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1 Motivation

The goal of this project is to provide a fully automatic tool for image registration and mosaicking of several
hundred high-resolution images. This tool is primarily aimed at researchers working with electron microscopy
images. A microscope rarely has a large enough field of view to cover the area of interest to the scientist with
reasonable detail. Therefore, the area of interest has to be imaged in several tiles, following some overlapping
tile pattern. The original area of interest is later reconstructed by laying out the image tiles into a mosaic.
One problem particular to the microscopy images arises from the fact that the microscope introduces radial
distortion into the image. Thus, even if the exact layout is known for the image tiles, the tiles may not
match perfectly in the overlap region. When the number of tiles is more than just a few, the task of laying
out the mosaic quickly becomes daunting, and is a prime candidate for automation.

2 Problem statement

Given a large number of tiles specified in no particular order, a mosaic must be constructed and individual
tiles must be corrected for radial distortion. This is the global problem that can be split up into slightly
more manageable sub-problems:

e Find pairs of matching tiles.
e Deduce a tile ordering and build a rough estimate of the mosaic without radial distortion correction.

e Iteratively refine the mosaic by alternating the refinement of the radial distortion correction and posi-
tion of each tile in the mosaic.

3 Description of the mathematics and algorithms

3.1 Matching pairs of tiles

Finding matching tiles amounts to finding tiles with highest cross-correlation. The method for finding
matching tiles implemented in this application is based on a technique described by Girod and Kuo[1]. The
technique is very straight forward, but it has an important prerequisite - it requires that the width and
height of the two tiles must match. If that is not the case, one or both of the tiles must be padded on
the bottom and on the right side with zeros until both of the tiles have matching dimensions as follows:
given unpadded tiles Uy and Uy, padded tiles Sy and Sy are generated such that width (Sy) = width (S1) =
max (width (Up) , width (Uy)) and height (So) = height (S1) = max (height (Uy) , height (U1)).

Having satisfied the prerequisite by padding the tiles, the tiles are transformed into the frequency domain
by Discrete Fourier Transform Fy = F {S,} and Fy = F {S1}. The Discrete Fourier Transform functionality
is provided by the FFTW/[4] library. Once the tiles have been transformed, the cross-correlation ®19 between
S1 and S is calculated as

(1)10 = Fl X Fg



where F{ is the complex conjugate of Fy. The auto-correlation terms ®og = Fyy X F and @11 = F x F} are
used to enhance the cross-correlation term as follows
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where € is a small number greater than zero added to avoid division by zero. The Girod and Kuo paper
addresses a slightly different problem than the one targeted by our application. The technique described in
the paper is intended for tracking a moving object. One of the difficulties of the tracking problem is that the
background behind the object changes. The mosaicking problem typically does not suffer from this obstacle.
Therefore, it is entirely possible that it is not necessary to enhance the cross-correlation term by canceling
out the geometric average of the auto-correlation, and it may be used directly as P = ®;9. However, the
current implementation of the mosaicking application follows exactly the technique described by Girod and
Kuo.
The inverse Fourier transform of the cross-correlation

P

PDF (z,y) = % (F~* {P})

corresponds to the probability density function (PDF) that tile S; matches with tile Sy displaced by vector
e y]"
vector it is necessary to find the coordinates |24z ymaw]T of the global maximum of this function.

Finding the maximum of the displacement PDF is non-trivial. This is due to the fact that for most
electron microscopy images the PDF' is usually very noisy. Also, the PDF of two mismatched images may
contain several maxima, or none at all. The technique described in the Girod and Kuo paper mentions a
simple thresholding method used to suppress the negative and insignificantly small values of the PDF'. The
method currently implemented in the mosaicking application is similar, but has several important features
that are worth pointing out.

Early experimentation with the PDF has shown that identifying the maxima becomes significantly easier
after blurring the PDF' to remove the high-frequency noise. The blurring is carried out in the Fourier domain,
where it corresponds to a multiplication by a low-pass filter

. We will refer to this function as the displacement PDF. Thus, in order to find the displacement

PDF (z,y) = R (F~' {P x Filter (r,s)})

where r € [0, \/5} and s € [0,7]. When s = 0 the filter behaves exactly like the ideal low-pass filter, passing
unaffected frequencies in the range [0, 7] and attenuating completely frequencies in the range (r,00). When
s > 0 the filter passes frequencies in the range [0, — s] completely unaffected, frequencies in the range
(r 4+ s,00) are completely attenuated, and frequencies in the range (r — s,r + s] are attenuated according to
the function
1+ cos (ﬁ%)
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which provides a smooth transition from zero attenuation at f = r — s to full attenuation at f = r +s. This
low-pass filter results in zero total power loss in the frequency range [0, r], because the attenuation incurred
in range [r — s, 7] is canceled out by the power leakage from range [r, r + s] due to aliasing.

