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Abstract— Topology has been an important tool for analyzing scalar data and flow fields in visualization. In this work, we analyze the
topology of multivariate image and volume data sets with discontinuities in order to create an efficient, raster-based representation we
call IStar. Specifically, the topology information is used to create a dual structure that contains nodes and connectivity information
for every segmentable region in the original data set. This graph structure, along with a sampled representation of the segmented
data set, is embedded into a standard raster image which can then be substantially downsampled and compressed. During rendering,
the raster image is upsampled and the dual graph is used to reconstruct the original function. Unlike traditional raster approaches,
our representation can preserve sharp discontinuities at any level of magnification, much like scalable vector graphics. However,
because our representation is raster-based, it is well suited to the real-time rendering pipeline. We demonstrate this by reconstructing
our data sets on graphics hardware at real-time rates.

Index Terms—Topology, Compression, Image Representation.

✦

1 Introduction

In visualization and computer graphics, we are often interested in ren-
dering multivariate functions parametrized over 2D (e.g. RGB images)
or 3D (e.g. multimodal volume data) that contain important discon-
tinuities which represent the boundaries between different materials
(e.g. skin and bone, gray matter and white matter, etc.). These discon-
tinuities can be preserved during rendering by representing them with
implicit compositions of simpler functions. In 2D, for example, we
can do this with vector graphics (e.g. Postscript [25]) where the func-
tion is represented by mathematical primitives such as circles, lines,
and polynomial curves. In 3D, this process is performed by a stan-
dard 3D renderer, which generates images from an implicit composi-
tion of mathematically-defined primitives such as spheres, polygons,
etc. These approaches allow for scale-invariant reconstruction of the
original function while preserving important discontinuities. Because
these representations encode individual primitives, they also provide a
mechanism for attaching semantic meaning to the different primitives
which is useful for visualization (e.g. the ability to shade a specific
kind of object, such as bone, with a new color or to remove it alto-
gether from the rendering process).
However, these geometry-based formats have several serious draw-

backs. For one, they are too slow for rendering complex data sets
at real-time rates. The inherent problem is that their rendering com-
plexity grows linearly with the number of primitives and is potentially
unbounded. This linear dependence makes it difficult for rendering
systems to keep up with the real-time rates, especially when these im-
ages are used to texture map surfaces in a scene. In addition, it is not
clear how to apply an arbitrary filter kernel to these implicit represen-
tations, like when pre-conditioning the signal for antialiasing.
Another way to represent these functions is with a uniformly sam-

pled representation, such as raster or bitmapped images for 2D data
sets and 3D textures for volume data sets. The advantage of raster im-
ages is that they require a known, constant time to evaluate the function
at any point because it can be done with a fixed number of accesses
into an array (enough to support the reconstruction kernel) plus some
bounded computation to execute the kernel itself. This explains the
popularity of using 2D bitmaps for texture mapping surfaces in inter-

• Joe Kniss, Warren Hunt and Pradeep Sen are with the Advanced Graphics
Lab at the University of New Mexico, E-mail: jmk@cs.unm.edu,
whunt@cs.unm.edu, psen@ece.unm.edu.

• Kristin Potter is with the School of Computing at the University of Utah,
E-mail: kpotter@cs.utah.edu.

Manuscript received 31 March 2007; accepted 1 August 2007; posted online
27 October 2007.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

active applications. In addition, operations such as convolution with a
Gaussian kernel are well defined on raster data sets, which makes an-
tialiasing raster images relatively simple. However, a significant draw-
back is that raster images must be band-limited to eliminate aliasing
because they are, by definition, sampled representations. This means
that important semantic information present in our original function,
such as the sharp discontinuities between different materials, can be
lost during the sampling process.
In this paper, we propose a new framework for representing func-

tions with discontinuities efficiently in a raster format which we call
IStar. This representation shares many of the advantages of both vec-
tor and raster formats. First, our approach allows discontinuities to
be reconstructed precisely, independent of scale as can be done with
vector formats. Second, the rendering algorithm is simple and its
constant-time complexity is independent of the number of primitives
in the IStar image. This allows us to render IStar images on graphics
hardware and use them to texture map scenes at real-time rates. Third,
IStar’s raster representation can be compressed using conventional
techniques, resulting in a data structure that is more space-efficient
than traditional bitmaps yet can still reconstruct the sharp discontinu-
ities of the original image. Fourth, because our structure preserves
the semantic meaning of regions in the image, we can easily modify
their characteristics during rendering. Finally, since our structure en-
codes information on the topology of the data, we can use it enforce
constraints or fix classification errors, which is useful for visualization
applications.
We begin the paper with an overview of the 2D version of our al-

gorithm in Section 2 to give the reader with an intuitive understanding
of our approach. In Section 3, we introduce a topology framework
that we will use to describe the algorithm more formally in Section 4.
In Section 5, we discuss details important for implementation of the
technique, and compare it to previous work in Section 6. Section 7
presents our results and we conclude in Section 8 with future work.

2 Overview of Algorithm

The IStar encoding process takes as input an image function with re-
gions of constant color, which we call the primal image. The top row
of Figure 1 shows an example of the encode process with an origi-
nal 2D image (a) and the primal image with uniquely defined regions
(b). This primal image can be used to generate a graph-like struc-
ture, called the dual complex, whose nodes represent the unique re-
gions and edges represent the boundaries between regions, as seen in
(c). The next step is to embed the dual complex in a color space, (d),
and relabel (recolor) the primal image based on the coordinates of the
node positions in this new space, (e). Note that disjoint regions with
the same color in the primal image are mapped to different nodes in
the dual complex and are therefore embedded in different positions of
the color space, giving the relabeled image a distinct color for every

Published 14 September 2007. 

