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Abstract—Scientists increasingly use ensemble data sets to
explore relationships present in dynamic systems. Ensemble
data sets combine spatio-temporal simulation results generated
using multiple numerical models, sampled input conditions and
perturbed parameters. While ensemble data sets are a powerful
tool for mitigating uncertainty, they pose significant visualization
and analysis challenges due to their complexity. In this article,
we present Ensemble-Vis, a framework consisting of a collection
of overview and statistical displays linked through a high level of
interactivity. Ensemble-Vis allows scientists to gain key scientific
insight into the distribution of simulation results as well as the
uncertainty associated with the scientific data. In contrast to
methods that present large amounts of diverse information in a
single display, we argue that combining multiple linked displays
yields a clearer presentation of the data and facilitates a greater
level of visual data analysis. We demonstrate our framework
using driving problems from climate modeling and meteorology
and discuss generalizations to other fields.

Index Terms—Ensemble data, uncertainty, statistical graphics,
coordinated and linked views.

I. INTRODUCTION

Ensemble data sets are an increasingly common tool to
help scientists simulate complex systems, mitigate uncertainty,
and investigate sensitivity to parameters and initial conditions.
These data sets are large, multidimensional, multivariate and
multivalued over both space and time. Due to their complexity
and size, ensembles provide challenges in data management,
analysis, and visualization.

In this article we present Ensemble-Vis, a general framework
to support the visual analysis of ensemble data with a focus
on the discovery and evaluation of simulation outcomes, a
screenshot of which can be seen in Figure 1. Our approach
combines a variety of statistical visualization techniques to
allow scientists to quickly identify areas of interest, ask quan-
titative questions about the ensemble behavior, and explore the
uncertainty associated with the data. By linking scientific and
information visualization techniques, Ensemble-Vis provides
a cohesive view of the data that permits analysis at multiple
scales from high-level abstraction to the direct display of
data values. Ensemble-Vis is developed as a component-based
framework allowing it to be easily adapted to new applications
and domains.

Fig. 1. The Ensemble-Vis framework provides a platform for data visualiza-
tion and analysis through a combination of statistical visualization techniques
and a high level of user interaction.

A. Motivation

The goal of an ensemble data set is to predict and quantify
the range of outcomes that follow from a collection of simula-
tion runs. These outcomes have both quantitative aspects, such
as the probability of freezing rain in a given area over a given
time, and qualitative aspects, such as the shape of a severe
weather system. While ensemble data sets have enormous
power to express and measure such conditions, the appropriate
methods for visualization and analysis are highly dependent on
the application area.

We focus on two driving applications: short-term weather
forecasting and climate modeling. Meteorologists use
short-term forecast data to predict local weather outlooks
rather than relying on singular, deterministic models [1].
These data sets give insight into the range of possible
predictions and allow meteorologists to provide weather
forecasts along with the probability of particular outcomes.
We use data from NOAA’s Short-Range Ensemble
Forecast (SREF), obtained from the National Centers
for Environmental Protection’s Environmental Modeling



Center and Short-Range Ensemble Forecasting Project
(http://wwwt.emc.ncep.noaa.gov/mmb/SREF/SREF.html).
In contrast to meteorologists’ goal of predicting the local
weather over a span of hours, days, or weeks, climate
scientists are interested in global changes in climate over
hundreds of years [2]. This data is often used to understand
phenomena such as the impact of human activity on
global climate or trends in natural disasters. Because these
results are used for decision making and public policy
formation, the reliability and credibility of the predicted
data is of paramount importance. The data used for our
study was obtained from the Intergovernmental Panel on
Climate Change’s experiment on the Climate of the 20th
century, available from the Earth System Grid data holdings
(https://esg.llnl.gov:8443/index.jsp).

One important common element among most applications
using ensembles is the goal stated above: to predict and
quantify the range of outcomes. In this work, we provide a data
analysis framework that allows domain scientists to explore
and interrogate an ensemble both visually and numerically in
order to reason about those outcomes. While our approach
is informed by some of the specific needs of meteorology
and climatology and in particular the applications described
above, the structure and algorithms presented in the Ensemble-
Vis framework are general enough to be applied to analysis
problems using ensemble data across a wide variety of fields.

