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Direct Multifield Volume Ray Casting of Fiber Surfaces

Kui Wu, Aaron Knoll, Member, IEEE, Benjamin J Isaac, Hamish Carr, Member, IEEE, and Valerio Pascucci, Member, IEEE

Fig. 1. Left: 2D (joint) histogram and three fiber surface control polygons (FSCPs), specified by red, blue and green annotations. Right:
Corresponding fiber surfaces. Let us compare residence time and oxygen across both data range and spatial domain, in a simulation of
coal combustion in GE-Alstom’s 15 MWth Boiler Simulation Facility (BSF). These surfaces let us show low and high regions of oxygen
as they occur over the entire course of the simulation, classified by annotating the 2D scatterplot (joint histogram) with FSCPs. Direct
ray casting allows users to explore and manipulate fiber surfaces interactively on larger datasets; in this case at 16 fps at 1024×1024
on an NVIDIA Geforce GT 650M mobile GPU.

Abstract— Multifield data are common in visualization. However, reducing these data to comprehensible geometry is a challenging
problem. Fiber surfaces, an analogy of isosurfaces to bivariate volume data, are a promising new mechanism for understanding
multifield volumes. In this work, we explore direct ray casting of fiber surfaces from volume data without any explicit geometry extraction.
We sample directly along rays in domain space, and perform geometric tests in range space where fibers are defined, using a signed
distance field derived from the control polygons. Our method requires little preprocess, and enables real-time exploration of data,
dynamic modification and pixel-exact rendering of fiber surfaces, and support for higher-order interpolation in domain space. We
demonstrate this approach on several bivariate datasets, including analysis of multi-field combustion data.

Index Terms—Volume Rendering, Isosurface, Multidimensional Data

1 INTRODUCTION

Multifield volume data are ubiquitous in scientific computing. Simula-
tions frequently compute several variables, for the purposes of driving
the computation itself or understanding underlying physical phenom-
ena. However, most visualizations of 3D volume data consider only a
single field in a given image, using either isosurfaces or direct volume
rendering. This is due in equal parts to audiences’ familiarity with
single-field metaphors, and the relative lack of concise techniques for
defining and describing multifield data.

Fiber surfaces are multifield equivalents of isosurfaces for univariate
3D volume data. Just as isovalues define contours in single-field data,
fibers [34] define contours over tuples in multifield data. For bivariate
(two-field) volume data, fibers are defined as points in two-dimensional
range space. A curve composed of fibers in the range defines a fiber
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surface in the domain. These features classify spatial volume data as
a linear combination of two fields, and provide a powerful tool for
defining contours in terms of multiple attributes. As shown in Fig. 1,
fiber surfaces allow us to restrict our classification of contours to sub-
regions of bivariate range space. This not only reduces clutter, but
allows us to identify features that isosurfaces of these respective fields
could not. Fiber surfaces are a recent contribution to the visualization
literature [5], and were implemented as a straightforward extension to
Marching Cubes [28]. Though effective, surface extraction presents
two main limitations. First, the resulting mesh is a piecewise-linear
approximations of higher-order analytical implicit surfaces. Second,
the extraction process is costly and potentially non-interactive for larger
volume data. While methods exist for accelerating marching cubes,
for sufficiently large and complex data, direct rendering methods are
needed to enable interactive exploration.

Direct isosurface ray casting is a well-known alternative to mesh
extraction. Surface ray casting is attractive for its sublinear time com-
plexity – with the appropriate acceleration structure, small and large
volume data render at similar speed, constrained only by memory.
Moreover, ray casting of implicit surfaces can employ a wide range of
root-finding techniques. In this paper, we contribute a method for direct
ray casting of fiber surfaces by solving for the ray’s intersection point
with a fiber in both domain and range space, using either explicit defi-
nition of fiber control polygons or approximation as a distance field. In
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addition, we contribute a method for accelerating volume traversal via
a uniform grid of multivariate intervals, and a strategy for analytically
computing the gradient of the implicit fiber surface. We use our method
to explore bivariate data from cosmology and chemistry simulations,
and use it to explore a computational fluid dynamics coal combustion
dataset in depth. In all, we show that direct fiber surface ray casting
can achieve higher-quality visual results with lower preprocess time
than fiber surface meshing or multifield direct volume rendering.

2 RELATED WORK

In applying ray-tracing to fiber surfaces, several sets of literature be-
come significant. First, we will give a brief sketch of the relevant work
on isosurfaces and Marching Cubes. Second, we canvass the princi-
pal elements of direct isosurface ray tracing and volume rendering.
Then in Section 3, we introduce the fiber surface, its relationship with
isosurfaces, and the existing method for fiber surface extraction.

