The size and sharpness of the ar-

rowhead is dependent on the tailing quantity, and the visual

effect of this glyph indicates when there is a significant num-

ber of samples very far from the mean. Figure 5(c) shows

a set of distributions with tailing values varying from very

negative to very positive. Upon close inspection, one can see

a cluster of outliers in the rightmost distribution, which is

indicated by the large size of the glyph.

3.4. Distribution Fitting

Figure 6: The results of fitting 3 canonical distributions to

a single data set are shown as dotted lines on either side of

the plot.

Understanding the characteristics of a particular data set

is often less interesting than determining the canonical dis-

tribution that best fits the data because the feature charac-

teristics of the canonical distributions, such as the Gaussian,

are well known. The final element of the summary plot is a

distribution fit plot, which represents either a best-fitting dis-

tribution or a user-chosen distribution. The user is provided

with a library of common distributions including Gaussian,

Uniform, Poisson, Rayleigh, Laplace, and others, as well as

the fitting of multiple Gaussians and asymmetric distribu-

tions. The fit distribution is displayed symmetrically as a

dotted line showing the density along the axis, as seen in Fig-

ure 6. In addition, any distribution can be used as a learning

set, allowing the user to quickly identify data sets that resem-

ble specific distributions, as well as to explore relationships

between distributions.

4. Joint 2D Summaries

Figure 7: Joint summary for two 1D categorical data sets.

The red and blue lines show the joint mean and standard

deviation, respectively. The joint histogram is shown as col-

ormapped, jittered quadrilaterals emphasizing where both

data sets express density. Covariance and skew variance are

shown as glyphs centrally located within the area created by

the lines of standard deviation. These glyphs show how much

the two data sets vary together, as well as how much they are

skewed in the same direction.

In addition to a statistical summary for a 1D categorical

data set, users require methods for comparing multiple, cor-

related data sets to understand how data values are related.

In this section, we explore methods for summarizing cate-

gorical data with pairs of values associated with each sam-

ple. Figure 7 shows the joint summary plot for two 1D data

sets. The joint summary places 1D summary plots for each

data set perpendicularly to orient the viewer. Joint mean and
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standard deviations, a joint histogram, and a reduced higher-

order moment plot are added, providing a display which

shows the relationship between correlated data sets.

Note that we drop the summary of cumulants for higher-

dimensional distributions. We do feel, however, that a box

plot type summary is important even in higher dimensions.

Thus we refer to a generalization of the box plot, known as

the bag plot [RRT99]. Unfortunately, the bag plot approach

does not necessarily have the same correspondence to cu-

mulant distributions as does the box plot. It is a suitable ap-

proximation for many applications, but we defer discussion

of multivariate cumulant summaries to future work.

4.1. Joint Mean, Standard Deviation, and Density

The first measures of correlation that we add to the display

are joint mean, standard deviation and density, which are

shown in Figure 7. The display of joint mean and standard

deviation uses lines that connect the mean and standard de-

viation of one distribution to the corresponding values in the

other, taking the colors of these measures from the summary

plot. A joint histogram is used to display the density of a set

of samples drawn from a 2D distribution. Our system dis-

plays the joint histogram by rendering a quadrilateral that is

both colormapped and scaled to show the density at each bin

of the 2D distribution. This is meant to be reminiscent of a

scatter plot of the joint density for the correlated distribu-

tions. The inset of Figure 7 shows how jittering can alleviate

aliasing artifacts that occur when multiple joint summaries

are presented togther, as shown in Figure 11. The overall ef-

fect of the joint histogram is a cloud-like structure that visu-

ally describes the density relationship between the data sets.

