
Implementation of an automati
 image registration toolPaul Koshevoykoshevoy�
s.utah.eduJune 30, 20051 MotivationThe goal of this proje
t is to provide a fully automati
 tool for image registration and mosai
king of severalhundred high-resolution images. This tool is primarily aimed at resear
hers working with ele
tron mi
ros
opyimages. A mi
ros
ope rarely has a large enough �eld of view to 
over the area of interest to the s
ientist withreasonable detail. Therefore, the area of interest has to be imaged in several tiles, following some overlappingtile pattern. The original area of interest is later re
onstru
ted by laying out the image tiles into a mosai
.One problem parti
ular to the mi
ros
opy images arises from the fa
t that the mi
ros
ope introdu
es radialdistortion into the image. Thus, even if the exa
t layout is known for the image tiles, the tiles may notmat
h perfe
tly in the overlap region. When the number of tiles is more than just a few, the task of layingout the mosai
 qui
kly be
omes daunting, and is a prime 
andidate for automation.2 Problem statementGiven a large number of tiles spe
i�ed in no parti
ular order, a mosai
 must be 
onstru
ted and individualtiles must be 
orre
ted for radial distortion. This is the global problem that 
an be split up into slightlymore manageable sub-problems:
• Find pairs of mat
hing tiles.
• Dedu
e a tile ordering and build a rough estimate of the mosai
 without radial distortion 
orre
tion.
• Iteratively re�ne the mosai
 by alternating the re�nement of the radial distortion 
orre
tion and posi-tion of ea
h tile in the mosai
.3 Des
ription of the mathemati
s and algorithms3.1 Mat
hing pairs of tilesFinding mat
hing tiles amounts to �nding tiles with highest 
ross-
orrelation. The method for �ndingmat
hing tiles implemented in this appli
ation is based on a te
hnique des
ribed by Girod and Kuo[1℄. Thete
hnique is very straight forward, but it has an important prerequisite - it requires that the width andheight of the two tiles must mat
h. If that is not the 
ase, one or both of the tiles must be padded onthe bottom and on the right side with zeros until both of the tiles have mat
hing dimensions as follows:given unpadded tiles U0 and U1, padded tiles S0 and S1 are generated su
h that width (S0) = width (S1) =

max (width (U0) , width (U1)) and height (S0) = height (S1) = max (height (U0) , height (U1)).Having satis�ed the prerequisite by padding the tiles, the tiles are transformed into the frequen
y domainby Dis
rete Fourier Transform F0 = F {So} and F1 = F {S1}. The Dis
rete Fourier Transform fun
tionalityis provided by the FFTW[4℄ library. On
e the tiles have been transformed, the 
ross-
orrelation Φ10 between
S1 and S0 is 
al
ulated as

Φ10 = F1 × F ∗

01



where F ∗

0 is the 
omplex 
onjugate of F0. The auto-
orrelation terms Φ00 = F0 ×F ∗

0 and Φ11 = F1 ×F ∗

1 areused to enhan
e the 
ross-
orrelation term as follows
P =

Φ10√
Φ00 × Φ11 + ǫwhere ǫ is a small number greater than zero added to avoid division by zero. The Girod and Kuo paperaddresses a slightly di�erent problem than the one targeted by our appli
ation. The te
hnique des
ribed inthe paper is intended for tra
king a moving obje
t. One of the di�
ulties of the tra
king problem is that theba
kground behind the obje
t 
hanges. The mosai
king problem typi
ally does not su�er from this obsta
le.Therefore, it is entirely possible that it is not ne
essary to enhan
e the 
ross-
orrelation term by 
an
elingout the geometri
 average of the auto-
orrelation, and it may be used dire
tly as P = Φ10. However, the
urrent implementation of the mosai
king appli
ation follows exa
tly the te
hnique des
ribed by Girod andKuo.The inverse Fourier transform of the 
ross-
orrelation

PDF (x, y) = ℜ
(

F−1 {P}
)
orresponds to the probability density fun
tion (PDF ) that tile S1 mat
hes with tile S0 displa
ed by ve
tor

[x y]
T . We will refer to this fun
tion as the displa
ement PDF . Thus, in order to �nd the displa
ementve
tor it is ne
essary to �nd the 
oordinates [xmax ymax]

