
Implementation of an automati image registration toolPaul Koshevoykoshevoy�s.utah.eduJune 30, 20051 MotivationThe goal of this projet is to provide a fully automati tool for image registration and mosaiking of severalhundred high-resolution images. This tool is primarily aimed at researhers working with eletron mirosopyimages. A mirosope rarely has a large enough �eld of view to over the area of interest to the sientist withreasonable detail. Therefore, the area of interest has to be imaged in several tiles, following some overlappingtile pattern. The original area of interest is later reonstruted by laying out the image tiles into a mosai.One problem partiular to the mirosopy images arises from the fat that the mirosope introdues radialdistortion into the image. Thus, even if the exat layout is known for the image tiles, the tiles may notmath perfetly in the overlap region. When the number of tiles is more than just a few, the task of layingout the mosai quikly beomes daunting, and is a prime andidate for automation.2 Problem statementGiven a large number of tiles spei�ed in no partiular order, a mosai must be onstruted and individualtiles must be orreted for radial distortion. This is the global problem that an be split up into slightlymore manageable sub-problems:
• Find pairs of mathing tiles.
• Dedue a tile ordering and build a rough estimate of the mosai without radial distortion orretion.
• Iteratively re�ne the mosai by alternating the re�nement of the radial distortion orretion and posi-tion of eah tile in the mosai.3 Desription of the mathematis and algorithms3.1 Mathing pairs of tilesFinding mathing tiles amounts to �nding tiles with highest ross-orrelation. The method for �ndingmathing tiles implemented in this appliation is based on a tehnique desribed by Girod and Kuo[1℄. Thetehnique is very straight forward, but it has an important prerequisite - it requires that the width andheight of the two tiles must math. If that is not the ase, one or both of the tiles must be padded onthe bottom and on the right side with zeros until both of the tiles have mathing dimensions as follows:given unpadded tiles U0 and U1, padded tiles S0 and S1 are generated suh that width (S0) = width (S1) =

max (width (U0) , width (U1)) and height (S0) = height (S1) = max (height (U0) , height (U1)).Having satis�ed the prerequisite by padding the tiles, the tiles are transformed into the frequeny domainby Disrete Fourier Transform F0 = F {So} and F1 = F {S1}. The Disrete Fourier Transform funtionalityis provided by the FFTW[4℄ library. One the tiles have been transformed, the ross-orrelation Φ10 between
S1 and S0 is alulated as

Φ10 = F1 × F ∗
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where F ∗

0 is the omplex onjugate of F0. The auto-orrelation terms Φ00 = F0 ×F ∗

0 and Φ11 = F1 ×F ∗

1 areused to enhane the ross-orrelation term as follows
P =

Φ10√
Φ00 × Φ11 + ǫwhere ǫ is a small number greater than zero added to avoid division by zero. The Girod and Kuo paperaddresses a slightly di�erent problem than the one targeted by our appliation. The tehnique desribed inthe paper is intended for traking a moving objet. One of the di�ulties of the traking problem is that thebakground behind the objet hanges. The mosaiking problem typially does not su�er from this obstale.Therefore, it is entirely possible that it is not neessary to enhane the ross-orrelation term by anelingout the geometri average of the auto-orrelation, and it may be used diretly as P = Φ10. However, theurrent implementation of the mosaiking appliation follows exatly the tehnique desribed by Girod andKuo.The inverse Fourier transform of the ross-orrelation

PDF (x, y) = ℜ
(

F−1 {P}
)orresponds to the probability density funtion (PDF ) that tile S1 mathes with tile S0 displaed by vetor

[x y]
T . We will refer to this funtion as the displaement PDF . Thus, in order to �nd the displaementvetor it is neessary to �nd the oordinates [xmax ymax]