1424

         1077-2626/07/$25.00 © 2007 IEEE       Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007



primal

dual graph embedded
dual graph

r

g

re-label sample,
compress &

optimize

encoded
raster
image

IStar Encoding

encoded
dual graph

original image

encoded
dual graph

IStar Decoding

encoded
raster
image

upsample

histogram
w/ dual graph

dual graph
w/ cuts

cut

reconstructed
image

compressed
bitmap

histogram

a

b

c d

e

f

g
h

i
j

k

l

m n

o

Fig. 1. Overview of IStar encoding/decoding described in Section 2.

unique region. This labeling helps overcome artifacts introduced dur-
ing the compression process and allows regions to be uniquely iden-
tified during decoding. The relabeled image function is then sampled
and compressed (e.g. through downsampling), resulting in a miniature
bitmap representation, (f). At this point, the colors of the downsam-
pled bitmap can be tweaked to improve reconstruction quality, an opti-
mization which is discussed in detail in Section 5. The node and con-
nectivity information are encoded by storing the coordinates of each
node and a list of edges, (g), and because the original color is lost dur-
ing relabeling, a color palette that associates each node with its color in
the original image is generated. The downsampled bitmap, the graph
structure and the color palette forms the complete IStar structure, (h).
The decode process, Figure 1 bottom row, takes as input the com-

pressed bitmap, (i), and upsamples it using a reconstruction filter to
create a blurry version of the relabeled image, (j). Note, the histogram
of the upsampled image follows the structure of the dual complex, as
seen in (k) and (m), because of the way the positions of the nodes were
used to determine the color of the relabeled image in encoding. Sam-
ple values along the boundary of two regions are a linear combination
of the colors of the regions and map to the line segment that connects
the two nodes of each region, as demonstrated by the three samples in
(l) mapping to the line in (n). In the case where three regions share
a common boundary at a point, upsampling results in sample values
between all three nodes, thereby mapping to points inside the trian-
gle formed by the nodes in histogram space. Using the positions of
samples within the dual complex, the upsampled image is “cut” into
unique regions, and combined with the original color palette to recolor
the image and produce the final, reconstructed image, (o).

3 Comparison to Previous Work

Topology is a field of mathematics that deals with abstract manifolds
and their characteristics, such as interrelationships, canonical topo-
logical forms, algebraic operations, and mathematical definitions of
shape. A solid introduction and reference for basic foundations of al-
gebraic topology can be found in [7, 18]. The application of topology
to general scientific problems is surveyed by Dey et al. [2]. In general,
topological analysis focuses on the characteristics of a single manifold
in isolation. In contrast, our work analyses the characteristics and em-

bedability of multiple intersecting manifolds and their duals. A result
of this work is the development of an image function that maps from
the primal complex to its embedded dual.
Digital topology refers to image processing methods that apply the

concepts of mathematical topology to the processing and understand-
ing of digital images [12, 13] by looking at the shape induced by bi-
nary images in the integer domain Z. The adjacency graph captures
the topology related to manifold intersections and is often use in vi-
sion and object matching applications [17]. In contrast, our work de-
velops image topology for continuous image and data domains, and
rather than using an adjacency graph, uses a full dual CW-complex
for adjacency information, which is essential for reparametrizing the
image.
The process of identifying salient topological features in gray-scale

(scalar) image data has generally relied on several techniques: skele-
tonization, Morse-Smale complex identification and simplification,
and Reeb graph identification [5, 20]. Though the work of [1] does not
explicitly develop a topological framework, it does apply a barycen-
tric interpolation over simplicial complexes to extract geometry from
a volume faction data. Topology has also played an important role
in the analysis of vector flow fields[8, 22]. The survey on computa-
tional topology for shape modeling by Hart [6] covers many common
and useful applications of topology in computer graphics. Our work
extends scalar image topology methods by developing a framework
for multi-variate image topology and techniques for creating images
(encodings) that preserve topological characteristics by construction.
Most approaches to represent functions with discontinuities for ren-

dering are based on implicit representations that composite primitives
with known mathematical properties. However, the representation of
discontinuities in raster-based approaches have recently become an ac-
tive research. Sen et al. [24] provide an excellent survey of current ap-
proaches. The methods of Sen [23] and Tumblin and Choudhury [27]
are examples of methods that explicitly handle boundary representa-
tions as geometric primitives tied to a pixel representation that render
in real-time on graphics hardware. However, unlike our approach, they
simplify curved features to be piece-wise linear which can produce ar-
tifacts when not properly sampled. The methods of Ray et al. [21] and
Loviscach and Bremen [16] utilize an implicit representation of sur-
face discontinuities, which are effectively level-sets of smooth scalar
functions. The work of Ray et al. captures cusp discontinuities as
the intersection of multiple boundary functions. Loop and Blinn [15]
describe a framework for evaluating bounded regions represented as
Bezier splines, which is well suited for hardware accelerated raster
graphics applications.

