
THREE-DIMENSIONAL LINE TEXTURES FOR

INTERACTIVE ARCHITECTURAL

RENDERING

by

Kristin Carrie Potter

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

School of Computing

The University of Utah

May 2003

Copyright c© Kristin Carrie Potter 2003

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

Kristin Carrie Potter

This thesis has been read by each member of the following supervisory committee and
by majority vote has been found to be satisfactory.

Chair: Richard F. Riesenfeld

Peter Shirley

Charles Hansen

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the thesis of Kristin Carrie Potter in its final form and have
found that (1) its format, citations, and bibliographic style are consistent and acceptable;
(2) its illustrative materials including figures, tables, and charts are in place; and (3) the
final manuscript is satisfactory to the Supervisory Committee and is ready for submission
to The Graduate School.

Date Richard F. Riesenfeld
Chair: Supervisory Committee

Approved for the Major Department

Thomas C. Henderson
Chair/Director

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

Architects and other design professionals create presentation graphics that in-

tentionally avoid full realism. Successfully automating this style of imagery fa-

vorably affects the speed and cost of producing such illustrations. Automatically

creating line textures allows a user interactively to modify and navigate a three-

dimensional (3D) architectural scene while still maintaining the aesthetic appeal

inherent of hand-drawn illustrations. Carefully choosing the set of lines to be

drawn allows the direct use of 3D line primitives on commodity graphics hardware.

The resulting system produces interactive drawings of high visual quality that are

free of animation artifacts such as blurring or popping. This system also allows the

level of abstraction of the rendered scene to change dynamically.

CONTENTS

ABSTRACT . iv

LIST OF FIGURES . vi

ACKNOWLEDGMENTS . vii

CHAPTERS

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Problem Statement . 5

2. PREVIOUS WORK . 8

2.1 Nonphotorealistic Rendering . 8
2.2 Architectural Rendering . 11

3. LINES VS TEXTURE . 15

3.1 Line Scan Conversion . 15
3.2 Antialiasing . 17
3.3 Texture Mapping . 18
3.4 Comparison . 19

4. ALGORITHM . 21

4.1 Feature Edges . 21
4.2 Texture Placement . 25
4.3 Hand Generated Texture Clusters . 27
4.4 Clipping . 29
4.5 Sketchiness . 31
4.6 Argument Against Level of Detail . 32

5. RESULTS, CONCLUSION AND

FUTURE WORK . 34

5.1 Results . 34
5.2 Future Work . 35
5.3 Conclusion . 37

REFERENCES . 38

LIST OF FIGURES

1.1 An example image from an interactive session with the system. 5

3.1 Antialiased 3D lines. 16

3.2 Aliased (left) and antialiased (right) 3D lines. 18

3.3 3D lines (leftmost column), nearest filtered texture mapping (center
column) and linear filtered texture mapping (rightmost column). 20

4.1 Examples of (clockwise from upper left) brick, shingle, siding, and
stucco textures. 22

4.2 Texture is increased around crease and boundary edges to enhance
the features of the model. 23

4.3 Example of a crease edge, the dihedral angle is 90 degrees. 24

4.4 An example of a border edge. 25

4.5 The Perlin noise function (left). Threshold placed on the Perlin noise
function (right). 27

4.6 a) Threshold placed on Perlin noise. b) The placement of atomic tex-
ture elements. c)Texture clusters populated around atomic elements.
d) Texture is clipped to crease and boundary edges. 28

4.7 Four levels of sketchiness. 32

5.1 Screen shot of an interactive session using the Olympic Village model 35

5.2 Screen shot of an interactive session using the Olympic Village model 36

5.3 Screen shot of an interactive session using the Olympic Village model 37

ACKNOWLEDGMENTS

Thanks to Amy Gooch, Bruce Gooch and Peter Willemsen for their contribu-

tions to this work.

CHAPTER 1

INTRODUCTION

Architects and other design professionals create presentation graphics utiliz-

ing a stylized convention devoid of photorealism that communicates the diverse

aspects of a design. Intentionally avoiding full realism in different aspects of an

image allows the implicit communication of distinct ideas throughout a scene.

Successfully automating this style of imagery will favorably affect the speed and

cost of producing such illustrations and allow interactive modification and naviga-

tion through three-dimensional (3D) scenes while maintaining an adequate level of

aesthetic appeal implicit of hand drawn illustrations. A nontraditional approach

using automatically placed 3D lines rather than texture mapping can allow the

user interactively to manipulate the image while maintaining the speed needed for

interactive walkthroughs and aesthetic appeal of hand drawn illustrations.

1.1 Motivation

There exists a need for images within a vast spectrum between highly realistic

and completely nonphotorealistic depiction. A photorealistic image can lead a

viewer to inappropriate assumptions about the validity, accuracy, and degree of

certainty of the objects in the scene because the image tries to be as close to a

photograph as possible, which suggests that a camera could have actually taken

the picture. Many computer-generated images are created with the specific goal

of photorealism. This goal, however, may not be appropriate in certain contexts.

Often the output images of a CAD system are used to communicate the development

stages of the design process and other design concepts. CAD plots and shaded

images lead to a clearer understanding of the scene and objects in the image

including spatial relationships because of their photograph like imagery. However,

2

these realistic renderings are often misleading, since many of models used to create

such images are not accurate or complete, whereas the depiction style suggests that

the scene is accurate, complete and permanent. For this reason, many visualizations

of architecture or archaeological reconstructions are sketches or line drawings with

little detail. Hand drawn illustrations compensate for a lack of information by

adding only enough detail to express the amount of information known, and using

expressive techniques to convey the inaccuracies or incomplete aspects visible in

the scene.

Presentation graphics are stylized images that incorporate realistic technical

elements with aesthetic appeal. These images are used to visually express ideas

that are difficult to communicate effectively otherwise. If presented with a highly

realistic image, a client is often hesitant to discuss the overall design or its changes

because the image seems to represent a complete idea that cannot be changed.

A representation that resembles a sketch is an effective way to communicate the

mutability of the design and encourage the client to interact in the design process.

Effectively expressing the ideas can enhance the relationship between client and

designer. Design professionals are aware that a viewer can be directed to an

understanding of an image by using different illustration techniques in distinct

ways to direct focus, separate parts from a whole, or express completeness of a

design. Combining drawing styles is an effective way of communicating differences

in an idea, while maintaining the unity of the work. The primary purpose of

images used by these professionals is to express design concepts to a client. In

addition to sparking viewer interest and appeal, information must be portrayed in

a specific manner to avoid misleading the viewer, while allowing for a high degree

of understanding. Specifications of a design, level of completion, and desired input

must be explicitly conveyed. The style used to present the images has a major

influence in how the client will interpret them. On the one hand, a fully realistic

image will convey the sense of a completed design. On the other hand, a rough

sketch suggests a design in the early stages. The professional designer must express

sophisticated judgment in selecting a style for depicting ideas to convey as precisely

3

as possible concept and intent of the design as well as the degree of completeness of

the ideas. In addition, the images must interest the client, by offering aesthetically

pleasing images. Thus, the effect of the rendering style on the user must be taken

into account from the earliest time [22].