T of the global maximum of this funtion.Finding the maximum of the displaement PDF is non-trivial. This is due to the fat that for mosteletron mirosopy images the PDF is usually very noisy. Also, the PDF of two mismathed images mayontain several maxima, or none at all. The tehnique desribed in the Girod and Kuo paper mentions asimple thresholding method used to suppress the negative and insigni�antly small values of the PDF . Themethod urrently implemented in the mosaiking appliation is similar, but has several important featuresthat are worth pointing out.Early experimentation with the PDF has shown that identifying the maxima beomes signi�antly easierafter blurring the PDF to remove the high-frequeny noise. The blurring is arried out in the Fourier domain,where it orresponds to a multipliation by a low-pass �lter
PDF (x, y) = ℜ

(

F−1 {P × Filter (r, s)}
)where r ∈

[

0,
√

2
] and s ∈ [0, r]. When s = 0 the �lter behaves exatly like the ideal low-pass �lter, passinguna�eted frequenies in the range [0, r] and attenuating ompletely frequenies in the range (r,∞). When

s > 0 the �lter passes frequenies in the range [0, r − s] ompletely una�eted, frequenies in the range
(r + s,∞) are ompletely attenuated, and frequenies in the range (r − s, r + s] are attenuated aording tothe funtion

attenuation (f) =
1 + cos

(

π
f−(r−s)

2s

)

2whih provides a smooth transition from zero attenuation at f = r− s to full attenuation at f = r + s. Thislow-pass �lter results in zero total power loss in the frequeny range [0, r], beause the attenuation inurredin range [r − s, r] is aneled out by the power leakage from range [r, r + s] due to aliasing.More experimentation has shown that blurring the tiles prior to alulating their orresponding PDFredues the number of false maxima in the PDF . The tiles are blurred in the Fourier domain as follows
F0 = F {S0} × Filter (r, s)

F1 = F {S1} × Filter (r, s)and the rest of the alulations are arried out as desribed above. The parameters r and s used for blurringthe tiles and the PDF an be tuned. In the urrent implementation the values r = 0.5 and s = 0.1 are usedfor the tiles, and r = 0.4 and s = 0.1 for the PDF .Having blurred the PDF , it is neessary to selet a good threshold value in order to isolate a set ofpixels orresponding to the global PDF maximum. We assume that the number of pixels belonging to themaximum is approximately 1% of the total number of PDF pixels, but it may not be less than 5 pixels or2



greater than 64 pixels. The lower bound restrition is imposed in order to avoid thresholding values whereonly one maximum pixel is left. One pixel does not arry enough information about the rest of the strutureof the PDF . When 5 pixels are grouped together, it is fairly obvious that there is only one strong maximumin the PDF . If the pixels are sattered aross the PDF , it is likely the PDF does not have a strongmaximum. The lower bound on the number of pixels belonging to the PDF maximum is neessary in orderto deliver the information regarding the distribution of these pixels within the PDF . One or two pixels donot arry enough information. The upper bound on the number of pixels applies to larger images. If toomany pixels are alloated to the PDF maxima, the omputational burden involved in the lassi�ation ofthe lusters inreases. The upper limit of 64 pixels guarantees that no PDF ould ever ontain more than
64 maxima. Thus

pixelsmaxima = min

(

64, max

(

5,
area (PDF )

100

))where area (PDF ) orresponds to the total number of pixels in the PDF image.To �nd the threshold value that would provide this number of pixels, it is neessary to build a umulativehistogram of the PDF pixel values. The urrent implementation uses 1024 histogram bins. Although theimportane of this parameter has not been explored in the ontext of our appliation, we an assume thatmore bins will give us a more aurate estimate of the threshold value. The umulative histogram is searhedfor the bin ontaining at least
area (PDF ) − pixelsmaximanumber of pixels. The minimum pixel value assoiated with that bin is the optimal threshold value that weneed.One the PDF is thresholded, a small fration of the pixels belonging to the maxima are isolated intoone or more lusters. Next, pixels are lassi�ed into lusters based on an 8-onneted neighborhood stenil.One all of the lusters have been identi�ed, the lusters that are broken up aross the PDF boundary aremerged together. This step is required beause the Disrete Fourier Transform assumes that the signal isperiodi; therefore, the PDF is also periodi. After all of the pixel lusters are identi�ed, the oordinatesof the PDF maxima are alulated as the enters of mass of the orresponding lusters. The value of eahmaximum is alulated as the total mass of the luster divided by the number of pixels in that luster.This proess results in a list of several maxima with varying oordinates and values. The list is sorted indesending order, so that the highest maximum is at the head of the list.Given a list of maxima points present in a partiular PDF , a simple heuristi is applied to deidewhether the tiles that produed this PDF in fat math. Mathing tiles would ideally produe only onemaximum. However, due to the inauray in the seletion of the thresholding value, it is very likely thatthere will be several maxima. This is also the ase when the tiles being mathed have undergone a radialdistortion. During experimentation an important observation was made that mismathing tiles produe a