4 Topological Framework

This section covers the mathematical foundations of this work. First
we define the CW-Complex, which forms the basis of our representa-
tion. Next, we present a new topological description of images based
on intersecting regions. We use this definition to analyze and extract
the topology of an image’s data-space, or histogram domain. This in-
formation can then be used to reparametrize the image so that unique
pixel values identify unique regions, even when the image is been
band-limited. The process of reparametrization and rendering are cov-
ered in Section 5.

4.1 The CW-Complex

A CW-complex is a fundamental construct from topology. The “CW”
stands for closure-finite weak topology. CW-complexes are like gener-
alized graphs with nodes (termed 0-cells) and edges (1-cells), however
they can also contain surfaces (2-cells), volumes (3-cells) and so on.
Each N-cell in the complex must be completely bounded by (N− 1)-
cells and homeomorphic to an N-ball (the interior of an N−1 sphere).
For instance, each 2-cell is homeomorphic to a disk and bounded by
1-cells, each 1-cell is bounded by 0-cells, etc. The boundary of a 0-cell
is simply 0. A CW-complex χ can be deconstructed as set of N-cell
sets, or a set of skeletons, χ =

{
χ0,χ1,χ2, . . .

}
, where the superscript

indicates the dimension of cells in the set. We call χ0 the 0-skeleton
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Fig. 2. The relationship between the primal complex and its dual for a
3D image with four “objects.” (top) primal complex composed of the
3, 2, 1, and 0-skeletons. (bottom) the corresponding dual complex.

of χ , or the set of all points in the complex. A subscript will indi-
cate a particular element of the skeleton. CW-complexes are useful
because they capture both the concrete geometric and abstract alge-
braic/combinatoric characteristics of manifolds. For a more complete
description of CW-complexes and their properties, see Hatcher [7] Ap-
pendix, page 519.

4.2 The Primal CW-Complex

Assume for a moment that objects in the real-world are spatially dis-
tinct, i.e. they do not overlap except at infinitesimally thin boundaries.
Objects are things that are semantically different like air, skin, soft-
tissue, and bone. A region of vacuum would still be considered an
object since it is semantically distinct from the others. Then, for some
finite volume of space D ⊂Rd , we say that the N objects Ai that oc-
cupy this space fill the entire volume: D=

⋃N
i=1Ai. Formally, we state

that the union of objects forms a closed cover of the compact set D.
From these objects, we can construct a CW-complex χ which we

call the primal complex. Figure 2 (top row) illustrates the primal com-
plex for a 3D image. For a d-dimensional image, the primal complex
is defined as χ = {χq |q= 0, . . . ,d}, where

χq =

⎧⎨
⎩
d+1−q⋂
j=1

Aij �= ∅

⎫⎬
⎭ . (1)

Equation 1 indicates that lower-order q-skeleton elements are formed
by object intersections. For 3D volume data, 3-skeleton elements are
the objects themselves, 2-skeleton elements are formed by the inter-
section of two objects, 1-skeleton elements by the intersection of three
objects, and 0-skeleton elements by the intersection of four objects.

4.3 The Dual CW-Complex

Given an image of N primal objects, assume we have an algorithm
that automatically segments the image and produces N binary images,
each of which identifies a unique object with a value of 1 if the object
is present at a pixel, 0 otherwise. We can stack these images together
to form a single image with an N dimensional vector at each pixel. We
call this vector the “indicator vector” since it indicates which object is
present at each pixel. We can treat the discrete image as a continuous
function, Iv : D→RN , by convolving with an interpolation kernel k:

Iv(�x ∈ D) =
∫
D
k(�x−�s)

N

∑
i=1

δ (�s−�pi)Vi d�s, (2)

where the Vi is the vector at pixel �pi, and δ is Dirac delta function.
What structure do the image values have with respect to RN , the

data domain? To answer this question, consider what happens to the
interior of a segmented object Ai. In the data domain, points that are
not near the object’s boundary map to a single point inRN , i.e. they all
have the same value because the samples within the support of the ker-
nel are all equal. Points near the boundary between two objects, how-
ever, take on values that are linear combinations of the values of the
two objects, due to the blurring effect of convolution-based interpola-
tion. Therefore, these values map somewhere on the line connecting
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Fig. 3. A hand dataset comparing image structure in primal and dual
spaces. The left column shows the image in the primal domain. The
right column shows the image in the dual space. [A] shows the hand
with an arbitrary color palette. [B] shows the encoded image. [C]
shows the “cut regions” in the dual space with the orignal palette and
[D] shows the cut regions with the encoded color palette. [E] shows
the histogram of the encoded image, which follows the dual-complex
structure. [F] shows the histogram overlayed with the dual-domain cut
regions. Source: Grays Anatomy.

Fig. 4. Blowing up a non-generic boundary in 2D in order to embed it.

the values of the objects in the value domain. Points near the region
formed by the intersection of three objects will have values that are lin-
ear combinations of the three object values, therefore mapping to the
triangle with vertices at the values for each object. Similarly, locations
near the region formed by the intersection of four objects will have
values located within a tetrahedron in the value domain. This structure
(points, lines, triangles, tetrahedrons) is the dual complex, χ∗, of the
primal, and is defined as χ∗ = {χ∗q |q= 0,1,2,3} where χ∗q = χ3−q.
In other words, 3D cells in the primal skeleton become points in the
dual, 2D faces become lines, 1D lines become 2D faces, and points
become 3D cells. Figure 2 (bottom row) shows χ∗ embedded in 3D.
We can now see how the dual graph structure described in Section 2 is
the dual complex of our primal image. Because our structure encodes
the dual of an image I, we refer to it as I∗ or IStar. Figure 3 illustrates
the image structre in both the primal and dual spaces. A small portion
of the dual complex is shown in each image for reference. Notice that
the histogram in Figure 3[E] shows the structure of the embedded dual
complex.

