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Abstract

We present a system for haptically rendering large
height field datasets. Inasmuch as, height fields are
naturally mapped to piecewise bilinear patches. We
develop algorithms for intersection, penetration depth,
and closest point tracking using bilinear patches. In
contrast to many common haptic rendering schemes for
polygonal models, this approach does not require prepro-
cessing or additional storage. Thus, it is particularly
suitable for the large scale datasets found in geographic
and reverse engineering applications.

1 Introduction

Haptic interfaces augment the experience of a com-
puter user with touch and feel. Scenes are graphically
displayed, and with a haptic interface such as the Sens-
Able Phantom, the user can feel the surface of the
model through force feedback. Such an interface en-
hances the experience of the user beyond the visual by
allowing another avenue of exploration. The user feels
features and properties of the model that may not be
detected visually.

Current work in haptic rendering has concentrated
on polygonal models. To meet the fast update rates,
typically one kilohertz, required by haptic interaction,
preprocessing and additional storage is required. Geo-
graphic datasets may contain tens of millions of data
points, so general polygonal approaches are too slow to
render these models haptically.

Alternatively, we treat height fields as collections
of bilinear patches. Bilinear patches naturally provide
a smooth force response across the patch and suffer
from fewer artifacts across patch boundaries such as
tessellation artifacts associated with polygonal models.

To successfully employ bilinear patches in a haptic
rendering system, this paper develops fast techniques
for approximating the intersection of rays with patches,

Figure 1. A screen shot of the system using
the Sugarhouse dataset. The red sphere is
the haptic endpoint.

computing penetration depths between a point and a
patch, and tracking the closest point on a mesh of
patches during the movement of the haptic interface
point. The grid structure of the height field allows
the necessary computations to be locally constrained
to patches in a small neighborhood of the haptic end-
point.

These techniques are then combined into a haptic
rendering system for large height field datasets. A
screen shot of the system using a geographical dataset
is depicted in Figure 1. Herein, we establish that bilin-
ear patches are a viable alternative to polygonal rep-
resentations of height field datasets, and produce com-



parable performance by minimizing the number of col-
lision detection calculations and allowing for fast point
tracking.

2 Background

The previous work in haptic rendering examined
here is separated into model representation, haptic con-
tact models, and the haptic display of surface proper-
ties.

2.1 Model Representations

Today, the most common geometrical representation
of models in computer graphics is a set of triangles, or
a triangular mesh. The pervasiveness of this represen-
tation has influenced computer haptics and much work
has focused on the haptic interaction with triangular
meshes. Problems are encountered while haptically
rendering triangular models when the mesh contains
cracks and holes, or when the topological connectiv-
ity between triangles is absent. Haptic traversal of the
model is susceptible to failure in these instances be-
cause inconsistencies in topology will effect the forces
applied to the haptic interface. Haptic rendering algo-
rithms which present solutions to these types of prob-
lems, like [6] and [11], have treated the contacted tri-
angles as constraint planes in order to reliably move
across a surface. With large models however, the hap-
tic interface point may need to cross many triangles to
reach a local minimum, and the number of constraint
planes may exceed what can be computationally sus-
tained at haptic rates [10].

If triangle connectivity information is available, a lo-
cal gradient search can replace the more complicated
constraint plane solution [2]. This approach is used
to interact haptically with high resolution triangular
models. The local search is achieved in nearly constant
time given the temporal coherence of haptic interaction
rates. However, the models still require a hierarchical
bounding volume fitting and storage in order to effi-
ciently perform the collision detection used to initialize
the method.

In [10], a triangulated search algorithm was adopted
to haptically render height field data. Rather than
searching along the triangle faces, an edge-based search
was used to increase the interaction speed with large
datasets. Properties of grid data were used to reduce
the collision detection time by considering only the tri-
angles in the region of the interaction point. While
this technique was shown to be effective, there remains
the possibility of incorrect minimization from the edge
search, and the introduction of discontinuity artifacts

through the choice of how to facet the quadrilateral
data. Also, it is not clear that the common technique of
force-shading to smooth the force response over faceted
data would be applicable to the edge search method.