Illustration style has been found to have an affect on the interpretation of an

image [24]. Highly realistic rendering styles can lead a viewer to conclusions about

an image that may not be justified. For example, a photorealistic rendering may

lead to interpretations of being complete or inviolate in a design process [25, 23]

whereas a line illustration can convey mutability. The illustration style of an image

can also have an effect on the attention and focus of the user [22].

There are numerous stages of the design process, each of which should be

expressed using different rendering techniques. Integrating all levels of the design

into one image is effective in understanding how the parts fit together, and how

changes to those parts affect the whole design. Sketch drawings, which have a

hand-made feel, likely spark more curiosity and interest in the viewer because of

the irregular form of the lines, and invite the viewer to invest more cognitive effort

in understanding the image. This can result in a greater willingness of the viewer

to interact and discuss the image, which is desirable during the beginning stages

of a design. On the other hand, realistic images are preferable during the latter

stages of the design process when the design is becoming more solidified. All of

these techniques share the common goal of creating an image that is both pleasing

and easy to understand.

Using computer graphics to create presentation graphics allows one to explore

architectural sites or archaeological reconstructions in a manner that is not possible

with illustrations on paper. However, many of the details such as doors and windows

are not completed or are long since lost, and although they are needed to visualize

the site, including them is a matter of extrapolation. Four categories of data can

be defined: i) findings that have actually been excavated; ii) deductions that can

be directly derived from the site; iii) analogies that, though not found during

excavation of this site, are found at similar sites; and iv) assumptions that are

4

details having no empirical basis in the excavation. The style of visualization is

important in conveying the category of the data. Nonphotorealistic renderings are

preferable to researchers exploring hidden structures in data, while visitors in a

museum prefer realistic visualizations that present a picture process of how the

site once looked [13]. Nonphotorealistic rendering can move the creating of such

images onto the computer, allowing an accurate representation and maintaining the

viability of the model data. Emulating line illustrations can maintain the aesthetic

appeal inherent in hand illustrations, and allow the expression of information over

and above the geometric model through the use of varied line styles [23]. In addition,

computer graphics allows the user to create a 3D world that is much less costly than

a real scale model, and one that can be refined at will.

Figure 1.1 is an example of an interactive walkthrough of an archaeological

reconstruction with the sketchiness of the line primitives varied according to the

level of confidence in the data. The image depicts a Mayan temple that exists today

in ruins. Archaeological sketches have been made depicting how the site probably

once looked. The rendering in the presented figure encodes the information about

the site’s current state with the reconstruction information from the archaeologists

as well as their expert speculation of the final look of the site. The lowest level

of the model has a stone texture that is rendered using a more technical form,

indicating this level of the temple is still in existence. The second and third levels

of the temple are known to have existed because their rubble lies atop the lower

level. These levels are depicted with a sketchy style, suggesting that they are not in

the same state as the lowest level. The top level is a hut that has been suggested to

have existed by some archaeologists; however this is a matter of conjecture and it

is also possible that the top level was some sort of alter, or the like, instead. Thus,

the rendering style of this top level is a sketchy outline without any hint of texture.

The resulting final image not only conveys a sense of how the temple once may

have looked, but also explicitly lets the viewer know what the designer put into the

image as assumptions and guesses. This image can then be used as a tool to allow

an archaeologist to express visually his or her ideas of a site and evoke discussion.

5

Figure 1.1. An example image from an interactive session with the system.

It is often difficult to verbally communicate ideas concerning the look of a site.

Three-dimensional mockups are time consuming, expensive, and hard to change.

Fully realistic renderings of speculative information may disturb a colleague who

misinterprets the meaning of the image. Representations of information should

reflect the status and type of information. Thus a rendering technique that can

embody various ideas into one image is beneficial in a variety of ways.

1.2 Problem Statement

The work presented focuses on the generation of architectural scenes in a manner

that conveys multiple levels of abstraction in a single image and uses line primitives

rather than texture mapping to emulate the hand drawn strokes that would be

placed by an artist. The combination of these ideas is used to create a prototypical

system that allows interactive manipulation and virtual reality walkthroughs of a

scene.

6

Colored line drawings are often used to depict scenes containing buildings. In

these images lines are used to depict both edges and material properties. The

sketchiness of the lines is often varied to indicate the degree of completeness in an

architectural design or the level of confidence in an archaeological reconstruction.

An example archaeological reconstruction with varying levels of sketchiness is shown

in Figure 1.1. A method is described here for generating interactive renderings.

The important characteristics of an interactive colored line drawing system are:

1. high visual quality of individual frames;

2. animation free dynamic artifacts, such as popping; and

3. high frame rate.

The first two items suggest using 3D line primitives, as they can be antialiased

in screen space producing high visual quality. In addition line primitives do not

need level-of-detail management to maintain constant width or brightness in screen

space. However, it is natural to think that interior lines should be rendered using

texture mapping for efficiency. Indeed, texture mapping has been used effectively

to accomplish interior line rendering by others [5], who used careful generation of

Mip mapped line textures to avoid dynamic artifacts. Unfortunately, this technique

makes the line textures static, so line sketchiness cannot be varied at runtime.

The question remains of whether 3D line primitives can be used while main-

taining an interactive frame rate. Although lines are not used in most graphics

programs, they are highly optimized by hardware makers because of the CAD

market. Using lines directly has several advantages over texture mapping:

• line primitives can be antialiased without a multipass algorithm

• line primitives can have their sketchiness varied at runtime by perturbing

vertices in a hardware vertex program

• line primitives preserve their width in screen space even for extreme close-ups.

7

The last item could be viewed as an advantage or a disadvantage depending on one’s

priorities; having constant width lines in screen-space makes for a clean drawing

reminiscent of the type drawn by human draftsmen, but eliminates line-width depth

cues.

The main contribution is a prototypical system in which high frame rates can

be achieved using line primitives in scenes of realistic complexity. An algorithm is

provided to automatically place line textures on objects in order to perform material

property “indication,” i.e., a small number of texture elements indicates that the

entire surface is textured. Finally, a program is presented using 3D lines that is

relatively simple to design and build, making line primitives a practical alternative

to texture mapping with respect to software engineering as well as efficiency issues.

CHAPTER 2

PREVIOUS WORK

Previous work related to this work can be divided into work in the area of non-

photorealistic rendering and architectural rendering. Nonphotorealistic rendering

focuses on emulating the work of artists by simulating the medium, or by simulating

the process that the artist goes through to create the image. Architectural rendering

looks to move the architectural design process onto the computer, visualize archi-

tecture and archaeological reconstructions and models, and create walkthroughs

and virtual environments. A synthesis of these two types of rendering can create

systems with more expressive power than each individually.