4.4 Embeddings of χ and χ∗

By definition, the primal complex χ embeds in D, χ ↪→ D. A com-
plex embeds in a space if the uniqueness of open sets (elements of the
skeleton minus their boundary) is preserved. For example, any point
in D is covered by a unique object Ai or is shared by multiple Ai’s only
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Fig. 5. Making a region simply connected. The center image shows the
object intersecting with itself, region A1 is contracted in grey to show
that it is simply connected. Regions can also be made simply connected
by dividing them into 2 regions, seen on the right.

if it is in the boundary formed by them, as described by Equation 1.
χ∗ embeds inRN when each of the N nodes are set on unique axes of
the space. In fact, χ∗ embeds in an N−1 dimensional subset ofRN .
While χ∗ embeds trivially in RN , it can be shown that with a few

additional constraints, χ∗ is embeddable in a compact subset of Rd ,
where d is the dimension of the image [9]. The constraints are:

(i) either
⋂m
j=1Aij = ∅ or codim

(⋂m
j=1Aij

)
= m−1

(ii) Ai is simply connected
(iii) Ai can intersect itself, but only along its boundary

Condition (i) guarantees that the subjects will only intersect in stable,
or generic, configurations. For a 2D image, the generic intersection
types are 2-way, where two objects meet at a line, and 3-way, where
three objects meet at a point. For a 3D image, the generic intersec-
tions are 2-way, where two objects meet at a plane, 3-way, where three
objects meet at a line, and 4-way, where four objects meet at a point.
Generic intersections are those that cannot be destroyed when a sub-
ject is moved some infinitesimal amount. Non-generic intersections,
greater than N+1-way, can be fixed by “blowing-up” the intersection,
which introduces a new subject as seen in Figure 4. Condition (ii) re-
quires each subject to be strictly simply connected, i.e. disconnected
regions and holes are not allowed. When a subject is composed of
multiple disconnected regions, we can make each simply-connected
region a separate subject. Condition (iii) allows subjects with holes to
be fixed by linking disconnected boundary segments, as seen in Fig-
ure 5. Combined, (i-iii) are sufficient conditions for defining a topo-
logical CW-complex which uniquely represents the subjects and their
boundaries and its dual. Later in this paper, we will discuss how con-
straints (ii) and (iii) may not always be necessary when we embed χ∗
in a higher dimensional space.

5 Algorithm

In this section we describe the algorithms for embedding and de-
coding of IStar images. Together, the embedded dual complex and
reparametrized values form an encoding of the primal complex that
preserves the uniqueness of objects and their boundaries. Discontin-
uous boundaries are implicitly represented in the encoded image and
uniquely identified by their parametrized value. We will use this fact
to reconstruct the original image with its discontinuities at any resolu-
tion from a raster image. We will also show that the encoded image
size can be reduced substantially without significantly impacting the
quality of the reconstruction.

5.1 Encoding

The input to the IStar encoding algorithm is an image function, Iv,
which can be obtained from a data set, for example an image in 2D or
a volume in 3D. For 2D data sets, Iv is a high resolution sampled image
of at least 2000× 2000 pixels. While it is possible to use geometric
representations as input, it is easier to work with high resolution raster
images. Note that this does not compromise generality since vector
representations can be always be rasterized. For 3D data sets, we use
a geometric representation and simply evaluate the indicator vector
at any point in the spatial domain. To ensure dual embedability, dis-
connected objects in the original image may need to subdivided into
individual objects, which can be done by re-tagging the image using
a flood fill. For ease of explanation, the discussions in the paper are
restricted to 2D and 3D, regularly sampled data sets; however, the al-
gorithm and math are general with respect to dimension, and can be
used with irregularly sampled data.
The following steps are needed to encode:
1) Identify and refine primal complex. Make each connected

component of each object an independent object, and create
“ghost” 0-cell elements for all n-way intersections greater
than d+1 where d is the dimension of image.
2) Identify dual complex. Each object becomes a 0-cell, any pair
of objects co-located within a differential volume become a 1-cell,
and so on.
3) Embed dual in a compact space. Use a graph layout solver
to embed all 0-cell positions in the data space.
4) Initialize encoded image. For each pixel in the encoded image,
assign its value to the embedded dual 0-cell position associated
with the object at that spatial location in the original image.
5) Optimize. Using variational minimization, make the encoding
reproduce the original image with minimal error.