B. Ensemble Data Sets

We define an ensemble data set as a collection of multiple
time-varying data sets (called ensemble members) that are
generated by computational simulations of one or more state
variables across space. The variation among the ensemble
members arises from the use of different input conditions,
simulation models, and parameters to those simulations.

Ensembles are:

• Multidimensional in space (2, 2.5 or 3 dimensions) and
time;

• Multivariate, often comprising tens to hundreds of vari-
ables; and

• Multivalued in collecting several values for each variable
at each point.

Ensemble data sets are chiefly useful as a tool to quantify
and mitigate uncertainty and error in simulation results. These
errors can arise through faulty estimations or measurements of
the initial conditions, from the finite resolution and precision
of the numerical model, and from the nature of a numerical
simulation as an approximate model of an incompletely un-
derstood real-world phenomenon.

The main challenges in using ensembles stem from the
size and complexity of the data. For example, each of the
four daily runs of the SREF ensemble contains 21 members
comprising four models and eleven sets of input conditions.
Each member contains 624 state variables at each of 24,000
grid points and includes 30 time steps. A single day’s output
thus contains 84 members, each of which is a complex data
set that poses visualization challenges in its own right. When

Fig. 2. An example of the complexity of an ensemble data set. Here, surface
temperature data is shown at a single weather station across all valid forecast
hours. While this plot reduces the overall data, it is still too visually cluttered
to assist in data analysis beyond giving a notion of the general outcome.

information from all members is displayed together, as in the
plume chart in Figure 2, the result is visual chaos that conveys
only a general notion of the behavior of the predicted variable.
Although the overall envelope defined by the minima and
maxima can be discerned, the most likely outcome, the average
across members, or even the course of any one member is
difficult to extract. These challenges are exacerbated in more
complex data sets such as climate simulations that incorporate
24 different models instead of four.

II. RELATED WORK

Because of the complexity of the data we are working with,
this research must draw from numerous fields within scientific
and information visualization. Important topics include multi-
dimensional, multivariate and multivalued data visualization,
uncertainty visualization, statistical data display, and user
interactivity.

Current state-of-the-art techniques for displaying weather
and climate datasets include software systems such as
Vis5D [3] and SimEnvVis [4]. These systems include 2D
geographical maps with data overlaid via color maps, con-
tours, and glyphs, as well as more sophisticated visualization
techniques such as isosurfacing, volume rendering, and flow
visualization. Vis5D focuses on displaying the 5 dimensional
results of earth system simulations (3D space, time, and
multiple physical variables) by combining the visualizations of
multiple variables into a single image, and presenting a spread-
sheet of these visualizations to show the various members of
the simulation ensemble. SimEnvVis specializes in providing
a library of comparative techniques to investigate and analyze
multidimensional and multivariate climate-related simulation
data. The system includes methods to compare and track
features from a single simulation run, clustering to compare
simulation and measured data, and information visualization
approaches such as parallel coordinates to compare multirun
experiment results.

The main distinction between these previous efforts and
the approach presented here is our stress on understanding
the uncertainty available from the data by providing visual-



ization tools that emphasize the probabilistic characteristics
of ensemble data. Overviews initially drive the analysis of
ensemble data and highlight changes in uncertainty. Ensemble-
Vis provides a suite of statistical visualization tools to allow
the analyst to understand where variations in the data arise,
explore the relationships between ensemble members and
directly present unaltered data values.

Previous work in visualizing complex data types similar to
ensembles is extensive and can be investigated in a number of
surveys and general techniques. Visualization of multivalued,
multivariate data sets is a difficult task in that different
techniques for dealing with the complexity of the data take
effect through various stages of the visualization pipeline
and are highly application specific. Knowing when to take
advantage of these techniques through a categorization of
methods is of great importance [5]. Multivariate correlation
in the spatial domain is an often used approach for reducing
the complexity of the task of data understanding [6], as is
reducing the data to a hierarchical form which is conducive to
2D plots [7]. Likewise, the visualization of multidimensional
data is challenging and often involves dimension reduction and
user interaction through focusing and linking. A taxonomy of
such techniques is very useful in determining an appropriate
approach [8].