2.1 Nonphotorealistic Rendering

The move from pen and pencil to the computer requires that we explicitly define

characteristics that are inherent in traditional media. Strictly using lines and curves

to represent the strokes of a drawing creates an image that is mechanical and cold.

A typical stroke of a pen or pencil exhibits thickness and waviness, which vary

throughout the stroke. Properties such as these can be simulated by adjusting the

weight and direction of a series of computer drawn line segments. The direction

or curve of each stroke also contributes to the comprehension of shape and can

be drawn following contours of the model. Completely automating this process is

difficult, so most systems need human interaction to define where the computer

should place strokes [8].

An automatic 3D rendering system is available that generates computer illustra-

tion by employing the techniques of traditional pen-and-ink artistry [26]. Because a

scene rendered with pen-and-ink contains only pen strokes, all information must be

conveyed by combining the individual strokes in meaningful ways. The character-

9

istic of single strokes as well as the proper grouping of multiple strokes will express

the tone, texture, outline, lighting and material properties of an object. Convert-

ing hand pen-and-ink techniques presents an interesting change to the traditional

graphics pipeline. Tone and texture are no longer separate since both are conveyed

through lines. Clipping must be done so as not to look mechanical, and the outlining

of models has to convey material as well as boundary information. Prioritized

stroke textures are collections of pen strokes that contain both material and tone

information. The set of strokes is drawn highest priority first, until the desired

tone is achieved. Higher priority strokes contain more important information such

as the defining texture details like brick outlines. Lower priority strokes contain

tone information. The variability of the stroke textures allows for multiresolution

output. Indication is another technique of artists that should be employed when

creating computer generated illustrations. Drawing a consistent tone and texture

level across an entire image will result in monotony and an overload of information.

Instead, artists hint at a texture and tone in important areas of the image, and

allow the imagination of the viewer fill in the missing information. This technique

leads to more interesting images, as well as lending itself nicely to the economy of

the illustration. However, indication is a difficult problem for artists to master, so

an automatic method is extremely challenging. The solution is to allow input from

the user such that the important areas of the model are marked by the user, and

the stroke placement method places more texture around the user defined areas.

Additional texture and model details that are not captured by the above techniques

are defined by outlines. Specifically, outlines are used to differentiate between areas

of similar tone but varying texture.

Another technique is presented in [11] that incorporates both cartoon shading

and pencil sketch textures to create an artistic look. The cartoon shader called

Painter simulates the artist painting a cell that has already been inked. Hard

shading is achieved by encoding the material color and the shadow color in a 1D

texture map and using as the texture coordinate the dot product of the surface

normal at each vertex and the light position. If the resulting dot product is

10

negative, 0 is used for the texture coordinate. The result is a hard line between

the object in light and the object in shadow. Variations on the shading can be

achieved by encoding the light information in higher dimensional texture maps or

by using more than two colors in a single dimension texture. In the same manner,

pencil strokes can be encoded into a texture map and rendered with differing

density to create tone. The Inker module of the system enables the model to

be rendered using stylistic techniques such that the model itself has a hand-drawn

look. The silhouette, crease and border edges are the only edges rendered since

these edges help define the space occupied by the model. These edges are drawn

using strokes from a texture map that are curved or straight depending on the

slope of the important edge. These techniques are easily scaled to animation and

moving models. As much of the computation is done as a preprocess, the remaining

calculations are quicker and can readily be moved to hardware. Motion is indicated

with motion lines that are calculated by tracking the translation of an object frame

to frame. The system works at interactive rates on a range of platforms.

Much work in NPR is done with respect to a single image using nondeterministic

methods to achieve images resembling hand-drawn illustrations. Interactive NPR

algorithms can suffer from a lack of frame to frame coherence. The stochastic nature

of processes used to create single images can result in an unsmooth transition to

three dimensions or animations due to the moving and popping of the strokes used

to simulate the artist’s hand. This is caused by NPR illustrations that simulate the

single instance of an image, rather than a repetitive sequence needed for animation.

Therefore, the paint or pen strokes from one frame must subtly find their way to the

next frame to avoid the popping and flashing artifacts, effects that too often occur.

An additional challenge is maintaining the tone and texture of an object’s surface.

One solution to maintaining frame coherence is achieved by separating the style of

a line from the path of the line and reconstructing line segmentations that disturb

the coherence of a drawing path. The parameterization of the way of drawing the

line allows the line style, width and saturation to vary throughout the animation.

The coherence restraint may also be lessened to create the look and feel of motion.

11

The system modifies the daLi! system to allow for intersecting models [14]. Other

solutions have been found using texture mapping approaches. Hatch maps can be

used to maintain the structure of a set of lines by using less lines in the distance

to maintain tone; and ink maps can add artistic detail [5]. Art maps can be used

in image based rendering to maintain coherence between paint strokes [10].

To create communicative illustrations, the important features of the scene must

be identified. The shape of the objects comprising a computer modeled scene can

be better understood if geometric features such as silhouettes, creases, boundary

and contour lines are identified. The G-buffer is introduced as a way to separate

geometric properties such as depth or surface normal from physical properties such

as shading and texture mapping. This separation allows artificial enhancement

processes to be applied to the geometric properties, which helps in understanding

the shape features of the image. The enhancement of border and internal edges

and contours through darkened or lightened lines or curved hatching give the

viewer information about the image that would be much less apparent without

the enhancements. However, determining which enhancement process to use, and

to what extent, is a difficult task that can be accomplished only through user

trial and error. Thus, the G-buffer stores intermediate values which allows fast

recomputation, so interactively altering the image becomes possible [21]. The style

in which these features are rendered can also aid in comprehension. The type of

line, such as dashed, dotted, thick or thin, can express direction, distance and

location. End point conditions can convey the relation of the line with respect to

other lines and surfaces in the scene [3]. Line illustration conventions are apparent

in hand-drawn work, and have been adopted by the computer graphics community.

2.2 Architectural Rendering

Current work in architectural rendering is composed of systems aimed at moving

architectural design onto the computer, visualizing reconstructions of ancient archi-

tecture, and creating architectural walkthroughs. The differences among existing

systems relate primarily to the interface with the user. Architectural CAD systems

12

specialize in giving the user an interface that is similar to 2D paint programs,

and giving the user tools to create images that resemble the hand-drawn work of

artists. Reconstruction systems tend towards an accurate and objective display

of archaeological information. This information can be used to speculate on the

appearance of ancient architecture. These systems must be careful to convey the

difference between known structures, that is those seen today, and approximations

of the appearance of the structure in ancient times. The third type of architectural

rendering focuses on walkthroughs. Most work in this area is done to reduce frame

rates and improve performance. The work presented here will combine various

elements from all three types of architectural renderings.