The first step in encoding an image is to analyze the high resolution
input to determine the primal complex. Objects and intersections are
found and classified. When (d+1)-way intersections are found, they
are preserved by inserting a “ghost” 0-skeleton element in the dual;
however, a new region is not inserted into the primal complex. Rather,
the ghost nodes are effectively ignored during decoding and the at-
tribute assignment goes to the next closest 0-skeleton element. This
ensures that these non-generic intersections are not lost or degenerate.
An example of inserting a ghost element in 2D can be seen in Figure 4.
The dual complex is found by iterating over locations in the pri-

mal image, inspecting neighborhoods around each sample for differ-
ences in objects id’s. N-way intersections are recorded by introducing
the appropriate skeleton element into a simple data structure which
maintains lists for object id’s, embedded position�Xi, indices into other
skeleton lists, and associated attributes such as color.
Reparametrizing the data into a lower dimensional value space in-

volves embedding the dual complex in a space RE , where E is the
dimension of the target value space greater than or equal to the image
dimension d. In particular, we are interested in a straight-line em-
bedding in which the elements of the q-skeleton are parametrized as
linear combinations of the elements in the 0-skeleton. For example,
the elements of the 1-skeleton are lines (not curves). Although we can
show that the dual complex is embeddable in a space of dimension
E = d, this embedding may require curved q-skeleton elements. With
an additional dimension, however, most skeletons can be straight-line
embedded.
Embedding can be accomplished using a modified, force-directed

graph solver which is adapted to handle CW-complex embeddings
by introducing charged-particle forces for faces (dual 2-skeleton el-
ements) and volumes (dual 3-skeleton elements). This is done by
adding extra nodes at faces and volumes. These nodes are constrained
to the center of their respective faces and volumes and are there only
to force 0-skeleton nodes (�Xi) away from these regions.
For 2D images it can be shown with a straightforward proof that a

3D target space (equivalent to the common color image value space of
RGB) will always be sufficient for embedding. Ignoring elements in
the 2-skeleton, the 0 and 1-skeletons form a planar 2D graph, which
is straight-line embeddable in 2D [3]. The straight-line graph can be
mapped to a plane in R3. Now, move all 0-skeleton elements that
intersect the interior of a 2-skeleton element some distance normal to
the embedding plane. Continue moving those who still intersect 2-
skeleton interiors until all intersections are removed. We know that
intersecting sub-complexes must be nested; if they are not, they would
have overlapping edges, which have already been resolved by straight-
line embedding the graph. Therefore, each lifting step will free at least
one 2-cell. So, for finite complexes, this process will terminate and no
intersections will remain.
For volumetric data, we default our embedding to a 4D value space

(i.e. RGBA). It is easy to detect a false embedding by traversing the
embedded elements of the skeleton, decoding their attribute vectors,
and identifying any incorrectly assigned attributes. In practice we have
never needed more than a 4D embedding for volumetric data, however
it is possible to construct pathological cases where each object shares
a boundary with every other object in the spatial domain. However,
even these situations can be remedied by subdividing the objects.
Now that we have computed and laid out our dual complex, we are
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ready to start creating the encoded image. We initialize the encoded
image by assigning values from the indicator vector. If we let�Xi be the
embedded position of the 0-skeleton element χ∗0

i in the target space
RE and�v be a pixel value, then the parametrized value�v′ is

�v′ =
N

∑
i

�Xivi, (3)

where vi is the ith element of the value vector �v. When the indicator
vector has a single 1 at position k and all other elements 0, we get
�v′ = �Xk, which basically says that we relabel our encoded image using
the embedded position of kth 0-skeleton element χ∗0

k . For 2D images,
the initial encoded image is the same size as the original raster image
and we initialize every pixel of it with the position of its correspond-
ing dual-embedded 0-skeleton element. The downsample process that
follows will produce a smoothed, or band-limited, encoding. In a sim-
ilar way, we initialize the encoded image for 3D volume data by as-
signing to each sample the position of the embedded dual 0-skeleton
element associated with the object at that location, except that in this
case we do not get this information from a raster data set but by directly
evaluating the function using the 3D geometry. It is also possible to
blur the resulting encoded image to enforce smoothness. When the at-
tribute is smooth (C0 continuous or better), for example with distance
transforms or posterior probabilities, the initial values can be weighted
sums of the the embedded dual 0-skeleton elements.
Once the encoded image has been downsampled, we can choose to

tweak the sample values in order to yield a more accurate reconstruc-
tion. This process can be described as a more general optimization
problem. If we define a “decode” function γ :RE →RN that takes the
encoded values and returns them to the discrete colors of the original
image, then the encode step described by Equation 3 can be refined
using a variational minimization of

ε({�v′i|i= 1 . . .N}) =
∫
D
|Iv(�x)− γ(Ie(�x))|2 d�x, (4)

where Iv is the original image function, Ie is the encoded image func-
tion, and | . . . |2 is the L2 norm. The characteristics of the encoding
depend entirely on the choice of the original image function Iv, decode
function γ , and interpolation kernel k. The goal of this optimization is
to reproduce the original image function with minimal error. Note that
neither Iv nor γ(Ie) areC0 continuous functions. Therefore, we cannot
take derivatives of Equation 4 and solve it as a linear system. However,
we can minimize Equation 4 with direct search methods [11], which
can robustly and efficiently minimize discontinuous functions.
When the original image function is represented as a high resolution

rasterized image, the integral in Equation 4 becomes a summation,

ε({�v′i|i= 1 . . .N}) =
M

∑
j=1

∣∣Vj− γ(Ie(Pj))
∣∣
2 , (5)

whereVj is a pixel value (an indicator vector) for object j at pixel loca-
tion Pj in the original image,�vi is a pixel value in the encoded image,
and M is the number of pixels in the rasterized original image. The
direct search optimizer, also known as “pattern search” [11], works
by modifying the unknowns �vi incrementally, accepting changes that
lower the error ε in a greedy manner. Since we typically use interpo-
lation kernels with finite support, we only need to compute the error
summation for the region of the original image covered by the kernel
support for that sample’s location in the encoded image.
One important consideration for optimization is the precision of the

target image. Although solvers typically operate on real-valued types
(float or double), quantization to fixed precision types (such as 8-bit
char) can affect the quality of the encoding. We have found it valuable
to include knowledge of the target precision in the optimization. There
are two ways to do this. In the direct search optimizer, one can restrict
the increments to the size of the target precision’s epsilons. Alterna-
tively, one can periodically quantize the solution to the target precision
during the optimization, while shrinking the step size. Orlin et al. pro-
vide a more thorough treatment of fixed precision optimization [19].