More experimentation has shown that blurring the tiles prior to calculating their corresponding PDF

reduces the number of false maxima in the PDF'. The tiles are blurred in the Fourier domain as follows

attenuation (f) =

Fy = F{So} x Filter(r,s)
F = F{S} x Filter(r,s)

and the rest of the calculations are carried out as described above. The parameters r and s used for blurring
the tiles and the PDF can be tuned. In the current implementation the values » = 0.5 and s = 0.1 are used
for the tiles, and r = 0.4 and s = 0.1 for the PDF.

Having blurred the PDF, it is necessary to select a good threshold value in order to isolate a set of
pixels corresponding to the global PDF maximum. We assume that the number of pixels belonging to the
maximum is approximately 1% of the total number of PDF pixels, but it may not be less than 5 pixels or



greater than 64 pixels. The lower bound restriction is imposed in order to avoid thresholding values where
only one maximum pixel is left. One pixel does not carry enough information about the rest of the structure
of the PDF'. When 5 pixels are grouped together, it is fairly obvious that there is only one strong maximum
in the PDF. If the pixels are scattered across the PDF, it is likely the PDF does not have a strong
maximum. The lower bound on the number of pixels belonging to the PDF maximum is necessary in order
to deliver the information regarding the distribution of these pixels within the PDF. One or two pixels do
not carry enough information. The upper bound on the number of pixels applies to larger images. If too
many pixels are allocated to the PDF maxima, the computational burden involved in the classification of
the clusters increases. The upper limit of 64 pixels guarantees that no PDF could ever contain more than

64 maxima. Thus PDF
pizelsmazime = Min (64, max <5, %))

where area (PDF') corresponds to the total number of pixels in the PDF image.

To find the threshold value that would provide this number of pixels, it is necessary to build a cumulative
histogram of the PDF pixel values. The current implementation uses 1024 histogram bins. Although the
importance of this parameter has not been explored in the context of our application, we can assume that
more bins will give us a more accurate estimate of the threshold value. The cumulative histogram is searched
for the bin containing at least

area (PDF) — pizelSmazima

number of pixels. The minimum pixel value associated with that bin is the optimal threshold value that we
need.

Once the PDF is thresholded, a small fraction of the pixels belonging to the maxima are isolated into
one or more clusters. Next, pixels are classified into clusters based on an 8-connected neighborhood stencil.
Once all of the clusters have been identified, the clusters that are broken up across the PDF boundary are
merged together. This step is required because the Discrete Fourier Transform assumes that the signal is
periodic; therefore, the PDF is also periodic. After all of the pixel clusters are identified, the coordinates
of the PDF maxima are calculated as the centers of mass of the corresponding clusters. The value of each
maximum is calculated as the total mass of the cluster divided by the number of pixels in that cluster.
This process results in a list of several maxima with varying coordinates and values. The list is sorted in
descending order, so that the highest maximum is at the head of the list.

Given a list of maxima points present in a particular PDF, a simple heuristic is applied to decide
whether the tiles that produced this PDF in fact match. Matching tiles would ideally produce only one
maximum. However, due to the inaccuracy in the selection of the thresholding value, it is very likely that
there will be several maxima. This is also the case when the tiles being matched have undergone a radial
distortion. During experimentation an important observation was made that mismatching tiles produce a
PDF with several maxima points at roughly the same value, while the PDF' of two matching tiles produces
one maximum significantly higher than the rest. This result suggests a very simple algorithm to decide
whether the PDF corresponds to two matching tiles. The dissimilarity of the PDF maxima with respect
to the best PDF maximum is calculated as

maxpest (PDF)