The Piranesi system [20] is an interactive system that allows the user to paint a

3D model using the same techniques used in a 2D paint program. The results

from the system are images that look as though they were images created by

architects. The interactive interface begets a working relationship among the user,

client and image. Presentation graphics can be created and refined quickly, making

the computer a medium rather than a tool, in essence, a digital sketchpad.

In the same sense, SKETCH [28] is a system that allows the user to model

in a gestural manner. The advantage is that the user can doodle the model, and

the system transforms the doodle into an approximate model. SKETCH is not

designed specifically for architectural rendering, but the idea of freehand drawing

is an integral part of the architect’s job. Often it is also important to be able to

use a sketchy model to inform the client of the state of a design. The deliberate

impreciseness of the model is an important aspect of the early stages of design.

A combination of a quick sketch and a visually pleasing rendering could possibly

convey more information than either separately.

The combination of multiple rendering styles has been used in the reconstruc-

tion rendering of ancient architectural sites. It has been noted that using highly

realistic rendering styles can lead a viewer to conclusions about an image that

may not be empirically justified [23], since often the information being displayed

is from archaeological sites or introduced by educated guessing. A convincing

13

photorealistic image can be suggestive of reality, and may limit the discussion and

revision of the current idea of the look of site [25]. To circumvent this problem,

nonphotorealistic rendering is used [13]. Creating a line drawing of the architecture

simulates the hand-drawn effect typically used by architects and archaeologists.

The computer enables interactive revisions and walkthroughs [15]. Multiple styles

of nonphotorealistic rendering can also be used to portray the different degrees of

known information. A realistic image or photograph is used to display the existing

foundation, whereas line drawing and sketchy rendering are used for the parts no

longer in existence but known to have been present, and elements that are only

guesses of what may have been, respectively. Also, changing the contrast of an

image can direct focus or emphasis importance [15]. Overall, it is important to use

different rendering styles to display various levels of information and control the

interpretation of an image.

Architectural renderings and presentation graphics are essentially works of art [9,

4]. Although they may contain high levels of information, and be of a somewhat

technical manner, their ultimate job is to appeal to the viewer. As such, the final

look of any image is of utmost importance. The aesthetic appeal of architectural

rendering has a major impact on the interest of the viewer. The images created

must convey information in a manner that is not only clear and precise, but

also pleasing. Illustration style has been found to affect the interpretation of the

image [24]. A designer will take illustration style into account when creating an

image, evaluating how the drawing style conveys specific information. Photorealism

leads to interpretations of permanence or completion. Line illustration conveys a

sense of incompleteness that allows for discussions between designer and client

that may otherwise be difficult. Illustrations have numerous advantages in some

circumstances over realistically rendered computer graphics [26].

Architectural renderings often contain information about building and land-

scape materials. These materials inform the viewer of the environmental setting of

a building site, the materials used in the project, as well as an overall feeling of

the completed project. Inclusion of material detail also aides in comprehension of

14

scale. The rendering style of these materials must be considered in order to maintain

coherence in the image. Nonphotorealistic trees [2] that are created by extracting

important features of models work nicely in these types of images since their line

styles may be altered. Stone, wood, and plant materials can be generated using

random disturbances in procedurally generated textures [27], or through perturbing

corners of a rectangular grid [16].

The final group of work done in architectural rendering focuses on using an

architectural model for an interactive walk-through. The aim is to aid the client in

understanding a model by allowing the client to wander around the model. Most

work done in this field has been done to speed up the rendering rates. Changing

between texture maps and real geometry has been presented [1, 18], as well as

limiting the amount of geometry rendered per frame [7, 6]. This work is novel in

that we use 3D lines instead of texture and Mip mapping. Lines in 3D do not suffer

from the artifacts that occur with texture mapping because the lines remain entities

in screen space. Upon initialization, all lines are placed in a display list. No new

lines are generated or removed during runtime, therefore no visual artifacts occur.

In addition, the endpoints of the lines can be perturbed using a vertex program,

allowing the texture to change during runtime, a feature that is difficult to achieve

using texture mapping.

CHAPTER 3

LINES VS TEXTURE

Using 3D line primitives rather than texture mapping is a viable alternative

when visual quality is of utmost importance. The rasterization of line primitives

can produce lines that maintain width and brightness in screen space no matter

how close the view plane, output cleanly on printers, and can change interactively

without having to use any special techniques. Figure 3.1 shows various views of a

cube textured with 3D lines.

3.1 Line Scan Conversion

Line rasterization consists of scan conversion and clipping. The line itself is an

infinitely thin line segment represented by two 3D endpoints. To scan convert the

line, the pixels that the line touches must be computed. Since there are a finite

number of pixels having a predefined size, the line must be approximated by the

pixels often leading to aliasing problems.

The most common algorithm for scan converting lines is the midpoint line

algorithm. This algorithm uses only integer or floating point arithmetic as opposed

to fractional computations, and can be done incrementally such that previous cal-

culations can be used to improve efficiency. The algorithm minimizes the distance

from the pixel to the true line, thus giving the best-fit approximation to the line.

To determine the pixel approximation of a line, the midpoint line algorithm

determines the midpoint between the two next candidate pixels and chooses the

next pixel based on which side of the line the midpoint falls. The starting pixel is

the endpoint of the line, or if the endpoint is a floating point, the pixel closest to

the endpoint of the line. An important need of a scan conversion algorithm is to

create a continuous line without missing pixels. This forces the choice of the next

16

Figure 3.1. Antialiased 3D lines.

two pixels to be between the pixels that touch the current pixel. By forcing the

slope of the line to be between 0 and 1, the choice of the next pixel becomes even

more restricted. It has to be the pixel 1 increment in the x direction and the pixel 1

increment in the x direction and one increment in the y direction. All other slopes

can be generalized by a rotation of the zero to one slope line about the principal

axes. Now that the next two possible pixels are determined, the midpoint between

the two pixels is found with respect to the function representing the line. The

midpoint, which for all pixels will be 1 plus the previous x value and 1/2 plus the

17

previous y value, is plugged into the implicit line equation. A positive return value

indicates that the midpoint lies above the line, and thus the lower pixel should

be used. A return value less than 0 tells the algorithm to choose the upper pixel,

and a 0 return value shows that the line passes directly through the midpoint,

thus either pixel can be chosen, and for consistency, the lower of the two pixels is

selected. Additionally, the midpoint for the next grid increment can be determined

by adding 1 in the x direction if the lower pixel is chosen as the next pixel, or by

adding 1 in the x direction and 1 in the y direction if the upper pixel is chosen.

Thus the value of the function of the line does not have to calculated with the next

midpoint, the calculations from the previous iteration can be simply added onto.