5.2 Decoding

Once encoded, the image can be “rendered” or decoded at any resolu-
tion. This involves the following steps:
1) Resample encoded image to desired resolution.
2) Apply decoding function γ for color assignment at each pixel.
3) Antialias image, an optional step which blends colors near
object boundaries.

Decoding an encoded image requires knowledge of the embedded dual
skeleton, which is encoded in the IStar structure. The process basi-
cally consists of resampling the image and evaluating γ for each sam-
ple. Throughout this paper, the γ function is a general attribute assign-
ment function, which associates regions of value space to an indicator
vector, color, position in value space, etc., depending on the context.
When an image is encoded, the γ function captures the boundary dis-
continuities by partitioning (or cutting) the encoded value space. We
discuss specific examples of γ functions in Section 6.
Once identified, the sample value is replaced by the attribute asso-

ciated with object i. This attribute is usually a color, but can also be
a more complicated function or shader. For a given γ function that
returns an N dimensional indicator vector (�v= γ(Ie(�x))), color assign-
ment can be expressed as

�c=
N

∑
i=1

vi�ci, (6)

where ci is the color associated with the ith object. While both the
original image Iv and “decoded” image γ(Ie) functions are discontin-
uous, the encoded image function Ie is a continuous function, where
the degree of continuity depends on the interpolation kernel. We can
leverage this fact to perform analytic antialiasing. Given a γ function
we can derive a signed distance function gi :RE →R that returns the
distance to the partition in the encoded value space for object i.
The distance di to the boundary in the spatial domain, is

di(�x) =
gi(�x)

|∇gi(�x)|2 . (7)

Antialiasing can be achieved by blending based on the distance to
the boundary,�c= w�ci +(1−w)�c j where w= clamp(di(�x)/2+ .5),�ci
is the color associated with the Xi closest to Ie(�x), and �c j is the color
associated with the second closest X j .

6 Discussion

6.1 The Decoding Function γ: Plane vs. Voronoi

One way to partition the value space is with a Voronoi tessellation.
While the Voronoi-based γ function is simple to implement, it places
a hard constraint on the embedding procedure for the dual skeleton:
not only must the dual embed in the target value space, but it must
also be arranged so that the Voronoi tessellation produces the correct
results. For even moderately complicated images, it may be difficult to
satisfy the Voronoi constraint. The use of Voronoi γ functions also has
a subtle side-effect in the reconstructed images. Triple intersections in
the primal domain tend to be shaped like the intersections in the value
domain. Voronoi intersections have a “Y” shape in the value domain,
so the intersections in the spatial domain are also slightly “Y” shaped,
even when the image is aggressively optimized. This effect is caused
by the smoothness of the interpolation kernel. We can address both
these issues with a more flexible γ function that defines the tessellation
using planes in the value space and allows us to create “T” junctions.
In this case, each embedded 0-skeleton element Xi is bounded by a
number of planes,

pi j(�x) = �wTi j�x+w0,i j, (8)

where pi, j(�x) = 0 is the plane separating Xi and X j , �w and w0 are the
plane coefficients. The γ function can be expressed as

γ(Ie(�x)) =�ai where pi j(Ie(�x)) > 0 ∀ j, (9)
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Fig. 6. A comparison of “Y” versus “T” intersections.

where �ai is the attribute such as color associated with object i. The
value space distance functions for this γ are

gi(�x) =min
j

(
pi j (�x)
|�wi j|2

)
. (10)

This function simply returns the distance to the closest boundary plane
(pi, j) in the value space, and is used for antialiasing in Equation 7.
One advantage of a plane basis for γ is the fact that the planes can

be arranged to preserve the structure of object boundaries in the value
domain for any valid embedding. The second advantage is the abil-
ity to arrange the n-way object intersections in the value domain so
that they minimize the decode error. Figure 6 illustrates the difference
between “Y” intersections produced by Voronoi tessellations and “T”
intersections produced using planes.
Antialiasing object boundaries requires us to capture the second

closest X j, i.e. the closest X j that shares a 1-skeleton element with the
selected Xi. This distinction is important since a plane may be nec-
essary to separate two Xi’s that happen to embed closely but do not
share a boundary in the spatial domain. Since Equation 10 requires a
division by the plane coefficients, we pre-normalize the coefficients so
that this does not need to be done for each sample. This makes Equa-
tion 10 identical to Equation 8. The second closest X j will be the one
with the minimum gi j that also shares a 1-skeleton element with Xi.