-1
max; (PDF)

dissimilarity =
The dissimilarity of two perfectly similar maxima is equal to 0. Whenever dissimilarity exceeds a given
threshold the corresponding maximum is removed from the list. In current implementation, the dissimilarity
threshold is set to 1; thus, maxima which are more than 2 times smaller than the highest maxima in the list
are discarded. If the list contains only one maximum, we assume that the tiles match and proceed to calculate
the corresponding displacement vector. If there is more than one maximum left in the list after this filtering,
it is very likely that the tiles do not match, or one of the tiles is self-similar and may match the other tile in
several places. Due to radial distortion, it is possible that no matching tiles will be found with exactly one
maximum. In that case the match with the fewest number of maxima is considered. Significantly radially
distorted tiles typically have 2 to 4 valid maxima corresponding to small shifts from the true displacement
vector. The current implementation of the mosaicking application considers at most 3 maxima per match.
In order to find the displacement vector, it is not enough to simply find the maximum of the displacement
PDF. The coordinates [Tmqz ymaz]T are always positive, yet the displacement vector may very well have



negative coordinates. As mentioned earlier, the Discrete Fourier Transform assumes that the signal is
periodic, therefore the cross-correlation between the tiles corresponds to cross-correlation of two periodic
tiles. Once the coordinates of the maximum [, ymax]T are known, there are four possible permutations
of the displacement vector that could produce the corresponding high cross-correlation between the tiles.
The permutations are

[z
T — max
0o L Ymax :|
[ Zynaz — width (S
T = x width (Sp) ]
L Ymax
xma(l)
Tor = | Ymaz — height (So) ]
T [ Tmae — width (Sp)
= | Ymaz — height (So)

The current implementation of the application chooses the best permutation based on the normalized
squared image differences metric. This metric is calculated as the sum of squared pixel differences within
the overlap region, divided by the area of the overlap region. The best permutation corresponds to the
lowest metric value (the least mismatch between the tiles). The metric is evaluated against unpadded tiles
Up and Uy, yet the displacement permutations are based on the dimensions of the padded tiles Sy and 57,
which means that some of the permutations may not overlap the unpadded tiles at all. In consequence,
permutations can be discarded early based on the amount of overlap between the tiles. The amount of
overlap is computed as the ratio of the area of the overlap region to the area of the smaller of the two tiles.
Thus, when one tile overlaps another entirely, the overlap is equal to 1. Displacement vectors resulting in
less than 5% of overlap are discarded without further consideration. This decision is based on the fact that
typical tiles will have 20% to 30% of overlap along the edges of the tile, and approximately 10% to 5% of
overlap at the corners.

3.2 Deducing the tile ordering

The image tiles have to be laid out in a particular order, such that each successive tile overlaps one of
the previously laid out tiles. Matching tiles by definition have an overlapping area; consequently, prior
to deducing the tile ordering it is necessary to find pairs of matching tiles. The runtime complexity of
the current algorithm for finding the matching tiles is O (n2) The performance of this algorithm may be
improved, but not without sacrificing some robustness in finding the correct tile matches and rejecting the
mismatches. Why this is the case will become more clear after the current algorithm is explained in greater
detail.

The algorithm tries to find the best possible mapping from the image space of one tile into any other
tile. This is accomplished by cascading the mappings via intermediate tiles. For example, there may exist
a mapping Uy : U; between tiles Uy and U;, and another mapping U; : Uy between tiles U; and Uy. A
mapping Uy : U; : Uy between tiles Uy and Uy can be created via the intermediate tile U;. The number
of intermediate steps in a mapping from one tile to another will be referred to as the cascade length from
now on. Given n tiles, there may be at most n — 2 intermediate steps in a mapping between any 2 tiles. Of
course, this is only the upper bound on the cascade length. There are no guarantees that a mapping with a
given cascade length exists between any 2 tiles. However, the fact that there may be redundant mappings
between any 2 tiles presents a great opportunity to select the best mapping possible.

The algorithm proceeds as follows. First, pairs of matching tiles are found. Finding just one match for
every tile is not enough, because that does not provide any redundant mappings between the tiles. This is
the reason why the algorithm has O (nz) run time complexity. One way to speed up the algorithm is to limit
the number of redundant mappings to some fixed maximum number per tile. Allowing a maximum of just
2 mappings per tile may introduce enough redundancy to correct for mismatches while also speeding up the
matching process.