The most relevant work using ensemble type data views
the data in terms of probability distribution functions (PDFs)
describing the multiple samples at each location and each point
in time [9], [10]. Three approaches to visualizing this type of
data are proposed; a parametric approach which summarizes
the PDFs using statistical summaries and visualizes them using
color mapping and bar glyphs, a shape descriptor, which
strives to show the peaks of the underlying distribution on 2D
orthogonal slices, and an approach that defines operators for
the comparison, combination, and interpolation of multivalued
data using proven visualization techniques such as pseudo-
coloring, contour lines, isosurfaces, streamlines and pathlines.
While our approach also uses a variety of statistical measures
to describe the underlying PDF, Ensemble-Vis additionally
provides statistical views from a number of summarization
standpoints in a single framework allowing the user to direct
the data analysis, rather than automatically defining features
of interest.

A major challenge for ensembles is in the wealth of in-
formation available. Depending on the application and the
needs of the user, a single representation does not suffice.
For example, a meteorologist may be interested in regional
changes in temperature, as well as local variations at a specific
weather station. The solution to this problem is to provide
the user with multiple, linked views of the data [6], [11].
Such approaches let the user interactively select regions of
interest, and reflect those selections in all related windows.
The selection process can be through techniques such as
brushing [12], or querying [13]. One interesting technique uses
smooth brushing to select data subsets and then visualize the
statistical characteristics of that subset [14]. Many of these
methods use graphical data analysis techniques in the individ-

ual windows, such as scatterplots, histograms, and boxplots to
show statistical properties and uncertainty of the underlying
PDFs [15], [16]. The resulting collection of views provides
for complex investigation of the data by allowing the user to
drive the data analysis.

Much of our work is motivated by the growing need for
uncertainty information in visualizations [17]. Understanding
the error or confidence level associated with the data is
an important aspect in data analysis and is too often left
out of visualizations. There is a steadily growing body of
work pertaining to the incorporation of this information into
visualizations [18], [19], using uncertainty not only derived
from data, but also present throughout the entire visualization
pipeline. Specific techniques of interest to this work include
using volume rendering to show the uncertainty predicted by
an ensemble of Monte-Carlo forecasts of ocean salinity [20];
using flow visualization techniques to show the mean and
standard deviation of wind and ocean currents [21]; uncertainty
contours to show variations in models predicting ocean dy-
namic topography [22]; and expressing the quality of variables
in multivariate tabulated data using information visualization
techniques such as parallel coordinates and star glyphs [23].

III. ENSEMBLE-VIS

In this section we discuss Ensemble-Vis, a framework for
the visualization and analysis of ensemble data that empha-
sizes the probabilistic nature of the data. We highlight changes
in uncertainty across the ensemble members and provide
mechanisms for the investigation of areas deemed interest-
ing by the analyst. Multiple windows are used which share
selection, camera information and contents when appropriate.
Each window presents the data condensed in space, time, or
the multiple values at each point in order to highlight some
aspect of the data behavior. Combining these windows into a
single framework provides a unified platform for exploring the
high complexity present in ensemble data sets. Our framework
is presented in two prototypical systems, the SREF Weather
Explorer, and the ViSUS Climate Data application, which are
discussed in Section IV.

A. Work flow

Fig. 3. The typical flow of data analysis through Ensemble-Vis.

A typical ensemble analysis session follows the structure
shown in Figure 3. The user begins by connecting to a data
source and the choosing one or more variables to display. The
selected variable is used to populate a spatial-domain summary

view showing a statistical and spatial overview of data from
one time step as well as a time navigation summary view

showing a summary of the data over time. From here the user



can proceed in two directions. The trend analysis path reveals
answers to questions of the form “What conditions will arise
over time in a certain region of interest?” The condition query

path addresses questions of the form “Where are the following
conditions likely to arise and how probable are they?”