PDF with several maxima points at roughly the same value, while the PDF of two mathing tiles produesone maximum signi�antly higher than the rest. This result suggests a very simple algorithm to deidewhether the PDF orresponds to two mathing tiles. The dissimilarity of the PDF maxima with respetto the best PDF maximum is alulated as
dissimilarity =

maxbest (PDF )

maxi (PDF )
− 1The dissimilarity of two perfetly similar maxima is equal to 0. Whenever dissimilarity exeeds a giventhreshold the orresponding maximum is removed from the list. In urrent implementation, the dissimilaritythreshold is set to 1; thus, maxima whih are more than 2 times smaller than the highest maxima in the listare disarded. If the list ontains only one maximum, we assume that the tiles math and proeed to alulatethe orresponding displaement vetor. If there is more than one maximum left in the list after this �ltering,it is very likely that the tiles do not math, or one of the tiles is self-similar and may math the other tile inseveral plaes. Due to radial distortion, it is possible that no mathing tiles will be found with exatly onemaximum. In that ase the math with the fewest number of maxima is onsidered. Signi�antly radiallydistorted tiles typially have 2 to 4 valid maxima orresponding to small shifts from the true displaementvetor. The urrent implementation of the mosaiking appliation onsiders at most 3 maxima per math.In order to �nd the displaement vetor, it is not enough to simply �nd the maximum of the displaement

PDF . The oordinates [xmax ymax]
T are always positive, yet the displaement vetor may very well have3



negative oordinates. As mentioned earlier, the Disrete Fourier Transform assumes that the signal isperiodi, therefore the ross-orrelation between the tiles orresponds to ross-orrelation of two perioditiles. One the oordinates of the maximum [xmax ymax]T are known, there are four possible permutationsof the displaement vetor that ould produe the orresponding high ross-orrelation between the tiles.The permutations are
T00 =

[

xmax

ymax

]

T10 =

[

xmax − width (S0)
ymax

]

T01 =

[

xmax

ymax − height (S0)

]

T11 =

[

xmax − width (S0)
ymax − height (S0)

]The urrent implementation of the appliation hooses the best permutation based on the normalizedsquared image di�erenes metri. This metri is alulated as the sum of squared pixel di�erenes withinthe overlap region, divided by the area of the overlap region. The best permutation orresponds to thelowest metri value (the least mismath between the tiles). The metri is evaluated against unpadded tiles
U0 and U1, yet the displaement permutations are based on the dimensions of the padded tiles S0 and S1,whih means that some of the permutations may not overlap the unpadded tiles at all. In onsequene,permutations an be disarded early based on the amount of overlap between the tiles. The amount ofoverlap is omputed as the ratio of the area of the overlap region to the area of the smaller of the two tiles.Thus, when one tile overlaps another entirely, the overlap is equal to 1. Displaement vetors resulting inless than 5% of overlap are disarded without further onsideration. This deision is based on the fat thattypial tiles will have 20% to 30% of overlap along the edges of the tile, and approximately 10% to 5% ofoverlap at the orners.3.2 Deduing the tile orderingThe image tiles have to be laid out in a partiular order, suh that eah suessive tile overlaps one ofthe previously laid out tiles. Mathing tiles by de�nition have an overlapping area; onsequently, priorto deduing the tile ordering it is neessary to �nd pairs of mathing tiles. The runtime omplexity ofthe urrent algorithm for �nding the mathing tiles is O