The mappings between the tiles are stored as connections in a graph of tiles. Each mapping (connection)
is weighed according to the normalized squared image differences metric mentioned earlier. Next, redundant
mappings with cascade length 1 to n — 2 are found. There may be more than one such mapping, therefore
it is useful if the process is explained with an example. Assume there exists a function

C(U; : Uj) = cost

that evaluates the cost of a mapping between tiles U; and U;. Given the following sample mappings

CUy:Uy) = 278
C(Uy:Uy) = 311
C(Uy:Uy) = 160
C(Uy:Uy) = 121
C(Uy:Uy) = 3419

it is most likely that the mapping Uy : U, is mismatched. There are 2 possible alternative mapping from tile
Up to Uy. The cost is set to the maximum cost of the intermediate mapping costs. In the context of this
example, this means that

C(UQ : U1 : U4) = max (C (UO : Ul),C(Ul : U4)) =278

C(UQ : U2 : U4) = max (C (UO : U2),C(U2 : U4)) =311

The mapping with the least cost (in this case Uy : Uy : Uy) is preferred even when it has greater cascade
length.

In order to generate the mosaic, it is necessary to select the target tile into which every other tile will be
mapped. This is done by considering the total cost of the target tile candidates. The total cost is calculated
as the cumulative cost of the mapping from the target tile to every other tile in the mosaic. The candidate
with the lowest total cost becomes the target tile.

It is important that each tile added to the mosaic overlaps with a significant portion of one or more
tiles that were added to the mosaic previously; otherwise ITK will not be able to refine the initial mosaic
registration. Therefore, the tiles must be sorted in the order in which they will be added to the mosaic. It is
not appropriate, however, to sort the tiles in the left-to-right and top-to-bottom order because such ordering
may fail to provide successively adjacent overlapping tiles. The sorting algorithm currently implemented in
the mosaicking application optimizes the area of overlap of the successive tiles.

The sorting starts out with the mosaic target tile, under the assumption that the target tile overlaps
several neighbors with low mismatch error. The target tile is added to the perimeter and marked as matched.
The algorithm iterates until the perimeter is empty. At each iteration, a tile is removed from the perimeter
and appended to a list of previously considered perimeter tiles. Following, the overlap area of the perimeter
tile and every other unmatched tile is evaluated, and the results are stored in a list and filtered. The filtering
is a simple thresholding algorithm that discards tiles which overlap the perimeter tile less than half as well
as the best tile in the list. The filtered list is sorted in the ascending order and added at the head of the
perimeter list. This step is necessary in order to ensure that the tiles with the greater area of overlap are
given higher consideration priority while maintaining the adjacency of successive tiles. The tiles listed in the
filtered list are marked as matched in order to be removed from further consideration, and the loop repeats.
Once the perimeter list is empty, the list of previously considered perimeter tiles specifies exactly the order
in which the tiles should be added to the mosaic.

Figure 1 on the following page demonstrates the evolution of the perimeter (shown in red) as the sorting
algorithm progresses. The corresponding tile ordering is illustrated in figure 6 on page 10.



Figure 1: tile sorting algorithm perimeter illustration

3.3 Radial distortion correction

In order to correct for radial distortion, the tile has to be warped by a radial distortion transform. The
transform is defined as follows

x(u,v) = uec+ (u—wu.) xS (u,v)
y(u,v) = v+ (v—u.) xS (u,v)



Sty = S (R)”

n=0

<

R(u,v) = (u—ue)® + (v —ve)?
where [u, vC]T is the center of radial distortion. The transform is normalized by R,,q.. Thus, the radial
distortion transform is parameterized by coordinates u.v., normalization constant R,,,; and polynomial
coefficients kg...kny_1. In order to simplify the computational burden, it is assumed that R,,,, corresponds
to the maximum distance from the center of distortion to the corners of the tile. The location of the center
of distortion is unknown, therefore it is assumed to be at the center of the tile. Additionally, the number of
polynomial coefficients is limited to N = 2. Thus, only k¢ and k; are needed to define the transform.

The polynomial coefficients are found iteratively by the ITK[3] image registration framework. The ITK
image registration framework consists of the following components

e Two images that must be matched (fixed image and moving image).
e A metric that quantifies the quality of the match between the images.
e A transform.

e An optimizer.

Although the image tiles are referred to as the fixed image and the moving image, the names are misleading.
The ITK image registration framework actually computes the transform that maps (moves) from the space
of the fixed image into the space of the moving image. Thus, the transform is the inverse of the mapping
from the space of the moving image into the space of the fixed image. In order to calculate the dimensions of
the mosaic, it is necessary to be able to transform points from the moving image space into the fixed image
space. Since the corresponding transform is unavailable, the inverse mapping is calculated numerically via
Newton’s method|2].