6.2 Considerations for Volumetric Data

The dual-parametrization method can also be used for 3D volume and
higher dimensional images. The utility of dual-parametrization for
volumetric data is less about compressing the image size (extents),
and more about compactly representing object attributes. Consider the
segmentation of a data set. Many segmentation and classification algo-
rithms are capable of producing sub-pixel accurate results, for instance
level-set and random walker methods [4, 28]. These methods require
a scalar image for each segmented object to preserve this sub-pixel
accuracy. Therefore, 10 segmented regions would require 10 scalar
volumes. For this reason, many discard the continuous representation
for a binary tagged data set, which identifies classified features only
at data samples. Dual-parametrization can be directly applied, as de-
scribed in the previous section, where Iv produces an indicator vector
based on the segmentation’s scalar fields. More general classification
methods produce posterior probabilities or volume fractions for each
object in the data [14, 26]. In this case, the dual-parametrization can
be used to encode these continuously varying probabilities as seen in
[10]. The only modification necessary to make that method a dual-
parametrization is the connected-component subdivision of objects
(condition (ii) in Section 4). In this case, connected objects and the
dual structure can be identified based on maximum a-posteriori class
assignments.
Level-set segmentations can easily be transformed into signed dis-

tance functions with respect to the segmentation boundary [28]. A
dual encoding can capture this information as well by adapting the
minimization from Equation 4 to

ε({�v′i|i= 1 . . .N}) =
N

∑
j=1

∫
Dj

(
dl j(�x)−de j(�x)

)2 d�x (11)

where Dj is the region for which the level-set distance dl j for object
j is positive, and de j is the distance function from Equation 7. Unlike
the discrete object representation discussed earlier, this functional has
continuous derivatives.

Vector Bi-level Supports Encoded 32x40 Decoded 1Kx1K

Fig. 7. Supporting cusps by introducing hidden support objects.

Encoded image Data Domain Decoded image

Fig. 8. An ant image. Left: encoded primal image. Left-center: cuts in
the dual domain. Right-center: regions in dual domain assigned colors
from the original palette. Right: decoded primal image.

We also implement Equation 11 as a summation,

ε({�v′i|i= 1 . . .N}) =
N

∑
j=1

M

∑
k=1

(
dl j(Pk)−de j(Pk)

)2 h(
dl j(Pk)+ ε

)
,

(12)
where Pk is a pixel location in the image domain, and h is the Heaviside
step function, which ensures that we only optimize regions within a
distance ε from object i’s boundary. We minimize this functional using
an iterative Gauss-Seidel solver with successive over-relaxation.

6.3 Enforcing Stable Singularities

One of the advantages of IStar images over traditional raster images is
that infinitely thin objects can be represented, such as lines and cusps.
As noted earlier, a signed boundary distance function can be used to
outline subjects. Therefore, to represent lines, we implicitly represent
them as a boundary. A line can be forced to exist in a dual encoded
image by adding additional objects so that their boundary is the line.
These new objects are hidden when the illustration is rendered by mak-
ing their color identical to the original object that they were cut from,
with the exception of their boundary, which is rendered as a partial
outline, the line itself. Cusps, or sharp edges, can be captured by 3-
way object intersection in the dual encoded image, and be made an
intrinsic property of a boundary by forcing a triple intersection at the
cusp’s point. Just as with lines, this is done by adding an extra hidden
subject. Figure 7 shows the letter A with cusps supported by hidden
subjects.

7 Results

In this section, we evaluate the IStar framework by first implementing
the reconstruction algorithm on graphics hardware in order to texture
map surfaces in real-time applications. Next, the quality of the recon-
struction is compared against existing techniques for efficiently rep-
resenting 2-D images, both for real-time and for offline applications.
Finally, we demonstrate the preservation of semantic meaning in the
IStar representation and give an example of how it can fix classifica-
tion errors.

7.1 Graphics Hardware Implementation

The Voronoi decoding of IStar images was implemented as a frag-
ment program on programmable graphics hardware. To do this, the
compressed IStar bitmaps are bound to the appropriate surfaces in the
scene and its texture samples are bilinearly interpolated on the hard-
ware. The position and color of the nodes on the dual complex are
provided as two additional non-interpolated textures. To compute the
correct color, we must find the closest node to the upsampled value at
each pixel. This can be done by comparing each node in turn, resulting
in an algorithm with linear complexity with respect to the number of
nodes. Instead, we use a constant-time algorithm that first divides the
original image into a uniform grid of m×n cells in the spatial domain
during encode. For each cell, we determine which regions (i.e. 0-cell
elements in the dual skeleton) it contains, and the maximum number
of regions in any single cell is computed. This information is then
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Fig. 9. Objects textured with IStar images for an interactive walk-
through. The scene is a “museum” of IStar images with a wide view
on the left, and a detailed view on the right where the user has walked
up to one of the artworks. The standard texture on the wall appears
pixelated, the IStar image is not. This scene renders at about 480 fps.

output to a constant-sized list of nodes for every cell, where the size
of the lists is determined by the cell with the most nodes. For cells
with less than the maximum node count, the excess nodes are padded
out with large values which will never be accessed during the nearest-
node determination. During decode, we first determine which cell the
point to be shaded is in, and compute the square-distance in histogram
space from the upsampled value at that point to each of the nodes in
that cell. A series of conditional move statements allows us to deter-
mine the node with the smallest square distance, thereby mapping the
sample point to its Voronoi cell in the dual complex. This algorithm
has constant complexity since it is limited by the maximum number of
nodes in each cell. In our experiments, this number was less than 10,
even for complex images. The rendering algorithm runs at real-time
rates (> 100 fps) at 1024×1024 resolution on an NVIDIA 7900GTX
with 512MB of video memory. Figure 9 demonstrates how we can ap-
ply IStar images to general texture mapping by using them to texture
map the walls of a walkthrough environment.