3.2 Antialiasing

Once the line is scan converted, it must be antialiased because of the discrete

nature of the pixels on an output device. A pixel is turned either on or off when it

is chosen by the scan conversion algorithm and this results in a line that is jagged,

having a staircase appearance. An example of this effect can be seen in Figure 3.2.

This effect is reduced when the resolution is increased; however this does not solve

the problem, it simply reduces its effect when viewed from similar viewpoints as the

lower resolution image. Zooming into the higher resolution image will still display

undesirable characteristics. The solution to this problem can be to antialias the

line primitive, the entire screen, or a combination of both.

Line antialiasing is done by calculating the area of each pixel that the line covers.

This is different from simple scan conversion because both of the candidate next

pixels may be colored. The color of the pixels surrounding the line is determined

by how much of each pixel contains the line and how close to the center of the pixel

the line passes. Thus, for a black line, a pixel with more area covered by the line

will be darker than a pixel with less coverage area; however pixels with the same

coverage area may be colored differently depending on how close to the center of

the pixels the line lies. Full screen antialiasing does not take into consideration the

18

Figure 3.2. Aliased (left) and antialiased (right) 3D lines.

primitives drawn into the screen, but uses various methods of filtering to reduce

artifacts.

3.3 Texture Mapping

A common method for placing texture onto a model is texture mapping. This

technique takes a predefined image and maps it onto the image, similar to the way a

label is pasted onto a soup can. There are many techniques to deal with distortions

and other problems that would make this method less desirable. MIP maps are

used to allow for the texture to be visually pleasing at multiple distances. This

leads to the question of what the texture should look like up close and far away.

Ideally, the texture map should reduce in size proportionate to the textured object

when the viewpoint moves away. To do this without introducing disturbing visual

artifacts, the texture must be filtered to an appropriate size.

The creation of a Mip map is done by specifying the size of the texture map,

and then creating images in sizes decreasing by powers of two until an image with

size one by one exists. The images are typically filtered versions of the original

map that have been averaged such that four corresponding pixels in a large image

19

reduce to one averaged pixel in an image with a size that is a power of two smaller.

The effect of all of these different images is dependent on the filtering method used

to combine them.

Filtering of the Mip maps depends on the size of the texture images in relation

to the polygon being texture mapped. If the size of the polygon is larger than the

largest Mip map image, then magnification occurs and thus the largest, or base level

Mip map image is used. If the polygon is smaller, the correct Mip map level must

be chosen. This is called minification. With minification, there exists an option to

choose the Mip map level that is closest, or interpolate two Mip map levels. Figure

3.3 shows the results of different Mip map filtering as well as a comparison to 3D

lines. In addition, anisotropic texture filtering can further improve artifacts.

3.4 Comparison

In many instances, 3D lines render to the screen with higher visual quality.

As shown in Figure 3.3, close up 3D lines maintain their screen space width and

antialias well. Texture mapping causes the texture lines to blur when the viewpoint

is extremely close, or where the lines are diagonal. An interesting artifact of texture

mapping can be seen in the close-ups in center and rightmost columns of Figure

3.3. The white of the brick turns grey when texture mapped due to filtering. For

these extreme viewpoints, texture mapping can easily be optimized using different

filter methods to produce acceptable visual quality; however, this must be done

with the desired viewpoint in mind. 3D lines, on the other hand, seem to give

the desired visual quality at all viewpoints, and although maintaining screen space

width may not always be desirable, it is a quality that is appropriate for this type

of image creation. In addition, the implementation of texturing with 3D lines

is straightforward, similar results using Mip mapping techniques have complicated

implementations. Overall, 3D lines are a viable alternative to texture mapping, and

although they may not be appropriate for all contexts, their place in the graphics

community should be recognized.

20

Figure 3.3. 3D lines (leftmost column), nearest filtered texture mapping (center
column) and linear filtered texture mapping (rightmost column).

CHAPTER 4

ALGORITHM

The algorithm presented here consists of preprocessing the model to find im-

portant edges, determining the placement of and laying the texture, and finally

clipping the texture to the model. New techniques include using 3D lines as an

alternative to texture mapping, automating the indication of texture such that

texture is minimized and placed sparsely across the model as well as along important

edges, and creating sketchy lines through vertex programs. The system uses simple

algorithms and currently supports a variety of textures such as bricks, stone work,

shingles, thatch, stucco, and siding. Figure 4.1 shows examples of some of the most

commonly used textures.

4.1 Feature Edges

An important clue to understanding an architectural model is to be able to easily

see the features of the building. These features are distinguished by the corners

and edges that separate architectural elements and define the overall shape of the

building. However, the computer models used to create the scenes are polygonal

meshes, made up of hundreds of triangles, rather than a single polygon per face.

Rendering the outline of every triangle in the mesh results in too much irrelevant

information being displayed, leading to an unintelligible image. Instead, only the

outline of the building should be rendered. In addition, augmenting the important

edges of the model enhances these visual cues and leads to a better understanding

of the model’s shape [21].

To find the important edges of a model, the model is first divided into material

groups (e.g., bricks or grass) and then processed to identify the creases (e.g., the

corner of a building) and boundary edges (e.g., a window). Texture is then placed

22

Figure 4.1. Examples of (clockwise from upper left) brick, shingle, siding, and
stucco textures.

along these edges leading to a higher texture density along material boundaries and

feature edges. Figure 4.2 illustrates the enhancement of feature edges by a higher

texture density.

A feature edge is an important edge of a model that can be categorized as

a crease, border or silhouette. Crease edges adjoin two polygons whose surface

normals have a dihedral angle greater than θ, for some threshold value of θ (see

Figure 4.3). A border edge is one that is only contained in a single polygon, or

which separates materials (see Figure 4.4). A silhouette is an edge that adjoins a

23

Figure 4.2. Texture is increased around crease and boundary edges to enhance
the features of the model.

facing and a back facing polygon. Silhouette edges are view dependent, since the

determination of front or back facing must be done with respect to the viewpoint (or

viewing direction). Alternatively, creases and boundary edges are view-independent

because the angle between two edges will not change unless specified. Because the

demarcation of crease and border edges remains static these edges can be found

before runtime. This reduces computation time and contributes to the efficiency

of the system. Silhouette edges cannot be found at runtime due to their dynamic

nature, and thus must be recomputed each time the viewpoint or model position

change. The nature of the applications of the system tend toward models with

24

θ

Figure 4.3. Example of a crease edge, the dihedral angle is 90 degrees.

the characteristic that crease edges coincide with edges that would most likely be

determined as silhouette edges (reverse: silhouette edges coincide with edges already

classified as creases). That is, the edge that is between a front facing and a back

facing polygon often also possesses the characteristic of having the dihedral angle

between the two polygons greater than the specified theta. Under this assumption,

the run-time silhouette edge finding algorithm is most likely to find edges that have

already been found as creases, and thus is a repetitive step. Therefore, only crease

and boundary edges are found, thus relying on the assumption that these edges will

give enough information to the viewer. This assumption may eliminate the use of

some models with this system, like a castle with a cylindrical tower; however fast

silhouette methods exist and could be applied to remedy this problem [19].