Since any investigation of average behavior is vulnerable
to the influence of outliers, we incorporate methods to view
ensemble members directly and include or exclude their effects
from the various views. This is useful not only in understand-
ing how each model influences the ensemble, but can also be
used to eliminate members which are characteristically biased
or unreliably predict specific regions across the spatial domain.

B. Data Sources

Ensemble data sets are usually too large for in-core pro-
cessing on a single desktop computer. Each run of the SREF
ensemble contains 36GB of data from each run; 106GB from
each day. The climate data runs numerous models using fairly
short time steps (15 minutes to 6 hours), over hundreds of
years, resulting in hundreds of terabytes of data. However,
unlike the simulations that generate the ensembles, we do
not need fast access to all the data at all times. An an-
alyst’s investigation of the ensemble typically reduces the
data by summarizing one or more of the spatial, temporal or
probabilistic dimensions. These sorts of summaries are well
suited to out-of-core methods. The ViSUS system traverses the
ensemble using a streaming architecture. The SREF Weather
Explorer stores the ensemble in a relational database and
translates numeric queries into SQL.

C. Ensemble Overviews

Immediately after connecting to a data source and selecting
a variable of interest, the scientist is presented with a set of
overview displays of the ensemble. A high-resolution spatial
display shows mean, standard deviation, and local minima
and maxima for a given time step. An arrangement of lower-
resolution multiples into a filmstrip shows the same infor-
mation over several time steps at once. The user can scroll
through the filmstrip and transfer any time step to the high-
resolution display.

1) Spatial-Domain Summary Views: The purpose of the
spatial-domain summary view is to present a picture of the
mean ensemble behavior at one point in time. Simple summary
statistics such as mean and standard deviation work well as an
approximate description of the range of values at each point.
Since this is an overview, the approximation is sufficient:
we need not convey precise scalar values for both mean and
standard deviation. An approximate sense of the value of the
mean plus an indication of high or low standard deviation is
all that is required.

The spatial summary view also provides an indication of
the uncertainty present across the spatial domain. Standard
deviation, which characterizes the variation present in the data,
is a measure typically used to describe the uncertainty of a data
set. In these summary views uncertainty is expressed either
through color, height, or contours depending on the needs

Fig. 4. We illustrate mean and standard deviation simultaneously using
color plus overlaid contours, as shown on the left. The user can toggle the
assignment of mean and standard deviation to colors and contours, as shown
in the close ups on the right which both show the same regions of data.

Fig. 5. Examples of our color maps. We use a subdued rainbow color map
and a sequential low to high map for scalar variables and two categorical
color maps for labeling.

of the user. From this presentation, the analyst can quickly
identify regions where the ensemble members converge or
diverge indicating the quality of the mean value as an indicator
of the predicted value.

By default, we display the variable mean through color
mapping and the standard deviation using overlaid contours
(Figure 4, left). Although the rainbow color map is generally
a poor choice for scientific visualization [24], it is famil-
iar for variables such as temperature and relative humidity
through its widespread use in print, television and online
weather forecasts. For other variables such as surface albedo
or probability of precipitation we allow the user to use a
different sequential color map, examples of which can be seen
in Figure 5. Still other scalar variables such as height and
pressure are most easily interpreted using contour maps instead
of colors. For these, the analyst can reverse the variable display
so that the mean is shown as evenly spaced contours and the
standard deviation is assigned to the color channel, as shown
in Figure 4, right.

We can also display standard deviation using a height
field instead of contours. This is particularly effective when
displaying 2D data projected onto the globe, as is common in
climate simulations and shown on the left side of Figure 11,



Fig. 6. The filmstrip summary view. Each frame in the filmstrip shows a single time step from the ensemble. The filmstrip also displays selection information
from other views to help the user maintain a sense of context.

since the height is easily visible along the silhouettes of the
globe.

Although the mean and standard deviation cannot capture
nuances of the underlying distribution, they are nonetheless
appropriate here for two reasons. First, many observed quan-
tities and phenomena in meteorology are well modeled by
a normal distribution [25]. Second, many ensembles do not
have enough members to support more sophisticated, precise
characterizations.