7.2 Quality of Reconstruction

To measure the quality of the IStar algorithm, we must compare the
original primal image with the reconstructed result. However, the
quality of the reconstruction varies with the amount of downsam-
pling in the encoding process, making this method a form of lossy
image compression. In other words, the algorithm is replacing a high-
resolution bitmap with a smaller representation by trading memory
space for algorithmic complexity.
Therefore, we also compare our algorithm to existing raster-based

compression schemes. However, unlike our IStar representation, these
do not take discontinuities into account. In particular, we compare
against the three most common approaches used in real-time applica-
tions: downsampling with (1) nearest-neighbor and (2) linear upsam-
pling, and (3) S3TC image compression. For completeness, we also
compare against high-end offline image compression techniques such
as jpeg and jpeg2000. We present our results in Figures 10 and 11,
where the Peak-Signal to Noise Ratio (PSNR) is plotted against com-
pression ratio for the different approaches (higher PSNR means better
quality). The size of the entire IStar structure (compressed bitmap,
dual skeleton, and color palette) is taken into account when doing our
calculations. While the size of the skeleton and color information are
constant, we can vary the size of the IStar structure by changing the
amount of downsampling for the bitmap. While jpeg and jpeg2000
outperform our approach, these compression schemes are not com-
patible with real-time applications as their decompression algorithms
cannot exploit the regular sampling and locality that traditional raster
images can. In addition, jpeg and jpeg2000 compress the image at
a fixed resolution, which means that magnification of the image will
not preserve the boundary discontinuities. If desired, IStar images can
be combined and optimized with jpeg or jpeg2000 and enjoy both ag-
gressive compression and resolution independence. Figures 11 and 12
compare detail regions of a test image for each compression method.
The artifacts introduced by our approach at high compression ratios

are very different in nature than those of other compression schemes.
Rather than the ringing, blurring, or block artifacts of other compres-
sion schemes, high compression of IStar images introduces artifacts
that are simplifications of the geometry of the dual encoded image,
which are less perceptually objectionable.
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Fig. 10. Rate-distortion comparisons of PSNR versus compression rate
for compression algorithms operating on the test image of Figure 12.
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Fig. 11. Rate-distortion comparisons of PSNR versus compression rate
for compression algorithms operating on the hand image of Figure 3.

7.3 Modification of Regional Attributes

The goal of most visualization applications is to produce images that
highlight features of interest. IStar images are well suited for such ap-
plications because their structure stores distinct regions of the data as
nodes in a dual graph, which can be used to add semantic information
to each desired region. The assignment of node colors can be changed
from that of the original color palette to produce false-color images or
create special effects such as transparency. In addition, the antialias-
ing method presented in Section 5.2 can be altered to generate outlines,
which can help highlight objects during visualization. Several of these
effects are applied to a 2D test image in Figure 13.
These approaches can also be used to get around the limitation that

our input primal image must have regions of constant color. In or-
der to process an image with arbitrary gradients, we first add a pre-
processing step to our pipeline where we segment the image into sep-
arate regions. This creates a constant-color image that can be used
by the rest of the system. During rendering, the decoded regions can
then be used as “region masks” while another source of data (a low-
resolution texture, fragment shader, etc.) is used to reconstruct the gra-
dient within those regions. As shown in Figure 13[e], this is a simple
way to add gradients or high frequency texture detail to IStar images.

7.4 Fixing Classification Errors with Topological Information

An interesting application of the IStar structure is using the stored
topological information to fix errors in the data set. Figure 14 (left
image), shows a classified MRI of a human head that is known to con-
tain errors, in this case incorrect classification that places white matter
tissue in direct contact with both skull and cerebro-spinal fluid (CSF).
We can enforce the anatomically-correct configuration in which CSF
completely separates the skull and white matter by eliminating the
edge between the white matter and skull nodes in the dual skeleton
and then reparametrizing so that the white matter-skull interpolated
values follow the white matter-CSF-skull boundary path in the value
domain. The result of this reparametrization is the corrected data set
shown on the right.

8 Future Work and Conclusions

Our continuing efforts will focus on developing the IStar frame-
work for more general image classes, including arbitrarily varying at-
tributes, such as color gradients and texture. We believe this approach
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iStar jpeg2k s3tc linear nearestoriginal

Fig. 12. Comparison of compression artifacts. The image on the left
was compressed 1000 : 1 with various algorithms. The insets show the
artifacts introduced by the algorithms for the regions specified. “Lin-
ear” and “nearest” refer to a bilinear interpolation and nearest-neighbor
upsampling of the downsampled data, respectively. Our algorithm does
very well against the real-time approaches and even compares favorably
against jpeg2000. Note that IStar artifacts are geometric simplification.

will benefit multi-class classification and segmentation methods as an
acceleration mechanism. The compact data representation may be able
to eliminate the need for computing independent scalar fields for each
class and allow all class probabilities to be solved simultaneously. We
are also interested in automating the cusp support algorithm and pro-
viding a postscript decode implementation.
We have presented a new topological description for continuous im-

ages in both 2D and 3D. This topological description allows images to
be reparametrized so that discontinuities are preserved at arbitrary res-
olutions. By applying the machinery of topology, lower bounds can be
found for the dimension of a value space that is capable of preserving
the uniqueness of n-way object intersections. We have demonstrated
that this preservation of semantic structure can enhance 3D visualiza-
tions and 2D images.
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