While polygons are the most popular model repre-
sentation used with haptic interaction, there has also
been work on other model representations such as
NURBS [8][9] and implicit surfaces [7]. These meth-
ods also utilize local tracking to reduce the complexity
of the haptic computation, and can take advantage of
the smoothness of the data to improve the haptic ren-
dering.

2.2 Haptic Contact Models

Haptic contact models simulate the interaction be-
tween the endpoint of the haptic device and the model.
This interaction can be thought of as a massless point
moving along the object [11], a sphere proxy contacting
the model [6], or two polygonal models coming in con-
tact with each other [3]. The latter of these techniques
is commonly employed in virtual prototyping environ-
ments to better understand the interactions between
two objects. A similar approach models the haptic de-
vice as a ray rather than a single point to simulate the
contact between the tip and side of the haptic device
against an object [1]. The massless proxy technique
however is most closely related to the work presented
here to simulate the interaction between the user and
the model.

The function of the proxy point [6] and the god-
object [11] techniques is to keep a position constrained
to surface facets of the model such that the distance
from the haptic endpoint to the proxy point is mini-
mized, and is thus the virtual position of the haptic
interface on the surface. The haptic endpoint itself
is not constrained, and may move about the object
freely. The proxy point maintains a constrained po-
sition that does not penetrate the surface, and moves
across the surface from the previous location of the
haptic endpoint to the current position, to arrive at a
local minimum distance. A main advantage of proxy
type algorithms is the ability to haptically render in-
finitely thin objects such as planes or polygons. The
proxy cannot slip through the polygon, and thus more
freedom is given as to how the models are represented.
Moreover, the amount of force to return to the user is
directly proportional to the distance from the haptic
endpoint to the proxy point.

The haptic contact model that this work is most
closely related to is the proxy graph approach [10]
which uses two modes of operation depending on the
current relationship between the haptic endpoint and



the model. When the haptic endpoint is not in contact
with the model and an intersection with the model does
not occur, free space minimization allows the proxy
point to proceed directly to the haptic endpoint. If
an intersection does occur, the algorithm enters con-
strained minimization to determine a local minimum
distance from the proxy point on the surface to the
haptic endpoint. In this mode, the proxy point traces
along vertices of the model to locate the edge or face
on which the local minimum resides. Once the edge or
face is found, the orthographic projection of the goal
point (haptic endpoint) is verified to be on that edge
or face.

The haptic contact model presented in this paper is
similar to the proxy graph approach in that there are
two different modes, a collision detection mode and a
trace along the model to determine the proxy point
when the haptic endpoint is in contact with the model.
In contrast to the proxy graph algorithm, the approach
presented here begins the search for the resting point
of the proxy at the first location of possible intersec-
tion. This ensures that the local closest point found is
the first location on the surface intersected by the hap-
tic endpoint. If the local closest point resides on the
interior of the patch, it is kept as the local minimum,
else a neighborhood of patches is checked for a clos-
est point, and the search moves to the patch closest to
the goal location. This approach quickly determines a
local minimum, and also allows the use of concave mod-
els which can cause naive local closest point searches
to infinitely loop.

2.3 Surface Properties

An advanced feature added to many haptic render-
ing systems is the ability to render the properties of
the surface. A common such feature is force shading
[4] which interpolates surface normals to make the sur-
face feel smoother and reduce the effects of polygonal
boundaries on the haptic feedback. In addition, fric-
tional surfaces and textures can be haptically rendered
to improve the feel of the model [2].

3 System Overview

The haptic rendering system presented here uses a
SensAble Phantom interface device running on a dual
processor Pentium 4 2.4 GHz Linux computer with a
gigabyte of RAM and a GeForce 4Ti 440 graphics card.
The haptic and graphics displays are separated into
threads with the haptic display running at highest pri-
ority. Because of the large nature of the input data,
the graphics display uses a level-of-detail approach to

display the data at a lower resolution than used for the
haptic display to ensure a fast update rate for visual
display.

4 Bilinear Patch Approach

Previous Haptic Position

Proxy

Current Haptic Position

Figure 2. Cutaway of the system in use (the
proxy is enlarged for viewing).