(

n2
). The performane of this algorithm may beimproved, but not without sari�ing some robustness in �nding the orret tile mathes and rejeting themismathes. Why this is the ase will beome more lear after the urrent algorithm is explained in greaterdetail.The algorithm tries to �nd the best possible mapping from the image spae of one tile into any othertile. This is aomplished by asading the mappings via intermediate tiles. For example, there may exista mapping U0 : U1 between tiles U0 and U1, and another mapping U1 : U4 between tiles U1 and U4. Amapping U0 : U1 : U4 between tiles U0 and U4 an be reated via the intermediate tile U1. The numberof intermediate steps in a mapping from one tile to another will be referred to as the asade length fromnow on. Given n tiles, there may be at most n − 2 intermediate steps in a mapping between any 2 tiles. Ofourse, this is only the upper bound on the asade length. There are no guarantees that a mapping with agiven asade length exists between any 2 tiles. However, the fat that there may be redundant mappingsbetween any 2 tiles presents a great opportunity to selet the best mapping possible.The algorithm proeeds as follows. First, pairs of mathing tiles are found. Finding just one math forevery tile is not enough, beause that does not provide any redundant mappings between the tiles. This isthe reason why the algorithm has O

(

n2
) run time omplexity. One way to speed up the algorithm is to limitthe number of redundant mappings to some �xed maximum number per tile. Allowing a maximum of just

2 mappings per tile may introdue enough redundany to orret for mismathes while also speeding up themathing proess. 4



The mappings between the tiles are stored as onnetions in a graph of tiles. Eah mapping (onnetion)is weighed aording to the normalized squared image di�erenes metri mentioned earlier. Next, redundantmappings with asade length 1 to n − 2 are found. There may be more than one suh mapping, thereforeit is useful if the proess is explained with an example. Assume there exists a funtion
C (Ui : Uj) = costthat evaluates the ost of a mapping between tiles Ui and Uj . Given the following sample mappings

C (U0 : U1) = 278

C (U0 : U2) = 311

C (U1 : U4) = 160

C (U2 : U4) = 121

C (U0 : U4) = 3419it is most likely that the mapping U0 : U4 is mismathed. There are 2 possible alternative mapping from tile
U0 to U4. The ost is set to the maximum ost of the intermediate mapping osts. In the ontext of thisexample, this means that

C (U0 : U1 : U4) = max (C (U0 : U1) , C (U1 : U4)) = 278

C (U0 : U2 : U4) = max (C (U0 : U2) , C (U2 : U4)) = 311The mapping with the least ost (in this ase U0 : U1 : U4) is preferred even when it has greater asadelength.In order to generate the mosai, it is neessary to selet the target tile into whih every other tile will bemapped. This is done by onsidering the total ost of the target tile andidates. The total ost is alulatedas the umulative ost of the mapping from the target tile to every other tile in the mosai. The andidatewith the lowest total ost beomes the target tile.It is important that eah tile added to the mosai overlaps with a signi�ant portion of one or moretiles that were added to the mosai previously; otherwise ITK will not be able to re�ne the initial mosairegistration. Therefore, the tiles must be sorted in the order in whih they will be added to the mosai. It isnot appropriate, however, to sort the tiles in the left-to-right and top-to-bottom order beause suh orderingmay fail to provide suessively adjaent overlapping tiles. The sorting algorithm urrently implemented inthe mosaiking appliation optimizes the area of overlap of the suessive tiles.The sorting starts out with the mosai target tile, under the assumption that the target tile overlapsseveral neighbors with low mismath error. The target tile is added to the perimeter and marked as mathed.The algorithm iterates until the perimeter is empty. At eah iteration, a tile is removed from the perimeterand appended to a list of previously onsidered perimeter tiles. Following, the overlap area of the perimetertile and every other unmathed tile is evaluated, and the results are stored in a list and �ltered. The �lteringis a simple thresholding algorithm that disards tiles whih overlap the perimeter tile less than half as wellas the best tile in the list. The �ltered list is sorted in the asending order and added at the head of theperimeter list. This step is neessary in order to ensure that the tiles with the greater area of overlap aregiven higher onsideration priority while maintaining the adjaeny of suessive tiles. The tiles listed in the�ltered list are marked as mathed in order to be removed from further onsideration, and the loop repeats.One the perimeter list is empty, the list of previously onsidered perimeter tiles spei�es exatly the orderin whih the tiles should be added to the mosai.Figure 1 on the following page demonstrates the evolution of the perimeter (shown in red) as the sortingalgorithm progresses. The orresponding tile ordering is illustrated in �gure 6 on page 10.
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Figure 1: tile sorting algorithm perimeter illustration