The method for finding crease and border edges is a simple brute force processing

of the polygonal model. First, the model is separated into material groups such as

grass or brick. This can be done as a polygon tag, but in our implementation we

separate the model into different files and process each material section separately.

This also enables the single polygon border test to find material borders without

modification of the algorithm. There are many approaches to finding crease and

25

Figure 4.4. An example of a border edge.

boundary edges fast, however; brute force is an appropriate approach here because

speed does not matter for the pre-process, and accuracy is of utmost importance.

The crease and boundary edges are placed into an array, then rendered as lines.

The entire model is rendered as colored triangles without outlines and the crease

and border edges are rendered with a small offset in the direction of the surface

normals. Additionally, the list of feature edges is used during the texture placement

and clipping steps.

4.2 Texture Placement

Using partial texture follows the idea of indication in which the texture is hinted

at rather than fully illustrated. This is intriguing for the viewer because large

amounts of line textures would be distracting, and the imagination of the viewer

is engaged to fill in the texture where it is omitted. In addition, the number

of lines used to suggest texture is reduced, which helps maintain performance.

Implementing indication automatically is a difficult problem because it is hard for

artists to describe the process of deciding where to place texture. In previous

implementations, systems have relied on the artist to input areas of the model

that should be enhanced by texture [26]. Looking at the images created by these

26

systems, it seems that the feature edges are common areas to receive more texture.

Although feature edges may not be the only such areas to receive texture indication,

this method enhances feature edges because they are so often enhanced by artists

and also because it has been shown that the enhancement of these edges aids in

the understanding of the model. Additionally, material boundaries are enhanced

by more texture indication, another phenomenon captured by this implementation.

The remaining areas of the model receive sparse texture to reduce clutter, increase

efficiency and maintain a clean look [12].

Texturing the interior of the model is done according to a heuristic that thresh-

olds Perlin solid noise [17] to place clusters of texture. An atomic texture element

(e.g., a single brick or blade of grass) is placed on the triangle if the function:

1 + 3 × N(kx, ky, kz)

2
,

(where N is the Perlin function), is above a threshold. Figure 4.5 shows an example

of the Perlin function and the threshold placed on the Perlin function. This function

gives a uniformly random distribution of texture. The threshold can be changed

to allow more or less texture on any portion of a model. This heuristic gives the

texture an irregular distribution without excessive accumulations or concentrations.

Figure 4.6a shows the area of a model that is likely to generate texture clusters.

Notice that the enhancement of feature edges is paired with the noise function. The

resulting placement of atomic texture elements is illustrated in Figure 4.6b, as well

as the populating of texture about the atomic texutre elements (Figure 4.6c) and

the resulting texture after clipping (Figure 4.6d).

The texture lines are defined in texture space, mapped into the texture space of

the model, and then transformed to model space using barycentric coordinates. The

texture is defined between 0 and 1 for ease. Each polygon in the model then looks

up the threshold noise function, and if the function returns a value corresponding

to an area that should be textured, the corresponding texture lines are found, and

transformed into model space.

27

Figure 4.5. The Perlin noise function (left). Threshold placed on the Perlin noise
function (right).

4.3 Hand Generated Texture Clusters

Once an atomic texture element is placed, a texture cluster is populated around

it (see Figure 4.6c). A texture cluster is a pleasing group of texture elements,

such as a group of bricks or a clump of grass. The aesthetic quality of these

groupings is critical in getting a good image, since these clusters could easily look

mechanical and not hand generated. Grouping texture is another way to indicate

texture, rather than drawing texture across the entire model, groups are placed

that suggest the texture to the viewer so as not to distract. The clusters must also

be visually interesting since they convey most of the detail of the scene. Repetition

of the same grouping across the model will result in a repetitive and ugly image,

and not be interesting or appealing to a viewer. Randomly placing atomic texture

elements across the model will result in a texture that is too sparse and noncoherent.

Although automatic generation is possible, we have found that the criterion for what

makes a good texture cluster is not obvious.

Human artists express texture and material properties without texturing the en-

tire area, leaving out texture detail where it would be distracting and too cluttered.

The method for deciding how to draw texture in such a manner is not well defined.

28

Figure 4.6. a) Threshold placed on Perlin noise. b) The placement of atomic
texture elements. c)Texture clusters populated around atomic elements. d) Texture
is clipped to crease and boundary edges.

For this reason grouping together single texture elements is done by a human user.

This process could easily be automated; however, the result of a purely automatic

grouping is too repetitive and mechanical. In addition, adding a touch of human

processes is important in maintaining the overall visual appeal of the images. A

main drive of this work is to automate much of the process of creating these images;

however, removing the artist altogether is not desirable. Thus, artistic input is used

29

in the creation of texture as well as in the final stage of altering the sketchiness of

the image.

The texture library consists of a small number of groups of textures defined in

texture space. These groups are defined such that the originating texture element

is left out, since it was placed during a previous step after the Perlin function was

queried. Thus, the library tells the system where to place more atomic texture

elements, skipping the Perlin query. Determining which texture library element to

use is a simple random choice. The size of the texture cluster does not matter in

this choice, since the texture will be clipped after this step. However, the current

texture clusters are fairly small, consisting of no more than six texture elements.

The size of the texture cluster is directly related to the size of the area to be

textured. If a large area needs to be textured, larger texture clusters may be

desired; however this is simple to achieve by hand generating larger texture clusters.

Alternatively, the threshold value on the Perlin function may be altered to trigger

more texture generation. The texture is defined to be tileable, and the texture

clusters may overlap, but they will not appear to intersect, which would cause visual

artifacts. This approach, however, may cause the repetitive drawing of texture

lines, thus reducing the efficiency of the system. Repetitive lines can be removed

by processing the line files produced by the texturing stage of the system, checking

for coincident endpoint vertices. Currently the texture library consists of bricks,

grass, shingles and siding, but the library could be easily extended to incorporate

additional materials [27, 16].

4.4 Clipping

Following the placement of the texture lines on the model, all lines are clipped

against the creases and boundary edges of the model. Clipping against single

triangles often breaks up the texture clusters leading to stray edges. These stray

edges distract the eye and may give rise to a confusing interpretation of the type of

texture. In addition the texture placement algorithm may not align texture across

triangles, since each triangle of the model is processed separately. Properly clipping

30

along all triangle edges will result in the triangulation of the model becoming very

apparent. To resolve this problem, the texture is clipped only against feature edges.