2) Time Navigation Summary Views: In addition to the
spatial summary view, which shows a high-resolution overview
of a single time step, Ensemble-Vis also provides time naviga-
tion summary views which give an understanding of the data
evolving through time.

The filmstrip view, sacrifices visible detail in order to allow
quick traversal and inspection across time steps. As shown in
Figure 6, the current variable is shown across all time steps
using small multiples of the summary view. All of the frames
in the filmstrip view share a single camera to allow the analyst
to zoom in on a region of interest and observe its behavior over
time. The user can scroll through the time steps and select
the hour of interest. Double-clicking a frame transfers it to
the higher-resolution summary, query contour views, and trend
chart views. This view allows the user to quickly select specific
forecast hours, for example surface temperature 24 hours after
initialization, or to quickly scroll through time and look for
interesting events.

Animation is also used as a means to display time infor-
mation. In this case, the change of data with time is reflected
in the summary view. This view emphasizes the evolution of
the data and is best demonstrated through the climate data in
which the animated globe gives a clear sense for the velocity
of large-scale phenomena and global trends.

D. Trend Charts

The spatial and temporal summary displays discussed above
summarize the distribution of values at each point into two
numbers in order to preserve spatial information. In situations
where the analyst specifies a region of interest – for example,
when forecasting the weather for a particular region – we can
instead aggregate over space and display detailed information
about the distribution of values at each time step. This not
only provides better detail at specific spatial locations, but also

gives information about the behavior of the members making
up the ensemble. Ensemble-Vis provides two such views.

Fig. 7. Quartile trend charts. These charts show the quartile range of the
ensemble within a user-selected region. Minimum and maximum are shown
in blue, the gray band shows the 25th and 75th percentiles, and the median
is indicated by the thick black line.

Fig. 8. Plume trend charts. These charts show the average of each ensemble
model within a user-selected region of interest. Each model type is color-
coded. The thick black line shows the mean across the entire ensemble.

1) Quartile Charts: A quartile trend chart (Figure 7) dis-
plays the minimum, maximum, 25th, 75th percentiles and
median of a particular variable in a selected region over time.
We compute these values over all the data for all ensemble
members at each point in time. Order statistics give the analyst
a view of the range of the possible outcomes as well as a notion
of where the central 50% of the data values fall. This can be



useful in quickly identifying minimal and maximal bounds
at each forecast hour, as well as highlighting the range in
which the majority of the members fall. As with the choice
of mean and standard deviation in the summary view, this is
most appropriate for unimodal distributions and can become
less informative when the data distribution is more complex.

2) Plume Charts: A plume chart (Figure 8) shows the
behavior of each ensemble member over time. Instead of
aggregating all ensemble members into a single bucket (as
is the case with quartile charts) we compute the mean of
each ensemble member’s values over the region of interest
separately. Data series in the plume chart are colored so that
all series that correspond to a single simulation model will
have similar colors. The mean across all ensemble members
is shown in black.

The plume chart is the most direct access to the data offered
by our approach. Although it averages over the selected region,
the analyst can obtain a view of raw values by selecting a
region containing only a single data point. Since it displays
data directly the plume chart also helps distinguish outliers and
non-normal distributions. If the distribution is approximately
normal, the mean represents the most likely outcome and
should fall near the center of the members. If the distribution
is non-normal, the mean is a poor estimation of the outcome,
and the members will have high variation away from the mean
line. Analysts can also track individual models of interest, or
can discount heavily biased models. In addition, multimodal
distributions can be detected since multiple strong clusters of
members are readily apparent.

E. Condition Queries

Fig. 9. The condition query view shows the probability that a given set
of conditions will occur as a set of nested contours. Contour values are the
fraction of the ensemble that predicts that the condition will be satisfied. In this
figure we see a query for heatstroke danger (defined as relative humidity above
50% and temperatures above 95◦ Fahrenheit) and the resulting visualization.