4.2. Covariance and Skew Variance

For multivariate distributions, the covariance matrix is the

analogue of variance in 1D distributions. The covariance of

two data sets, {xi}N
i=1,{x j}N

j=1 can be defined,

Vi j =
1

N

N

∑
k=1

(xik −µi)(x jk −µ j)

where µi and µ j are the means for each data set. Covari-

ance is a measure of how the two data sets vary in relation

to each other. For our presentations, the covariance matrix

is used to transform a unit disk so that the visual stretch of

the disk relates to the covariance of the data sets. Since we

are interested in a multivariate analogue of standard devia-

tion, we scale the covariance ellipse-disk glyph as follows:

scale =
√

evmax

evmax
, where evmax is the maximum eigenvalue of

the covariance matrix.

Just as covariance is the analogue of variance, higher-

order multivariate moments can also be described with ma-

trices. The so called “skew variance” of two data sets,

{xi}N
i=1,{x j}N

j=1 can be expressed by two matrices, Vi2 j1 and

Vi1 j2 where

Vim jn =
1

N

N

∑
k=1

(xik −µi)
m(x jk −µ j)

n

In general, these matrices are neither symmetric nor posi-

tive definite. Skew variance is visualized using four sharp

arrows pointing in the direction of the skew located at the

endpoints of the covariance eigenvectors. The directions of

the skew variance arrows are defined by the column vectors

of Vi2 j1 and Vi1 j2 . As with covariance, skew-variance visual-

izations are scaled: scale =
3
√

evmax

evmax
, where evmax is the max-

imum eigenvalue of the skew-variance matrix.

Figure 8: Close-up of the joint summary plot for multiple

categorical datasets. While the joint histogram display in-

duces some visual clutter, the cloud-like nature of the dis-

play gives a general feel of the density trend across the data.

The covariance and skew variance glyphs help distinguish

between each joint summary plot.

The use of skew-variance glyphs in 2D (or higher dimen-

sional) distributions is important, since joint distributions

can be very asymmetrical even when their 1D distributions

are symmetrical. While the covariance ellipse indicates the

overall trend of the joint distribution, it gives no indication

that the majority of the distribution’s density is outside the

ellipse. The skew variance glyphs indicate the strong asym-

metry of this distribution. When multiple 2D distributions

are combined, as seen in Figure 8, the moment glyphs allow

the user to visually identify each category. Without them, the

individual joint histograms would be difficult to separate.

5. Short-Range Ensemble Forecasts

We demonstrate the use of summary plots on NOAA’s Short-

Range Ensemble Forecast (SREF), a data set publicly avail-

able from the National Centers for Environmental Predic-

tion’s (NCEP) Environmental Modeling Center and Short-

Range Ensemble Forecasting Project [NCE]. The main chal-

lenges in using this data stem from its size and complexity.

The SREF ensemble contains 21 members comprising four

numerical models, each run with various parameter pertur-

bations. A single member contains 624 state variables pre-

dicted at each of the 24,00 points of the regular grid across

North America and is run out to 87 forecast hours. Each full

run of the SREF ensemble contains 36GB of data, resulting
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Figure 9: Temperature at 2M above ground at valid forecast hour 27. Color refers to the mean (leftmost) and standard deviation

(center) of ensemble computed at each grid point. Results of k-medoids clustering algorithm [Bis06] on the temperature data

(right). The domain is colormapped based cluster membership.

Figure 10: Summary plots for the points resulting from the clustering algorithm. Inset: (left to right) Histogram density

estimation using 20 bins, and kernel density estimation.

in 108GB every day. Colormaps of the mean and standard

deviation can be seen in Figure 9, left and center.

To apply the summary plots on the SREF data, one must

decide which part of the data is interesting; generating a

summary plot for every data point is not feasible for dis-

play. This can be done by allowing the user to select re-

gions of interest, or automatically selecting as shown in Fig-

ure 10, top, right. Here, we use the k-medoids clustering

algorithm [Bis06] to select regions of the domain that ex-

emplify the variation across the region. In this case, we are

looking for areas of high variation in order to understand lo-

cations of high uncertainty which indicates where the mean

of the data is an unreliable estimation of the outcome.