T of the global maximum of this fun
tion.Finding the maximum of the displa
ement PDF is non-trivial. This is due to the fa
t that for mostele
tron mi
ros
opy images the PDF is usually very noisy. Also, the PDF of two mismat
hed images may
ontain several maxima, or none at all. The te
hnique des
ribed in the Girod and Kuo paper mentions asimple thresholding method used to suppress the negative and insigni�
antly small values of the PDF . Themethod 
urrently implemented in the mosai
king appli
ation is similar, but has several important featuresthat are worth pointing out.Early experimentation with the PDF has shown that identifying the maxima be
omes signi�
antly easierafter blurring the PDF to remove the high-frequen
y noise. The blurring is 
arried out in the Fourier domain,where it 
orresponds to a multipli
ation by a low-pass �lter
PDF (x, y) = ℜ

(

F−1 {P × Filter (r, s)}
)where r ∈

[

0,
√

2
] and s ∈ [0, r]. When s = 0 the �lter behaves exa
tly like the ideal low-pass �lter, passinguna�e
ted frequen
ies in the range [0, r] and attenuating 
ompletely frequen
ies in the range (r,∞). When

s > 0 the �lter passes frequen
ies in the range [0, r − s] 
ompletely una�e
ted, frequen
ies in the range
(r + s,∞) are 
ompletely attenuated, and frequen
ies in the range (r − s, r + s] are attenuated a

ording tothe fun
tion

attenuation (f) =
1 + cos

(

π
f−(r−s)

2s

)

2whi
h provides a smooth transition from zero attenuation at f = r− s to full attenuation at f = r + s. Thislow-pass �lter results in zero total power loss in the frequen
y range [0, r], be
ause the attenuation in
urredin range [r − s, r] is 
an
eled out by the power leakage from range [r, r + s] due to aliasing.More experimentation has shown that blurring the tiles prior to 
al
ulating their 
orresponding PDFredu
es the number of false maxima in the PDF . The tiles are blurred in the Fourier domain as follows
F0 = F {S0} × Filter (r, s)

F1 = F {S1} × Filter (r, s)and the rest of the 
al
ulations are 
arried out as des
ribed above. The parameters r and s used for blurringthe tiles and the PDF 
an be tuned. In the 
urrent implementation the values r = 0.5 and s = 0.1 are usedfor the tiles, and r = 0.4 and s = 0.1 for the PDF .Having blurred the PDF , it is ne
essary to sele
t a good threshold value in order to isolate a set ofpixels 
orresponding to the global PDF maximum. We assume that the number of pixels belonging to themaximum is approximately 1% of the total number of PDF pixels, but it may not be less than 5 pixels or2



greater than 64 pixels. The lower bound restri
tion is imposed in order to avoid thresholding values whereonly one maximum pixel is left. One pixel does not 
arry enough information about the rest of the stru
tureof the PDF . When 5 pixels are grouped together, it is fairly obvious that there is only one strong maximumin the PDF . If the pixels are s
attered a
ross the PDF , it is likely the PDF does not have a strongmaximum. The lower bound on the number of pixels belonging to the PDF maximum is ne
essary in orderto deliver the information regarding the distribution of these pixels within the PDF . One or two pixels donot 
arry enough information. The upper bound on the number of pixels applies to larger images. If toomany pixels are allo
ated to the PDF maxima, the 
omputational burden involved in the 
lassi�
ation ofthe 
lusters in
reases. The upper limit of 64 pixels guarantees that no PDF 
ould ever 
ontain more than
64 maxima. Thus

pixelsmaxima = min

(

64, max

(

5,
area (PDF )

100

))where area (PDF ) 
orresponds to the total number of pixels in the PDF image.To �nd the threshold value that would provide this number of pixels, it is ne
essary to build a 
umulativehistogram of the PDF pixel values. The 
urrent implementation uses 1024 histogram bins. Although theimportan
e of this parameter has not been explored in the 
ontext of our appli
ation, we 
an assume thatmore bins will give us a more a