Within the ITK image registration framework, the optimizer manipulates the parameters of the transform
in order to achieve the best possible match between the images. Currently, the itk :: LBFGSBOptimizer
class is used. This optimizer implements the “Limited memory Broyden Fletcher Goldfarb Shannon min-
imization with simple bounds”. It was chosen because it is reasonably fast and allows the user to impose
bounds on the parameter values. The current implementation of the application takes advantage of this
capability to clamp ko to the range [0.9,1.1] and k7 to [—0.1,0.1]. This restricts the range of radial scaling
to [kgun _ k{naac7 kanaz + kinaz} .

The image registration iterates until it converges or exceeds the maximum number of iterations (specified
by the user). The resulting transform parameters define a radial distortion transform which best matches
the fixed and moving images by correcting for the radial distortion present in either of the images.

4 Demonstration of the correctness of implementation

4.1 Tile matching

Figure 2 on the following page shows two matching image tiles. These tiles have undergone a mild radial
distortion with parameters kg = 0.95 and k1 = 0.05. The overlap area between these tiles is roughly 8%.
Figure 3 shows the displacement PDF corresponding to these two tiles, as well as the isolated pixel clusters
corresponding to the PDF maxima. There are a total of 19 maxima isolated in the PDF. Filtering the
maxima leaves only one eligible maximum for consideration, which indicates that the tiles are well matched.



Figure 2: matching tiles
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Figure 3: displacement PDF for matching tiles
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Figure 4 on the next page shows two mismatched tiles. Figure 5 shows the corresponding displacement
PDF and PDF maxima. There are 26 maxima isolated in this PDF. After filtering there are still 11 maxima
left. Ideally there would be only one maximum left, therefore this PDF indicates that the tiles do not match.



Figure 4: mismatched tiles

Figure 5: displacement PDF for mismatched tiles
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4.2 Tile ordering

Figure 6 on the following page illustrates the order in which the tiles are added to the mosaic. As can be
seen, the algorithm lays out the red tiles such that they have significant overlap with previous tiles (shown
in blue).



Figure 6: tile ordering

4.3 Radial distortion correction

Unfortunately, radial distortion correction is not fully functional in the current implementation of the ap-
plication. Distortion correction between two images one of which is a radially distorted version of the other
works well. However, radial distortion correction between partially overlapping images fails to find the cor-
rect parameter values kg and k;. Figure 7 on the next page shows two images corresponding to the best case
scenario for radial distortion correction. The image on the bottom was radially distorted with parameters
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ko = 0.95 and k7 = 0.05.

Figure 7: original and radially distorted image

The mosaic corresponding to these two images is shown in figure 8 on the following page. The image on
the bottom demonstrates variance within the overlapping regions of the mosaic.
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Figure 8: blurring and high variance due to radial distortion

Figure 9 on the next page shows the results of iterative refinement of the displacement vector and radial
distortion parameters for the radially distorted image. As can be seen, the variance within the mosaic has
been significantly reduced. The optimizer was able to find parameters ky ~ 1.05 and k1 ~ —0.05 to correct
for the radial distortion in the distorted image.
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Figure 9: low blurring and variance due to corrected radial distortion
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5 Real world results

Figure 10 shows 12 tiles of one mosaic. These tiles were under exposed during development, yet the mo-
saicking application is able to assemble a mosaic in the correct order, as can be seen in figure 11.
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Figure 10: sample electron microscopy tiles




Figure 11: mosaic of 12 electron microscopy tiles

6 Summary and conclusion

As can be seen from the results presented in sections 4 and 5, the current implementation of the application
is capable of robust mosaicking of overlapping image tiles.

Unfortunately, radial distortion correction still needs improvement. The current incapability of finding
the correct distortion parameters based on a 30% to 20% overlap between adjacent tiles seriously limits the
usefulness of the application to the wider scientific community. Naturally, various methods of improvement
will be attempted in order to rectify this limitation.

One idea for improvement is already being considered. Since the electron microscopy tiles are typically
produced by the same microscope, it follows that the tiles within one mosaic are all distorted by the same
radial distortion parameters. Thus, if these parameters can be found for one tile, the rest of the tiles can be
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undistorted automatically.

Another idea for improvement that is currently being considered is the global refinement of the mosaic,
bypassing the ITK image registration framework and optimizing the tile transforms all at once in order to
minimize the variance within the overlapping tile regions of the mosaic.
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