The approach presented here begins by building a bi-
linear patch grid from a height field which is typically
an image containing depth information. Each bilin-
ear patch interpolates among four neighboring pixels,
creating a grid of patches which allows for fast index-
ing into the data. The haptic model maintains a proxy
point which follows the haptic movement along the sur-
face while the haptic endpoint is in collision with the
model. Collision with the model is determined by de-
tecting the intersection of the ray between the previ-
ous and current haptic positions with the surface of the
model. The proxy as well as the ray from the previous
to current haptic endpoints can be see in figure 2. Fi-
nally, forces proportional to the penetration depth are
applied when the current haptic endpoint is determined
to be in contact with the model.

4.1 Model Representation

The height field data consists of images with depth
values encoded in the alpha channel. This data repre-
sentation is a rectangular grid which allows direct rep-
resentation using a bilinear patch grid. For every four
data points in an image, a bilinear patch is constructed
as illustrated in Figure 3. Thus, with the exception of
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Figure 3. Points P00, P10, P11 and P01 are the
four vertices of the center bilinear patch.

positions on the edges of the images, all data points
influence four bilinear patches.

Each bilinear patch is constructed by interpolating
between the four data points. Every data point spec-
ifies a vertex of the patch, so a combined linear inter-
polation is computed in the u-v parameters as follows:

P (u, v) = uvA + uB + vC + D (1)

where

A = P11 − P10 − P01 + P00 (2)

B = P10 − P00 (3)

C = P01 − P00 (4)

D = P00 (5)

and P00, P01, P10, and P11 are the four vertices of the
patch, having 3-space coordinates. Taking advantage
of the regularity of the grid allows for the simplification
of the bilinear patch equation. Since the neighboring
grid point are always 1 unit apart in x and y (we assume
z to be the depth coordinate), the x and y equations
for each patch can be simplified so that we solve for
u and v separating the vector equation into respective
components directly.

Px(u, v) = u + Dx (6)

Py(u, v) = v + Dy (7)

where Dx and Dy are the x and y components of equa-
tion (5).

Some of the benefits of using bilinear patches to rep-
resent height field grids are that bilinear patch grids are
simple, direct representations of the height field grids
that requires no preprocessing of the data and preserve
all topological information. Bilinear patches also allow
for a direct 1-1 mapping from 2 to 3 space and back
and interpolation between data points is implicit in the
representation.

Proxy

Current Haptic Position

Figure 4. A close-up from underneath the
model of the proxy and haptic position.

4.2 The Haptic Model

During the haptic exploration of the model, a ray
from the previous to the current positions of the hap-
tic endpoint is used to determine whether the haptic
position collides with the model. Keeping track of the
previous position provides the direction of penetration,
and ensures stability of the computed intersection. If
the haptic endpoint is determined to be in contact with
a model, a proxy point tracks the position of the hap-
tic endpoint on the surface of the model as shown in
figure 4. The figure uses a sphere to visually represent
the massless proxy. The proxy position is not allowed
to penetrate the model, and once a collision is found,
the proxy follows along the surface of the model until it
rests at the closest location to the current haptic end-
point. If no collision is found, and the ray from the pre-
vious to current haptic position lies entirely outside the
model, the proxy point is set coincident with the cur-
rent haptic endpoint. Using a proxy point constrained
to the surface of the model ensures that features of the
model are not omitted once the haptic endpoint enters
the model and also allows for infinitely thin models.

4.3 Haptic Update Algorithm

The following steps must occur during each update:

1. Determine if an intersection is possible.

2. Find the local point closest to the haptic endpoint.

3. Check if the haptic endpoint is inside the model.

4. If the endpoint is inside the model, apply forces.



4.3.1 Collision Detection

The search for a possible intersection begins at the pre-
vious haptic position and follows the projection of the
haptic ray along the surface. This ensures that the first
intersection found is the first possible location of a col-
lision between the haptic endpoint and the model. If
the state of the previous haptic position was already
determined to be in contact with the model, the patch
containing the local closest point from the previous it-
eration is used as the starting patch for the local clos-
est point calculation, and no collision detection is pre-
formed.

To determine the model location of potential inter-
sections, the ray from the previous to the current hap-
tic positions is projected into 2-space. This is a simple
mapping of the x and y coordinates of the ray end-
points into the bilinear patch grid. Based on the scale
and placement of the model, the x and y coordinates of
the ray endpoints can be used to index into the bilinear
patch grid. Once the bilinear patches containing the
two endpoints of the ray are found, an incremental line
drawing algorithm finds all bilinear patches through
which the ray passes. This set of bilinear patches rep-
resents the possible locations of an intersection.