urate estimate of the threshold value. The 
umulative histogram is sear
hedfor the bin 
ontaining at least
area (PDF ) − pixelsmaximanumber of pixels. The minimum pixel value asso
iated with that bin is the optimal threshold value that weneed.On
e the PDF is thresholded, a small fra
tion of the pixels belonging to the maxima are isolated intoone or more 
lusters. Next, pixels are 
lassi�ed into 
lusters based on an 8-
onne
ted neighborhood sten
il.On
e all of the 
lusters have been identi�ed, the 
lusters that are broken up a
ross the PDF boundary aremerged together. This step is required be
ause the Dis
rete Fourier Transform assumes that the signal isperiodi
; therefore, the PDF is also periodi
. After all of the pixel 
lusters are identi�ed, the 
oordinatesof the PDF maxima are 
al
ulated as the 
enters of mass of the 
orresponding 
lusters. The value of ea
hmaximum is 
al
ulated as the total mass of the 
luster divided by the number of pixels in that 
luster.This pro
ess results in a list of several maxima with varying 
oordinates and values. The list is sorted indes
ending order, so that the highest maximum is at the head of the list.Given a list of maxima points present in a parti
ular PDF , a simple heuristi
 is applied to de
idewhether the tiles that produ
ed this PDF in fa
t mat
h. Mat
hing tiles would ideally produ
e only onemaximum. However, due to the ina

ura
y in the sele
tion of the thresholding value, it is very likely thatthere will be several maxima. This is also the 
ase when the tiles being mat
hed have undergone a radialdistortion. During experimentation an important observation was made that mismat
hing tiles produ
e a

PDF with several maxima points at roughly the same value, while the PDF of two mat
hing tiles produ
esone maximum signi�
antly higher than the rest. This result suggests a very simple algorithm to de
idewhether the PDF 
orresponds to two mat
hing tiles. The dissimilarity of the PDF maxima with respe
tto the best PDF maximum is 
al
ulated as
dissimilarity =

maxbest (PDF )

maxi (PDF )
− 1The dissimilarity of two perfe
tly similar maxima is equal to 0. Whenever dissimilarity ex
eeds a giventhreshold the 
orresponding maximum is removed from the list. In 
urrent implementation, the dissimilaritythreshold is set to 1; thus, maxima whi
h are more than 2 times smaller than the highest maxima in the listare dis
arded. If the list 
ontains only one maximum, we assume that the tiles mat
h and pro
eed to 
al
ulatethe 
orresponding displa
ement ve
tor. If there is more than one maximum left in the list after this �ltering,it is very likely that the tiles do not mat
h, or one of the tiles is self-similar and may mat
h the other tile inseveral pla
es. Due to radial distortion, it is possible that no mat
hing tiles will be found with exa
tly onemaximum. In that 
ase the mat
h with the fewest number of maxima is 
onsidered. Signi�
antly radiallydistorted tiles typi
ally have 2 to 4 valid maxima 
orresponding to small shifts from the true displa
ementve
tor. The 
urrent implementation of the mosai
king appli
ation 
onsiders at most 3 maxima per mat
h.In order to �nd the displa
ement ve
tor, it is not enough to simply �nd the maximum of the displa
ement

PDF . The 
oordinates [xmax ymax]
T are always positive, yet the displa
ement ve
tor may very well have3



negative 
oordinates. As mentioned earlier, the Dis
rete Fourier Transform assumes that the signal isperiodi
, therefore the 
ross-
orrelation between the tiles 
orresponds to 
ross-
orrelation of two periodi
tiles. On
e the 
oordinates of the maximum [xmax ymax]T are known, there are four possible permutationsof the displa
ement ve
tor that 
ould produ
e the 
orresponding high 
ross-
orrelation between the tiles.The permutations are
T00 =

[

xmax

ymax

]

T10 =

[

xmax − width (S0)
ymax

]

T01 =

[

xmax

ymax − height (S0)

]

T11 =

[

xmax − width (S0)
ymax − height (S0)

]The 
urrent implementation of the appli
ation 
hooses the best permutation based on the normalizedsquared image di�eren
es metri
. This metri
 is 
al
ulated as the sum of squared pixel di�eren
es withinthe overlap region, divided by the area of the overlap region. The best permutation 
orresponds to thelowest metri
 value (the least mismat
h between the tiles). The metri
 is evaluated against unpadded tiles
U0 and U1, yet the displa
ement permutations are based on the dimensions of the padded tiles S0 and S1,whi
h means that some of the permutations may not overlap the unpadded tiles at all. In 
onsequen
e,permutations 
an be dis
arded early based on the amount of overlap between the tiles. The amount ofoverlap is 
omputed as the ratio of the area of the overlap region to the area of the smaller of the two tiles.Thus, when one tile overlaps another entirely, the overlap is equal to 1. Displa
ement ve
tors resulting inless than 5% of overlap are dis
arded without further 
onsideration. This de
ision is based on the fa
t thattypi
al tiles will have 20% to 30% of overlap along the edges of the tile, and approximately 10% to 5% ofoverlap at the 
orners.3.2 Dedu
ing the tile orderingThe image tiles have to be laid out in a parti
ular order, su
h that ea
h su

essive tile overlaps one ofthe previously laid out tiles. Mat
hing tiles by de�nition have an overlapping area; 
onsequently, priorto dedu
ing the tile ordering it is ne
essary to �nd pairs of mat
hing tiles. The runtime 
omplexity ofthe 
urrent algorithm for �nding the mat
hing tiles is O