3.3 Radial distortion orretionIn order to orret for radial distortion, the tile has to be warped by a radial distortion transform. Thetransform is de�ned as follows
x (u, v) = uc + (u − uc) × S (u, v)

y (u, v) = vc + (v − vc) × S (u, v)6



S (u, v) =

N−1
∑

n=0

kn ×
(

R (u, v)

Rmax

)2n

R (u, v) =

√

(u − uc)
2 + (v − vc)

2where [uc vc]
T is the enter of radial distortion. The transform is normalized by Rmax. Thus, the radialdistortion transform is parameterized by oordinates uc vc, normalization onstant Rmax and polynomialoe�ients k0...kN−1. In order to simplify the omputational burden, it is assumed that Rmax orrespondsto the maximum distane from the enter of distortion to the orners of the tile. The loation of the enterof distortion is unknown, therefore it is assumed to be at the enter of the tile. Additionally, the number ofpolynomial oe�ients is limited to N = 2. Thus, only k0 and k1 are needed to de�ne the transform.The polynomial oe�ients are found iteratively by the ITK[3℄ image registration framework. The ITKimage registration framework onsists of the following omponents

• Two images that must be mathed (�xed image and moving image).
• A metri that quanti�es the quality of the math between the images.
• A transform.
• An optimizer.Although the image tiles are referred to as the �xed image and the moving image, the names are misleading.The ITK image registration framework atually omputes the transform that maps (moves) from the spaeof the �xed image into the spae of the moving image. Thus, the transform is the inverse of the mappingfrom the spae of the moving image into the spae of the �xed image. In order to alulate the dimensions ofthe mosai, it is neessary to be able to transform points from the moving image spae into the �xed imagespae. Sine the orresponding transform is unavailable, the inverse mapping is alulated numerially viaNewton's method[2℄.Within the ITK image registration framework, the optimizer manipulates the parameters of the transformin order to ahieve the best possible math between the images. Currently, the itk :: LBFGSBOptimizerlass is used. This optimizer implements the �Limited memory Broyden Flether Goldfarb Shannon min-imization with simple bounds�. It was hosen beause it is reasonably fast and allows the user to imposebounds on the parameter values. The urrent implementation of the appliation takes advantage of thisapability to lamp k0 to the range [0.9, 1.1] and k1 to [−0.1, 0.1]. This restrits the range of radial salingto [

kmin
0 − kmax

1 , kmax
0 + kmax

1

].The image registration iterates until it onverges or exeeds the maximum number of iterations (spei�edby the user). The resulting transform parameters de�ne a radial distortion transform whih best mathesthe �xed and moving images by orreting for the radial distortion present in either of the images.4 Demonstration of the orretness of implementation4.1 Tile mathingFigure 2 on the following page shows two mathing image tiles. These tiles have undergone a mild radialdistortion with parameters k0 = 0.95 and k1 = 0.05. The overlap area between these tiles is roughly 8%.Figure 3 shows the displaement PDF orresponding to these two tiles, as well as the isolated pixel lustersorresponding to the PDF maxima. There are a total of 19 maxima isolated in the PDF. Filtering themaxima leaves only one eligible maximum for onsideration, whih indiates that the tiles are well mathed.
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Figure 2: mathing tiles