Figure 10 shows the results of using the summary plots

on the representative cluster points of the SREF data. To

ease visual interpretation within this publication, the sum-

mary plots for each cluster location are extracted from the

plot display and enlarged. The positions of each summary

plot within the plot axis are indicated by a box plot which

also clearly shows the range of the data. In practise, the user
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Figure 11: (Left)The summary plot user interface. (Right) 2D summary plot of temperature and humidity averaged across

altitude slices. The trend of both variables to condense as altitude increases is visible through the compaction of the joint

density display and the reduction of the size of the covariance glyph. The changes in orientation of the skew variance glyphs

highlight the dominance of the temperature variable at higher altitudes.

can zoom in and out of the plot to more closely investigate

the summary plots.

On first glance the cluster positions with high uncertainty

standout, particularly points 10, 11, and 12. This is clear

from the length of the plots, as well as the strength of the

standard deviation glyphs. More interestingly, plot 11 has

strong groupings within the density display, indicating a dis-

agreement in the predicted outcome. That is, some subset of

the ensemble mainly predict one particular outcome, while

another group predicts another, different outcome. This is in

contrast to plot 12, which also has high variance, however,

this seems to be due to a small number of outliers, rather

than a strong, divergent prediction. Interestingly, the loca-

tion of the strongest prediction in plot 12 is not co-located

with the mean. This suggests that while plot 12 strongly pre-

dicts for one particular outcome, using the mean as an esti-

mation of that outcome is a poor choice. Coversly, plot 11

predicts two outcomes with high ensemble votes, the largest

subset of outcomes being very close to the mean, and thus

the mean does seem like a good choice. This type of in-

formation helps scientists understand the origins of mem-

ber uncertainty; large variation stemming from member dis-

agreement should be treated differently that the influence of

a small number of outliers. While colormaps of mean and

standard deviation colormaps do give indications of where

such variation exists they do not allow for the greater under-

standing of the underlying data that is exposed through the

summary plots. Also, the box plot alone does not convey the

richness of this data, as shown by comparing the summary

plots and their corresponding box plots in Figure 10.

Another interesting feature of the summary plots is the

varying width of the histogram. This is a result of the number

of bins used to calculate the histogram: the less bins used,

the smoother the histogram. The number of bins chosen is

important, especially when the number of samples is small.

If a smoother density display is desired, kernel density esti-

mation [Par62] can be used to estimate the underlying data

distribution. The results of a 20-bin histogram compared to

kernel density estimation on the same data can be seen in

Figure 10, inset right. While these two plots are not meant

to be a direct comparison because they show the same data

at different levels of smoothing, the different visual results
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between the two types of density estimation are apparent.

For applications in which the underlying distribution is more

important than analyzing the particular data samples, kernel

density estimation should be used.

Using the 2D summary plots, we further explore the data.

In this case, we summarize across levels of altitude to get

an understanding of how the variables change together with

height. Figure 11 shows 2D summary plots for temperature

and humidity at 28 levels of altitude. Each altitude slice is

displayed as a 2D summary plot, and the two variables are

shown as 1D summary plots along the axes for alignment.

The joint density display shows the trend of both tempera-

ture and humidity as altitude increases. The higher the alti-

tude, the less variation exists across the domain; this is visi-

ble in the smaller area taken up by the joint density display.

Likewise, the covariance glyphs change from being long,

stretched out ellipses, to fatter and more circular, and then

small, skinny ellipses at the highest altitudes, indicating the

domination of the temperature variable. The skew variance

glyphs emphasize the domination of temperature through

their evolution towards alignment with the temperature axis.

Overall, this plot accentuates the relationship between tem-

perature and humidity as altitude level increases in that both

variables are influential at lower altitudes, but temperature is

the commanding variable at higher elevations.