(

n2
). The performan
e of this algorithm may beimproved, but not without sa
ri�
ing some robustness in �nding the 
orre
t tile mat
hes and reje
ting themismat
hes. Why this is the 
ase will be
ome more 
lear after the 
urrent algorithm is explained in greaterdetail.The algorithm tries to �nd the best possible mapping from the image spa
e of one tile into any othertile. This is a

omplished by 
as
ading the mappings via intermediate tiles. For example, there may exista mapping U0 : U1 between tiles U0 and U1, and another mapping U1 : U4 between tiles U1 and U4. Amapping U0 : U1 : U4 between tiles U0 and U4 
an be 
reated via the intermediate tile U1. The numberof intermediate steps in a mapping from one tile to another will be referred to as the 
as
ade length fromnow on. Given n tiles, there may be at most n − 2 intermediate steps in a mapping between any 2 tiles. Of
ourse, this is only the upper bound on the 
as
ade length. There are no guarantees that a mapping with agiven 
as
ade length exists between any 2 tiles. However, the fa
t that there may be redundant mappingsbetween any 2 tiles presents a great opportunity to sele
t the best mapping possible.The algorithm pro
eeds as follows. First, pairs of mat
hing tiles are found. Finding just one mat
h forevery tile is not enough, be
ause that does not provide any redundant mappings between the tiles. This isthe reason why the algorithm has O

(

n2
) run time 
omplexity. One way to speed up the algorithm is to limitthe number of redundant mappings to some �xed maximum number per tile. Allowing a maximum of just

2 mappings per tile may introdu
e enough redundan
y to 
orre
t for mismat
hes while also speeding up themat
hing pro
ess. 4



The mappings between the tiles are stored as 
onne
tions in a graph of tiles. Ea
h mapping (
onne
tion)is weighed a

ording to the normalized squared image di�eren
es metri
 mentioned earlier. Next, redundantmappings with 
as
ade length 1 to n − 2 are found. There may be more than one su
h mapping, thereforeit is useful if the pro
ess is explained with an example. Assume there exists a fun
tion
C (Ui : Uj) = costthat evaluates the 
ost of a mapping between tiles Ui and Uj . Given the following sample mappings

C (U0 : U1) = 278

C (U0 : U2) = 311

C (U1 : U4) = 160

C (U2 : U4) = 121

C (U0 : U4) = 3419it is most likely that the mapping U0 : U4 is mismat
hed. There are 2 possible alternative mapping from tile
U0 to U4. The 
ost is set to the maximum 
ost of the intermediate mapping 
osts. In the 
ontext of thisexample, this means that

C (U0 : U1 : U4) = max (C (U0 : U1) , C (U1 : U4)) = 278

C (U0 : U2 : U4) = max (C (U0 : U2) , C (U2 : U4)) = 311The mapping with the least 
ost (in this 
ase U0 : U1 : U4) is preferred even when it has greater 
as
adelength.In order to generate the mosai
, it is ne
essary to sele
t the target tile into whi
h every other tile will bemapped. This is done by 
onsidering the total 
ost of the target tile 
andidates. The total 
ost is 
al
ulatedas the 
umulative 
ost of the mapping from the target tile to every other tile in the mosai
. The 
andidatewith the lowest total 
ost be
omes the target tile.It is important that ea
h tile added to the mosai
 overlaps with a signi�
ant portion of one or moretiles that were added to the mosai
 previously; otherwise ITK will not be able to re�ne the initial mosai
registration. Therefore, the tiles must be sorted in the order in whi
h they will be added to the mosai
. It isnot appropriate, however, to sort the tiles in the left-to-right and top-to-bottom order be
ause su
h orderingmay fail to provide su

essively adja
ent overlapping tiles. The sorting algorithm 
urrently implemented inthe mosai
king appli
ation optimizes the area of overlap of the su