Figure 5. Both rays A-B and C-D pass the
intersection test, but only AB intersects the
model.

For every patch in the set of patches along the path
of the ray, the maximum height of the patch is com-
pared against the minimum height of the ray. The
maximum height of the patch is the greatest z-value of
the four patch vertices, and the minimum ray height
is the smallest z-value between the two endpoints of
the ray. The comparison of these two values reveals
whether an intersection of the ray with the model is
possible. If the minimum height of the ray is below
the maximum height of the patch, an intersection may
have occurred in this patch. Figure 5 illustrates two
possible scenarios. Both rays in the figure satisfy the
intersection condition, however the C-D ray does not

actually intersect the model. This is not a problem
however, because the final determination of a collision
is based on the local closest point; this operation only
estimates a starting position for the local closest point
search. If the last patch in the ray path is reached and
the intersection condition is not found to be true dur-
ing this iteration, then there was no collision with the
model.

4.3.2 Local Closest Point

The local closest point calculation finds the point on
the surface of the model that is closest to the current
haptic endpoint. The distance between a point and a
parametric surface is described by

D(u, v) = ||σ(u, v)||2 (8)

where
σ(u, v) = (S(u, v) −P). (9)

Minimizing equation (8) corresponds to finding the
parameter values of the local closest point on that sur-
face and can be done by finding the simultaneous roots
of the partial derivatives of 8, as in

σ(u, v) · Su = σ(u, v) · Sv = 0. (10)

Multi-dimensional Newton’s method uses the Jacobian
of the system of equations to solve. In the case of a
bilinear surface, this Jacobian is simple to evaluate, as
the higher derivatives are zero. The Jacobian to invert
to find the simultaneous roots becomes
[

Su · Su σ(u, v) · Suv + Su · Sv

σ(u, v) · Suv + Su · Sv Sv · Sv

]

,

(11)
with partials of S(u, v) denoted by appropriate sub-
script. Because of the lack of higher derivatives on
the bilinear patch, Newton’s method is stable for these
computations. A more detailed explanation of New-
ton’s Method can be found in [5].

Newton’s method may converge to a solution out-
side of the domain of the patch. If each coordinate
of the point is between 0 and 1, then the local closest
point is within the current patch and can be kept for
collision determination and force calculations. If the
coordinates of the point are outside the domain of the
patch however, a search of a neighborhood of patches
must occur to ensure that the local closest point actu-
ally resides on the model, rather than below or inside.

The neighborhood of patches to search is based on
the location of the bounded closest point. The bounded
closest point is the point on the current patch closest to
the goal location. This point is restricted to the bound-
aries (edges and vertices) of the patch and is calculated



Figure 6. Bilinear patch neighborhoods are
determined by the bounded closest point. A
vertex point gives a three patch neighbor-
hood, an edge point gives a single patch
neighborhood.

by comparing and using the smallest of the minimum
distances from the goal location to each edge and each
vertex. If the location of the bounded closest point is
on an edge, the patch that shares that edge is the only
patch in the search neighborhood; if the point is on a
vertex, the three patches sharing that vertex (if they
exist in the model) are the search neighborhood. This
is illustrated in Figure 6.

Figure 7. The dot product of the penetration
vector (CHP-LCP) and the surface normal de-
termines if a collision occurred.

Searching a neighborhood of patches allows the algo-
rithm to terminate once a local closest point within the
domain of the current patch is found, or if the bounded
closest point of the current patch is closer than any
point in the neighborhood of patches. The latter case
often occurs in concave regions of a model because the
local closest point resides on an edge or vertex. A naive
local closest point search will infinitely loop between
the patches that share the location of the local closest

Model Bilinear Patches Update Rate
Sugarhouse 275,400 968 kHz

Moab 1,559,844 967 kHz
Devils Hole 1,514,496 975 kHz

Table 1. Model size and haptic update rates.

point. The neighborhood search eliminates the loop,
and quickly finds the correct placement of the local
closest point.