5.1. Discussion

The main goal of the summary plot is to create a signature

for data distributions, providing for fast recognition of in-

teresting properties. The higher-order glyphs clearly display

deviations from a normal distribution and are easily com-

pared. Because the statistical meanings of the moments are

more complicated than then box plot, there will be a learning

curve associated with understanding the additional informa-

tion. However, due to the simplicity of the technique, a user

who has learned it will easily recognize desired character-

istics. The summary plot also reduces the amount of infor-

mation needed to convey the data distribution–a desirable re-

duction when the amount of information is too large to easily

understand, for example when dealing with large-scale data

sets.

While our design of the summary plot attempts to cre-

ate glyphs that can be presented together harmoniously and

minimize visual clutter, the presentation of all of this infor-

mation at once may still be overwhelming. To ease this prob-

lem, we have designed a user interface that allows the user to

interactively choose the desired information to investigate.

The user may turn the glyphs, box plot, and histogram on

and off at will, zoom in on areas of interest, modify distri-

bution fitting parameters, and query the plots for quantita-

tive attributes, such as the number of samples or the value of

specific statistical measures. The user interface is useful for

the 1D plots however is indespensible for the 2D plots. The

increased complexity of these plots alone leads to greater vi-

sual clutter which is eased both by the zomming in and out

of the plots as well as the ability to get specific information

through dialog boxes.

The higher-order moments are very sensitive to noise, out-

liers, and variations in sample size. This can be problem-

atic when the number of samples is not large enough to

adequately characterize the underlying distribution. In such

cases, the histogram visualization becomes extremely im-

portant. The visualization provides a redundant encoding

of the characteristics expressed by the moments and also

clearly shows the user that the summary is based on a sparse

number of samples. Work has been done to investigate meth-

ods for calculating higher-order moments in the presence of

noise, such as [GH97], however these approaches increase

the complexity of calculating the moments and are often

application-dependent. We have chosen to use the more sim-

plistic formulation of moments and rely on the redundancy

of the summary plot to highlight unreliabilities in the mo-

ment summary.

6. Conclusion

Uncertainty information has been inadequately addressed in

the visualization community, largely because of the difficul-

ties involved with visually expressing this additional data. If

visualization is to become a robust decision-making tool, it

must represent uncertainty, in some form, to the audience.

This work provides a method for investigating visual char-

acteristics of a data distribution, both for learning about the

shape of the data set and for expressing the associated un-

certainty.

The 1D and 2D summary plots provide a simple way to

annotate features of a distribution, enhance distinguishablity

between datasets, and allow for the straightforward compari-

son of multiple distributions. They contain, by nature, uncer-

tainty information expressed foremost by standard deviation,

but also through the higher order characteristics of the dis-

tribution. In comparison to the boxplot alone, the summary

plot quickly exposes salient features of the data set, such as

the existence and location of outliers, the amount of vari-

ability, and the skewness of a distribution. The presentation

of data in a summarized and easy to read form can quickly

communicate information about large amounts of data and

the data’s uncertainty, emphasizing meaningful characteris-

tics and facilitating visual comparisons.

This work is the basis for further work in uncertainty vi-

sualization, as well as the visualization of large-scale, mul-

tidimensional data. Such summarization methods are in-

creasingly important as the size and complexity of data

sets grows and visual reductions of dimensionality are re-

quired. When accompanied by higher dimensional visual-

ization techniques, such as volume rendering or isosurfac-

ing, summary plots are an eloquent approach for presenting

drill down information, for example, when regions of inter-
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est are chosen by a user or automatically. Continuing de-

velopment of the summary plot includes the examination of

higher dimensional distribution data. While a direct exten-

sion of the summary plot into higher spatial dimensions may

not be effective, using descriptive statistics with a visual sig-

nature to highlight notable features may prove valuable. In

addition, combining information visualization and graphical

data analysis methods with preexisting scientific visualiza-

tion methods in a user guided setting will further facilitate

the understanding of data.
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