essive tiles.The sorting starts out with the mosai
 target tile, under the assumption that the target tile overlapsseveral neighbors with low mismat
h error. The target tile is added to the perimeter and marked as mat
hed.The algorithm iterates until the perimeter is empty. At ea
h iteration, a tile is removed from the perimeterand appended to a list of previously 
onsidered perimeter tiles. Following, the overlap area of the perimetertile and every other unmat
hed tile is evaluated, and the results are stored in a list and �ltered. The �lteringis a simple thresholding algorithm that dis
ards tiles whi
h overlap the perimeter tile less than half as wellas the best tile in the list. The �ltered list is sorted in the as
ending order and added at the head of theperimeter list. This step is ne
essary in order to ensure that the tiles with the greater area of overlap aregiven higher 
onsideration priority while maintaining the adja
en
y of su

essive tiles. The tiles listed in the�ltered list are marked as mat
hed in order to be removed from further 
onsideration, and the loop repeats.On
e the perimeter list is empty, the list of previously 
onsidered perimeter tiles spe
i�es exa
tly the orderin whi
h the tiles should be added to the mosai
.Figure 1 on the following page demonstrates the evolution of the perimeter (shown in red) as the sortingalgorithm progresses. The 
orresponding tile ordering is illustrated in �gure 6 on page 10.
5



Figure 1: tile sorting algorithm perimeter illustration

3.3 Radial distortion 
orre
tionIn order to 
orre
t for radial distortion, the tile has to be warped by a radial distortion transform. Thetransform is de�ned as follows
x (u, v) = uc + (u − uc) × S (u, v)

y (u, v) = vc + (v − vc) × S (u, v)6



S (u, v) =

N−1
∑

n=0

kn ×
(

R (u, v)

Rmax

)2n

R (u, v) =

√

(u − uc)
2 + (v − vc)

2where [uc vc]
T is the 
enter of radial distortion. The transform is normalized by Rmax. Thus, the radialdistortion transform is parameterized by 
oordinates uc vc, normalization 
onstant Rmax and polynomial
oe�
ients k0...kN−1. In order to simplify the 
omputational burden, it is assumed that Rmax 
orrespondsto the maximum distan
e from the 
enter of distortion to the 
orners of the tile. The lo
ation of the 
enterof distortion is unknown, therefore it is assumed to be at the 
enter of the tile. Additionally, the number ofpolynomial 
oe�
ients is limited to N = 2. Thus, only k0 and k1 are needed to de�ne the transform.The polynomial 
oe�
ients are found iteratively by the ITK[3℄ image registration framework. The ITKimage registration framework 
onsists of the following 
omponents

• Two images that must be mat
hed (�xed image and moving image).
• A metri
 that quanti�es the quality of the mat
h between the images.
• A transform.
• An optimizer.Although the image tiles are referred to as the �xed image and the moving image, the names are misleading.The ITK image registration framework a
tually 
omputes the transform that maps (moves) from the spa
eof the �xed image into the spa
e of the moving image. Thus, the transform is the inverse of the mappingfrom the spa
e of the moving image into the spa
e of the �xed image. In order to 
al
ulate the dimensions ofthe mosai
, it is ne
essary to be able to transform points from the moving image spa
e into the �xed imagespa
e. Sin
e the 
orresponding transform is unavailable, the inverse mapping is 
al
ulated numeri
ally viaNewton's method[2℄.Within the ITK image registration framework, the optimizer manipulates the parameters of the transformin order to a
hieve the best possible mat
h between the images. Currently, the itk :: LBFGSBOptimizer
lass is used. This optimizer implements the �Limited memory Broyden Flet
her Goldfarb Shannon min-imization with simple bounds�. It was 
hosen be
ause it is reasonably fast and allows the user to imposebounds on the parameter values. The 
urrent implementation of the appli
ation takes advantage of this
apability to 
lamp k0 to the range [0.9, 1.1] and k1 to [−0.1, 0.1]. This restri
ts the range of radial s
alingto [

kmin
0 − kmax

1 , kmax
0 + kmax

1

].The image registration iterates until it 
onverges or ex
eeds the maximum number of iterations (spe
i�edby the user). The resulting transform parameters de�ne a radial distortion transform whi
h best mat
hesthe �xed and moving images by 
orre
ting for the radial distortion present in either of the images.4 Demonstration of the 
orre
tness of implementation4.1 Tile mat
hingFigure 2 on the following page shows two mat
hing image tiles. These tiles have undergone a mild radialdistortion with parameters k0 = 0.95 and k1 = 0.05. The overlap area between these tiles is roughly 8%.Figure 3 shows the displa
ement PDF 
orresponding to these two tiles, as well as the isolated pixel 
lusters
orresponding to the PDF maxima. There are a total of 19 maxima isolated in the PDF. Filtering themaxima leaves only one eligible maximum for 
onsideration, whi
h indi
ates that the tiles are well mat
hed.
7