4.3.3 Collision Determination

The next step in the haptic update algorithm deter-
mines if the haptic endpoint is in contact with the
model by finding the sign of the dot product of the
penetration vector and the surface normal at the local
closest point. The penetration vector is the vector from
the current haptic position to the local closest point.
The surface normal is either the normal to the sur-
face at the local closest point, or if the bounded closest
point was found to be located on a vertex or edge, the
average of the surface normals at the edge or vertex of
each adjacent patch. A positive dot product indicates
that the current haptic endpoint is in contact with the
model, and that forces should be applied. A negative
dot product indicates that no forces should be applied,
even if a collision was found. This is the case when
the haptic endpoint leaves the model. Both cases are
illustrated in Figure 7.

4.3.4 Force Calculation

The calculation of the force vector is based on the di-
rection and magnitude of the penetration vector. The
local closest point found in the previous step is used as
the proxy position of the haptic interface on the surface
of the model. From the proxy point, force is applied in
the direction of the penetration vector, with strength
proportional to the penetration magnitude. Because
the neighborhood search for local closest point can re-
strict the point to an edge or vertex, the force vector
will smoothly pass over bilinear patch boundaries.

5 Results

The datasets used by this system are depth images
of topological data. The resolution of the data is 1 me-
ter per unit vertically, 10 meters per unit horizontally.
Thus, a single bilinear patch represents 10 square me-
ters of land area which is why the elevation changes are
so prominent in the images.



Table 1 gives the rate at which the system updates
the haptic device for three different models. The rates
reflected in the table describe the average rate of the
various update states including the local closest point
search, collision determination, and force reiteration
based on non-movement of the haptic endpoint. The
resolution of the models corresponds to a close inves-
tigation of the data, resulting in the crossing of only a
few patches per update. Hence, the size of the model
does not influence the update rate because the haptic
update algorithm is performed over only a small num-
ber of patches. This is significant because both the
local closest point search and collision detection have
update rates of about 200 kHz. Thus, around 200,000
patches can be searched before updates rates become
too slow for haptic rendering.

Figure 8. An error scenario in which the haptic
ray passes through the left peak. The first
iteration finds the local closest point at 1. The
second iteration finds a closer and final local
closest point at 2.

A possible problem with the approach presented
here is that the algorithm can pass through high fre-
quency data or the user can move the haptic endpoint
fast enough so as to pass through features of the model.
As figure 8 shows, the haptic ray moves through the
two peaks in a single haptic update. Upon first itera-
tion, the local closest point algorithm rests at position
1. This position would produce forces if used as the
final position, however, the second iteration finds posi-
tion 2 which is closer to the goal location. Position 2
does not result in applied forces, and thus the peak is
passed through without resistance.

While this scenario is an obvious problem, its occur-
rence is rare, and a solution to the problem would be
restrictive. Haptically rendering high frequency data
would force the algorithm to apply forces from every
bilinear patch in the patch of the haptic ray, thus forc-
ing the haptic endpoint to halt at each patch. Not
allowing the user to move the haptic endpoint through

data in a single swipe would limit how fast the user
could move the haptic device, and thus eliminate the
possibility of haptic exploration of data at a high level.
The typical haptic session however, displays the data
such that only a few bilinear patches are crossed dur-
ing a single time segment, and the problem is avoided
almost always.

6 Conclusion

Figure 9. A screen shot of the Devil’s Hole
dataset.

Presented here is the essential structure of a new
approach to haptically render large datasets using bi-
linear patches. The method minimizes the number of
collision detection operations required per haptic up-
date by taking advantage of the structure of bilinear
patches and data. Additionally, bilinear patches do not
require techniques to smooth tessellation, and offer a
natural mapping for representing the grid data.

The current implementation is structured for fast ex-
ploration of the terrain data. A more detailed investi-
gation of a small region of the dataset requires a higher
resolution of data to be displayed. Work in progress
incorporates a multi-res approach to the graphics dis-
play with this haptics approach, thus allowing the user
to carefully examine fine details in the data. Table 1
shows that this system’s haptic update rates are fast
enough to explore datasets much larger than the ones



Figure 10. A screen shot of the Moab dataset.

we have been testing. However, to prepare for both
rapid and fine level interrogation of datasets with sizes
that are at least several orders of magnitude larger, we
are extending the haptics algorithms and data struc-
tures to a multi-resolution approach as well.
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