The feature edges contained in each triangle are flagged during the initial detection

process as described in the first section of this chapter, and the texture is then tested

against a triangle only if the triangle contains an important edge. This maintains

the look of the texture across the entire model, as well as reduces the amount of

clipping to be done. The final, clipped model can be seen in Figure 4.6d.

To clip along only the crease and border edges, barycentric coordinates are

used. The first clipping check occurs if the generating triangle has an edge flagged

as a feature edge. If the texture line intersects the feature edge of the originating

triangle, it is immediately clipped. The clipping is done in texture space, and

once clipped, the texture space coordinates are transformed to model space by first

converting to barycentric coordinates, and then to model space. The next step is

to determine if the texture line intersects any other feature edge of the model. This

is also done in texture space, however the texture coordinates of the generating

triangle, and thus the texture line coordinates may not correspond to the texture

coordinates of the triangle to clip against. The solution is to convert the texture line

coordinates to the texture space coordinates of the clipping triangle by converting

to model space and then back to texture space to clip. The clipping process is kept

in texture space because of the ease of clipping in two dimensions rather than three.

Another issue to deal with when clipping texture is when the texture element

is clipped and thus becomes disjoint. This is often the case for bricks. The check

for intersections may result in two edges of the brick getting clipped, but a non-

intersection edge may not get clipped away. So all lines must be qualified to be

inside the model, that is, all texture lines must be contained in a triangle that

is textured with that material. Also, all lines that make up an atomic texture

element must have distinct vertices, so that clipping does not change the shape of

the element.

31

4.5 Sketchiness

Once all of the lines for the partial texture have been placed and clipped, it

is possible to adjust the sketchiness of the lines. To achieve “sketchiness” the

endpoints of the texture and feature edge lines are randomly perturbed, the extent

of which can be modified by the user. A sketchy quality of the lines adds to the

hand-drawn look of the imagery, and can be modified independently in different

areas of the model, allowing each area to have a unique sketchy quality and maintain

the unity of the scene. It is hard to determine the amount of sketchiness desired for

the model, so allowing the user to modify the sketch quality parameter is desirable.

Examples of varying levels of sketchiness are shown in Figure 4.7.

Using a hardware vertex program, the modification of the original line texture

to sketchy lines is done interactively. The goal of our vertex program is to keep the

basic structure and rough direction of the lines while adding a slight perturbation

to the original vertices. For each vertex in the display list, the vertex program

generates a perturbed vertex coordinate by adding a random perturbation vector

~p to the original vertex. The vector ~p is computed by the vertex program from two

vectors: ~vd and ~r. The vector ~vd contains the direction in which the vertex will

be offset by while ~r contains the magnitudes of the offset in the three coordinates.

These values are decoupled to provide user control over the sketchiness through

the use of vertex constants that can be changed interactively, globally affecting the

amount that the vertices in the scene are perturbed. Used to perturb the individual

vertices, the random values stored in ~r; and are generated while the lines are being

added to the display list. These values are then stored on a per vertex basis in the

vertex registers. The vertex program allows us to twist each line slightly out of its

original plane while keeping the line’s overall direction the same. Three constants

in the vertex program allow us to control the influence of the perturbations on the

lines. Example code to perturb texture lines can be found in the appendix.

32

Figure 4.7. Four levels of sketchiness.

4.6 Argument Against Level of Detail

An interesting feature of our texture placement algorithm is maintaining the

density of the texture with distance. This approach allows the tone of the image

to vary with depth so objects farther away will have a higher texture density and

thus a darker tone. The tone of the image can be thought of as the ratio of

black ink to white paper. Allowing the tone to vary is a method often adopted

by artists to create the illusion of depth in the image. Traditionally computer

graphics techniques decimate texture density with distance to maintain tone across

33

an image. Thus the density of texture on an object in the foreground would be

at a level constant to the density of texture on a distant object. This is done

to preserve the visual appeal of the image because the texture in the background

can quickly become too dense, creating a very dark tone that is distracting and

unappealing. However, removing texture can be perceptually confusing and lead

to misperceived distance, results that conflict with the goals of this system. Thus,

the implementation presented herein does not eliminate texture in the distance. A

benefit of using partial textures to indicate the texture is that in the distance, the

texture density is still lower than if the entire surface was textured. This keeps the

tone at an appealing level throughout the scene while preserving the property that

the tone is darker in the distance. A possible drawback to this approach is that the

size of the environments used is limited, so the distant texture is not so far away as

to become overly dense. The assumption that partial textures will maintain appeal

at far distances may not hold when the model becomes very large and extend a

long way into the distance. The lines used to convey the texture are colored lines

which are not as distracting as black lines when grouped tightly, and may not be as

unappealing in the background. Artists instead of removing texture in the distance

will use a lighter line when drawing texture in the background. Thus, a possible

solution for a texture density that is too high in the distance would be to fade with

distance the lines that make up the texture.

CHAPTER 5

RESULTS, CONCLUSION AND

FUTURE WORK

Line primitives are a reasonable alternative to texture mapping. Depending on

the context of the application, 3D lines can give a higher visual quality, more aes-

thetic appeal, and allow for interactive modification of the image. The prototypical

system presented here is designed as a proof of concept that 3D lines can be used

as a viable alternative to texture mapping.

5.1 Results

The system runs on a 2 GHz Intel Pentium 4 with an Nvidia GeForce 3 graphics

coprocessor. Requiring approximately 3000 lines of code written in C++ using

OpenGL libraries, the implementation is fairly straightforward. The only drawing

primitives used by the system are 3D constant-colored lines and 3D constant-colored

polygons. Table 5.1 gives the polygon and line count as well as frame rates for a

1024x1024 pixel image. Figures 5.1, 5.2 and 5.3 are screen shots of an interactive

session of the system using the Olympic Village model.

Table 5.1. Polygon count, line count, and frame rates for interactive walkthroughs
using our system at an image resolution of 1024x1024.

Scene Polygons Line Count frames/sec
Mayan Temple 1,259 57,859 48
Olympic Village 20,467 1,648,183 3

35

Figure 5.1. Screen shot of an interactive session using the Olympic Village model

5.2 Future Work

Future work for this system includes methods for achieving higher frame rates

or using larger models, silhouette finding to allow the use of different types of

models, and better entourage to improve the overall visual appeal of the images.

The limiting factor on the speed of the system is the number of lines used to indicate

texture. Reducing the amount of overall texture, that is, using fewer texture clusters

or fewer lines to represent a texture material or removing texture in the distance

where the individual texture lines can no longer be distinguished, will improve

frame rates and allow larger models to be used. Also, fading texture lines in the

distance will reduce any aliasing artifacts that may occur if the model goes into the

distance such that the texture becomes distracting. Some applications may wish

to use models that have elements with the characteristic of not having a crease

36

Figure 5.2. Screen shot of an interactive session using the Olympic Village model

edge, and a fast silhouette finding algorithm must be used, or an improved texture

placement algorithm that places texture in such a way that reveals the structure

of the model without needing to find the silhouettes. Finally, for walkthroughs, or

for more visual appeal, an improvement to the entourage so that the people move

in unobtrusive ways, or the entourage is in three dimensions would enhance the

experience of the viewer.