tile 0 tile 4 mosai 0:4Figure 3: displaement PDF for mathing tiles

PDF 0:4 maxima lusters PDF maximaFigure 4 on the next page shows two mismathed tiles. Figure 5 shows the orresponding displaementPDF and PDF maxima. There are 26 maxima isolated in this PDF. After �ltering there are still 11 maximaleft. Ideally there would be only one maximum left, therefore this PDF indiates that the tiles do not math.
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Figure 4: mismathed tiles

tile 0 tile 8Figure 5: displaement PDF for mismathed tiles

PDF 0:8 maxima lusters PDF maxima4.2 Tile orderingFigure 6 on the following page illustrates the order in whih the tiles are added to the mosai. As an beseen, the algorithm lays out the red tiles suh that they have signi�ant overlap with previous tiles (shownin blue).
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Figure 6: tile ordering

4.3 Radial distortion orretionUnfortunately, radial distortion orretion is not fully funtional in the urrent implementation of the ap-pliation. Distortion orretion between two images one of whih is a radially distorted version of the otherworks well. However, radial distortion orretion between partially overlapping images fails to �nd the or-ret parameter values k0 and k1. Figure 7 on the next page shows two images orresponding to the best asesenario for radial distortion orretion. The image on the bottom was radially distorted with parameters10



k0 = 0.95 and k1 = 0.05. Figure 7: original and radially distorted image

The mosai orresponding to these two images is shown in �gure 8 on the following page. The image onthe bottom demonstrates variane within the overlapping regions of the mosai.
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Figure 8: blurring and high variane due to radial distortion

Figure 9 on the next page shows the results of iterative re�nement of the displaement vetor and radialdistortion parameters for the radially distorted image. As an be seen, the variane within the mosai hasbeen signi�antly redued. The optimizer was able to �nd parameters k0 ≈ 1.05 and k1 ≈ −0.05 to orretfor the radial distortion in the distorted image.
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Figure 9: low blurring and variane due to orreted radial distortion

5 Real world resultsFigure 10 shows 12 tiles of one mosai. These tiles were under exposed during development, yet the mo-saiking appliation is able to assemble a mosai in the orret order, as an be seen in �gure 11.
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Figure 10: sample eletron mirosopy tiles
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Figure 11: mosai of 12 eletron mirosopy tiles

6 Summary and onlusionAs an be seen from the results presented in setions 4 and 5, the urrent implementation of the appliationis apable of robust mosaiking of overlapping image tiles.Unfortunately, radial distortion orretion still needs improvement. The urrent inapability of �ndingthe orret distortion parameters based on a 30% to 20% overlap between adjaent tiles seriously limits theusefulness of the appliation to the wider sienti� ommunity. Naturally, various methods of improvementwill be attempted in order to retify this limitation.One idea for improvement is already being onsidered. Sine the eletron mirosopy tiles are typiallyprodued by the same mirosope, it follows that the tiles within one mosai are all distorted by the sameradial distortion parameters. Thus, if these parameters an be found for one tile, the rest of the tiles an be15



undistorted automatially.Another idea for improvement that is urrently being onsidered is the global re�nement of the mosai,bypassing the ITK image registration framework and optimizing the tile transforms all at one in order tominimize the variane within the overlapping tile regions of the mosai.Referenes[1℄ Girod, B. and Kuo, D. 1989. Diret estimation of displaement histograms. In Proeedings of the OptialSoiety of Ameria Meeting on Understanding and Mahine Vision, 73�76.[2℄ Newton-Raphson Method for Nonlinear Systems of Equations. Numerial Reipes in C, seond edition,379�382.[3℄ NLM Insight Segmentation & Registration Toolkit, http://www.itk.org/[4℄ Fastest Fourier Transform in the West, http://www.�tw.org/
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