The summary views and trend charts described above are ex-

ploratory views that illustrate behavior and possible outcomes
over a region of interest. Another approach to ensemble data
is for the analyst to specify a set of circumstances and ask for
information about where they may occur. Such query-driven

techniques [13] constrain the visualization to the subset of
data deemed interesting by the analyst and discards the rest.
We refer to these sets of circumstances as conditions.

Once an analyst specifies a condition, as shown in the inset
of Figure 9, the application translates it into a form understood
by the data repository and retrieves a list of points where one
or more ensemble members satisfies the condition. This list
of points is transformed into an image where the scalar value
at each point indicates the number of ensemble members (or,
alternately, the percentage of the ensemble members) that meet
the condition criteria. That image can in turn be displayed
directly or (more usefully) drawn as a series of contours on a
summary display.

In our example implementation using the SREF weather
ensemble, conditions are translated into SQL and use the
GROUP BY and COUNT constructs to aggregate individual
data points into the image that represents the query contour.
Although we used a very simple dialog to specify a condition,
there exist a wide variety of query languages and mechanisms
for visual query specification. Our component-based approach
makes it straightforward to integrate any of these so long as
an appropriate translation to the data source’s native language
exists.

F. Multivariate Layer Views

Although most ensemble analyses are performed using a
single variable at a time, there are instances where an analyst
wishes to compare multiple variables (especially multiple
horizontal slices of a single 3D variable) across space at a
single time step. This arises often when dealing with variables
such as cloud structure that exhibit complex behavior across
different altitudes. We display such slices using multiple 2D
views in the same window. The data are displayed using a
common color map in a single window. The analyst specifies
the number of slices to be displayed and can also include a
spatial summary (mean and standard deviation) along with the
slice images. This type of display is assistive in comparing, for
example, distinct time steps in the simulation, or the changes
in a variable across the spatial domain. Figure 11, right, shows
the minimum and maximum values for surface temperature for
January 12, 1900, as well as the standard deviation for that
data.

G. Spaghetti Plots

A spaghetti plot [26], so named because of its resemblance
to a pile of spaghetti noodles, is a tool frequently used in
meteorology to examine variations across the members of
an ensemble over space. An analyst first chooses a time
step, a variable and a contour value for that variable. The
spaghetti plot then consists of the isocontour for the chosen
value for each different member of the ensemble. When the
ensemble is in agreement, as shown in Figure 10, left, the
contours will fall into a coherent bundle. When minor variation
exists, a few outliers may diverge from the bundle (Figure 10,
right). As the level of disagreement increases the contours



Fig. 10. A spaghetti plot displays a single isocontour from each ensemble
member in order to allow examination of differences across space. (Left)
When the members are in agreement the contours form coherent bundles.
(Right) When ensemble members disagree, as in the in upper left region of
the image, outliers diverge from the main bundle.

become disordered and tangled and the spaghetti plot comes
to resemble its namesake.

As with the plume charts, we assign colors to the contours
in a spaghetti plot so that contours that arise from the same
simulation model will have similar colors. We also allow the
user to enable and disable different ensemble members in order
to inspect and compare the behavior of different models or the
effects of different perturbations of initial conditions.

H. Coordination Between Views

The various views in Ensemble-Vis coordinate their dis-
played variables, time steps, camera parameters and selections
to the greatest degree that is appropriate. Lightweight opera-
tions such as changes to the camera, selection, image/contour
assignment and contour level (for the spaghetti plot) take effect
immediately. More expensive operations such as changing the
current variable, executing a condition query or generating
trend charts from a selection require that we retrieve new data
from storage. Since these operations take several seconds to
complete we defer execution until the user specifically requests
them.

IV. IMPLEMENTATION DETAILS

We have implemented the algorithms described in Sec-
tion III in two prototype systems for weather and climate
simulation analysis. This demonstrates the flexibility of our
component-based approach. In this section we describe briefly
the purpose and system architecture of each prototype. Work-
ing memory is not a major concern for either system: including
OS overhead, our prototypes ran in under 300MB of RAM.