37

Figure 5.3. Screen shot of an interactive session using the Olympic Village model

5.3 Conclusion

Imagery style is an important issue to consider when rendering. The effect a

rendering style has on the user can be advantageous when trying to express complex

ideas or encourage specific reactions. Incorporating multiple rendering styles relates

information in a natural way and assists in the communication between image

creator and image viewer. Also, mimicking hand drawn illustrations keeps the

effect of the human user in the renderings, aiding in the aesthetic appeal.

REFERENCES

[1] Aliaga, D. G., and Lastra, A. A. Architectural walkthroughs using
portal textures. In IEEE Visualization ’97 (VIS ’97) (1997), IEEE, pp. 355–
362.

[2] Deussen, O., and Strothotte, T. Computer-generated pen-and-ink
illustration of trees. In Siggraph 2000, Computer Graphics Proceedings (2000),
Annual Conference Series, ACM Press, pp. 13–18.

[3] Dooley, D., and Cohen, M. F. Automatic illustration of 3d geometric
models: Lines. In Proceedings of the Symposium on Interactive 3D Graphics
(1990), ACM Press, pp. 77–82.

[4] Doyle, M. E. Color Drawing. Van Nostrand Reinhold Company, 1981.

[5] Freudenberg, B., Masuch, M., and Strothotte, T. Walk-through
illustrations: Frame-coherent pen-and-ink style in a game engine. In In Pro-
ceedings of Eurographics 2001 (2001), Computer Graphics Forum, pp. 184–191.

[6] Funkhouser, T. A. Database management for interactive display of large
architectural models. In Graphics Interface (1996), pp. 1–8.

[7] Funkhouser, T. A., Sequin, C. H., and Teller, S. J. Management of
large amounts of data in interactive building walkthroughs. In Proceedings of
the Symposium on Interactive 3D Graphics (1992), ACM Press, pp. 11–20.

[8] Gooch, B., and Gooch, A. Non-Photorealistic Rendering. A K Peters,
2001.

[9] Guptill, A. L. Rendering In Pen and Ink. Waston-Guptill Publications,
1976.

[10] Klein, A. W., Li, W. W., Kazhdan, M. M., Correa, W. T., Finkel-
stein, A., and Funkhouser, T. A. Non-photorealistic virtual environ-
ments. In Siggraph 2000, Computer Graphics Proceedings (2000), Annual
Conference Series, ACM Press, pp. 527–534.

[11] Lake, A., Marshall, C., Harris, M., and Blackstein, M. Stylized
rendering techniques for scalable real-time 3d animation. In Proceedings of the
First International Symposium on Nonphotorealistic Animation and Rendering
(2000), ACM Press, pp. 13–20.

[12] Lin, M. W. Drawing and Designing With Confidence : A Step-By-Step Guide.
John Wiley and Sons, 1997.

39

[13] Masuch, M., Freudenberg, B., Ludowici, B., Kreiker, S., and
Strothotte, T. Virtual reconstruction of medieval architecture. In In Pro-
ceedings of EUROGRAPHICS 1999, Short Papers (1999), Computer Graphics
Forum, pp. 87–90.

[14] Masuch, M., Schumann, L., and Schechtweg, S. Animating frame-
to-frame coherent line drawings for illustrative purposes. In Simulation und
Animation ’98 (1998), pp. 101–112.

[15] Masuch, M., and Strothotte, T. Visualizing ancient architecture using
animated line drawings. In Conference on Information Visualization (IV ’98)
(1998), IEEE, pp. 261–266.

[16] Miyata, K. A method of generating stone wall patterns. In Computer
Graphics (SIGGRAPH ’90 Proceedings) (1990), vol. 24(4), pp. 387–394.

[17] Perlin, K. An image synthesizer. In Computer Graphics (SIGGRAPH ’85
Proceedings) (1985), vol. 19(3), pp. 287–296.

[18] Popescu, V., Lastra, A., Aliaga, D., and de Oliveira Neto, M.
Efficient warping for architectural walkthroughs using layered depth images.
In IEEE Visualization ’98 (VIS ’98) (1998), IEEE, pp. 211–216.

[19] Raskar, R. Hardware support for non-photorealistic rendering. In SIG-
GRAPH/Eurographics Workshop on Graphics Hardware (HWWS) (2001),
pp. 41–46.

[20] Richens, P. The piranesi system for interactive rendering. In Proceedings of
the Eighth International Conference on Computer Aided Architectural Design
Futures (1999), CAAD Futures, pp. 381–398.

[21] Saito, T., and Takahashi, T. Comprehensible rendering of 3-d shapes. In
Computer Graphics (SIGGRAPH ’90 Proceedings) (1990), vol. 24(4), pp. 197–
206.

[22] Schumann, J., Strothotte, T., Raab, A., and Laser, S. Assessing
the effect of non-photorealistic rendered images in cad. In Proceedings of the
Conference on Human Factors in Computing Systems : Common Ground
(1996), PAPERS: Empirical Studies of Graphics and Visual Design, ACM
Press, pp. 35–41.

[23] Strothotte, T., Masuch, M., and Isenberg, T. Visualizing knowledge
about virtual reconstructions of ancient architecture. In Proceedings of the
Conference on Computer Graphics International 1999 (1999), IEEE Computer
Society, pp. 36–43.

[24] Strothotte, T., Preimand, B., Raab, A., Schumann, J., and
Forsey, D. R. How to render frames and influence people. In Computer
Graphics Forum (1994), vol. 13(3), pp. 455–466.

40

[25] Strothotte, T., Puhle, M., Masuch, M., Freudenberg, B.,
Kreiker, S., and Ludowici, B. Visualizing uncertainty in virtual recon-
structions. In In Proceedings of Electronic Imaging and the Visual Arts (1999),
p. 16.

[26] Winkenbach, G., and Salesin, D. H. Computer–generated pen–and–ink
illustration. In Siggraph 1994, Computer Graphics Proceedings (1994), Annual
Conference Series, ACM Press, pp. 91–100.

[27] Yessios, C. I. Computer drafting of stones, wood, plant and ground mate-
rials. In Computer Graphics (SIGGRAPH ’79 Proceedings) (1979), vol. 13(3),
pp. 190–198.

[28] Zeleznik, R. C., Herndon, K. P., and Hughes, J. F. Sketch: an
interface for sketching 3d scenes. In Proceedings of the 23rd Annual Confer-
ence on Computer Graphics and Interactive Techniques (1996), ACM Press,
pp. 163–170.