Figure 2: mat
hing tiles

tile 0 tile 4 mosai
 0:4Figure 3: displa
ement PDF for mat
hing tiles

PDF 0:4 maxima 
lusters PDF maximaFigure 4 on the next page shows two mismat
hed tiles. Figure 5 shows the 
orresponding displa
ementPDF and PDF maxima. There are 26 maxima isolated in this PDF. After �ltering there are still 11 maximaleft. Ideally there would be only one maximum left, therefore this PDF indi
ates that the tiles do not mat
h.
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Figure 4: mismat
hed tiles

tile 0 tile 8Figure 5: displa
ement PDF for mismat
hed tiles

PDF 0:8 maxima 
lusters PDF maxima4.2 Tile orderingFigure 6 on the following page illustrates the order in whi
h the tiles are added to the mosai
. As 
an beseen, the algorithm lays out the red tiles su
h that they have signi�
ant overlap with previous tiles (shownin blue).
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Figure 6: tile ordering

4.3 Radial distortion 
orre
tionUnfortunately, radial distortion 
orre
tion is not fully fun
tional in the 
urrent implementation of the ap-pli
ation. Distortion 
orre
tion between two images one of whi
h is a radially distorted version of the otherworks well. However, radial distortion 
orre
tion between partially overlapping images fails to �nd the 
or-re
t parameter values k0 and k1. Figure 7 on the next page shows two images 
orresponding to the best 
ases
enario for radial distortion 
orre
tion. The image on the bottom was radially distorted with parameters10



k0 = 0.95 and k1 = 0.05. Figure 7: original and radially distorted image

The mosai
 
orresponding to these two images is shown in �gure 8 on the following page. The image onthe bottom demonstrates varian
e within the overlapping regions of the mosai
.
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Figure 8: blurring and high varian
e due to radial distortion

Figure 9 on the next page shows the results of iterative re�nement of the displa
ement ve
tor and radialdistortion parameters for the radially distorted image. As 
an be seen, the varian
e within the mosai
 hasbeen signi�
antly redu
ed. The optimizer was able to �nd parameters k0 ≈ 1.05 and k1 ≈ −0.05 to 
orre
tfor the radial distortion in the distorted image.
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Figure 9: low blurring and varian
e due to 
orre
ted radial distortion

5 Real world resultsFigure 10 shows 12 tiles of one mosai
. These tiles were under exposed during development, yet the mo-sai
king appli
ation is able to assemble a mosai
 in the 
orre
t order, as 
an be seen in �gure 11.
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Figure 10: sample ele
tron mi
ros
opy tiles
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Figure 11: mosai
 of 12 ele
tron mi
ros
opy tiles

6 Summary and 
on
lusionAs 
an be seen from the results presented in se
tions 4 and 5, the 
urrent implementation of the appli
ationis 
apable of robust mosai
king of overlapping image tiles.Unfortunately, radial distortion 
orre
tion still needs improvement. The 
urrent in
apability of �ndingthe 
orre
t distortion parameters based on a 30% to 20% overlap between adja
ent tiles seriously limits theusefulness of the appli
ation to the wider s
ienti�
 
ommunity. Naturally, various methods of improvementwill be attempted in order to re
tify this limitation.One idea for improvement is already being 
onsidered. Sin
e the ele
tron mi
ros
opy tiles are typi
allyprodu
ed by the same mi
ros
ope, it follows that the tiles within one mosai
 are all distorted by the sameradial distortion parameters. Thus, if these parameters 
an be found for one tile, the rest of the tiles 
an be15



undistorted automati
ally.Another idea for improvement that is 
urrently being 
onsidered is the global re�nement of the mosai
,bypassing the ITK image registration framework and optimizing the tile transforms all at on
e in order tominimize the varian
e within the overlapping tile regions of the mosai
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