The SREF Weather Explorer application permits ensemble
analysis of a single instance of the NOAA Short-Term Ref-
erence Ensemble Forecast (SREF) data set. Since the SREF
simulates weather conditions only in a region surrounding
North America it lends itself to 2D display. This prototype
incorporates 2D summary views, a filmstrip view, an ensemble
consensus view using condition queries, spaghetti plots and
trend charts, a screenshot of which can be seen in Figure 1.
The visualization algorithms in SREF Weather Explorer are
implemented as filters in VTK [27], a well-known open-
source toolkit for scientific visualization. The user interface

components were implemented as Qt widgets [28]. We plan
to release these components as open source late in 2009.

We used standard relational databases as the storage engine
for the SREF ensemble data. This allowed our application to
offload the task of storage management and thus run identi-
cally on machines ranging from a five-year-old dual-processor
Linux workstation to a Mac Pro with two 4-core processors
and 16GB of local memory. By using VTK’s modules for
database connectivity we were able to switch between different
database instances with no additional effort. These included
one full 36GB run of the SREF ensemble stored on a 56-
node Netezza parallel database appliance as well as a 5.5GB
subset of the ensemble stored in a MySQL instance running
on a single-processor laptop. From the user’s perspective, the
only difference was the hostname entered during application
startup.

Fig. 11. Screenshot of the ViSUS prototype. This system is integrated into
the CDAT framework used by climate scientists.

Climate scientists use a variety of special data formats and
have domain specific requirements not common in general
scientific visualization tools. The Program for Climate Model
Diagnosis and Intercomparison (PCMDI) has developed a
suite of Climate Data Analysis Tools (CDAT), specifically
tailored for this community, and available at http://www2-
pcmdi.llnl.gov/cdat. ViSUS, our prototype, integrates into the
CDAT infrastructure by providing a lightweight and portable
advanced visualization library based on an out of core stream-
ing data model. ViSUS is developed to address the specific
needs of climate researchers, and as such has specialized
features such as projecting the data onto a model of the Earth,
masking out land and ocean, and enhancing the visualizations
with geospatial information such as satellite images and ge-
ographic boundaries. The algorithms contained in ViSUS are
implemented in C++, OpenGL and Python, and the system
uses FLTK for user interaction. A screenshot of the ViSUS
system can be seen in Figure 11.



V. CONCLUSION AND FUTURE WORK

In this article we have presented an approach to ensemble
visualization using a federation of statistical representations
that, when used in combination, provide an adaptable tool
for the discovery and evaluation of simulation outcomes. The
complexity of the ensemble data is mitigated by the flexible
organization offered by our approach and the coordination
between views allows data analysts to focus on the formulation
and evaluation of hypothesis in ensemble data. The strengths
of our approach include little or no preprocessing cost, low
memory overhead through reliance on queryable out-of-core
storage and easy extension and adaptability to new domains
and new techniques. We have demonstrated Ensemble-Vis in
two different software prototypes that allow the analysis of
large data sets with hardware requirements easily met by
present-day laptops.

We see three principal directions for future research. First,
our methods are specialized for 2- and 2.5-dimensional data.
An approach to 3D data sets must address the classic problems
of clutter and occlusion. We might be able to exploit the ob-
served tendency of the amount of ensemble variation to change
relatively slowly in space and time. Second, we need better
methods for the display of mean and standard deviation. Here
we will exploit the use of standard deviation as an approximate
indicator of ensemble disagreement instead of a precise scalar
variable. Finally, we will expand our methods to gracefully
handle non-normal, multimodal and higher dimensional prob-
ability distributions. This will require runtime characterization
of the shape of a distribution, perhaps including automatic
model fitting and trend charts that show histograms as well as
summary statistics and ensemble members.

The rapid increase in computational capacity over the past
decade has rendered ensemble data sets a viable tool for
mitigating uncertainty and exploring parameter and input sen-
sitivity. Visualization and data analysis tools are needed to help
domain scientists understand not only the general outcome
of the data, but also the underlying distribution of members
contributing to that outcome. We believe that Ensemble-Vis
constitutes early progress toward the many new challenges
posed by these large, complex and rich data sets.
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