2.1 Isosurfaces and Marching Cubes
In rectilinear (structured) meshes, a trilinear interpolant is normally
assumed, for which the correct isosurfaces are hyperbolic sheets [30].
The conventional method for isosurface rendering has been extraction
via marching cubes [28] or some variant; paired with rasterization of
the resulting mesh. Wilhelms and Van Gelder [40] proposed a min/max
octree hierarchy that allowed the extraction process to only consider
cells containing the surface. This concept has been extended with frus-
tum and per-ray visibility culling [24, 25] and multiresolution volume
data [39]. Livnat & Tricoche [26] effectively combined mesh extraction
with point-based splatting for efficient isosurface rendering. Rosenthal
& Linsen [33] partitioned the 3D domain using a kd-tree and com-
puted points on the isosurface by linearly interpolating. Shi & Jaja [37]
used a persistent octree indexing structure for accelerating isosurface
extraction from volume data. Ljung and Ynnerman [27] explored vi-
sualizations of intersection curves from isosurfaces of multifields, a
special type of fiber geometry.

2.2 Direct Isosurface Ray Casting
Hanrahan [10] first demonstrated a method for ray tracing algebraic im-
plicit surfaces using the rule of signs to isolate roots. Parker et al. [31]
used a ray tracer to directly render isosurfaces of volume data, using a
hierarchical grid of macrocells as an acceleration structure. A single ray
was tested for intersection inside a cell of eight voxel vertices, solving a
cubic polynomial to find where the ray intersects the interpolant surface
in that local cell. Hadwiger et al. [9] and Gobbetti et al. [7] demon-
strated systems for real-time ray casting of isosurfaces on the GPU,
using the rule of signs to locate roots and a secant method to solve for
surface intersection. Similarly, Knoll et al. [18] proposed peak finding,
a method for combining discrete isosurfacing and volume rendering.
Direct isosurface rendering has also used to visualize isosurface of
large dynamic particle datasets using density maps [20] and isosurfaces
on face-centered cubic datasets [12].

2.3 Direct Volume Rendering
Direct volume rendering is a popular technique for classifying and
visualizing multifield data. Laidlaw [22] first proposed multidimen-
sional transfer functions for classification of MRI data. 2D transfer
functions have been proposed for augmenting classification of uni-
variate data with gradient magnitude [15] or curvature [13]. Early
multifield classification approaches employed Gaussian kernels [16] or
maximum-intensity projection [36]. Kruger & Westermann proposed
a hardware accelerated volume ray casting method [21]. More recent
work has focused on user interfaces for dimensionality reduction and
transfer function generation, using scatterplots [6], kernel density es-
timation [23, 29], parallel coordinates [8, 41], and combinations of all
three [42]. We refer interested readers to the comprehensive survey
in [11].

Less work has addressed accurately reconstructing and rendering
geometric features from multifield volume data. Kotava et al. [19] note
that the sampling rate required for volume rendering with sharp feature
reconstruction is the product of the frequencies of all component fields

convolved via the transfer function. They propose sampling directly
in transfer function space to efficiently reconstruct high-frequency
features similar to our fiber surfaces.

3 BACKGROUND: FIBERS

To generalize isosurfaces to bivariate fields, instead of taking a single
value h∈ R, we take a single point h∈ R2(= Ran f ), and find its inverse
image f−1(h) = {x ∈ Dom f : f (x) = h} to extract a fiber [34].

In the case of a bivariate volumetric field f : R3→ R2, fibers are the
intersection of the isosurfaces of each component of f , i.e. f−1(h) =
f−1
1 (h1)

⋂
f−1
2 (h2). These are normally curves in space, and do not

constitute 2-manifold boundaries the way isosurfaces do. This, however,
can be remedied by taking the inverse image not of a 0-manifold point,
but of a 1-manifold path in the range, which may be a curve, polyline
or polygon.

The inverse image f−1(h) = {x ∈ Dom f : f (x) = h} of a single
point h ∈ R2(= Ran f ) in the range space is a contour in the domain
space. The inverse image f−1(h) of a line segment l ∈ R2 in the range
space is an open fiber surface in the domain space, the combination
of multiple contours. The inverse image of closed polygon is one or
multiple closed fiber surface. For computational purposes, therefore, it
sufficed to deal with the case of a closed polygon, which we refer to as
a fiber surface control polygon (FSCP). Since the computation is based
on the marching cubes tables, we know that this is not an exact solution,
and more exact solutions are desirable. Increasing the number of voxels
covered by a FSCP enlarges the fiber surface in domain space.

Fiber surfaces [5] provide a surface extraction technique to get
fiber surface based on marching cubes. In a tetrahedral mesh, the
isosurfaces extracted in each cell are planar, and bivariate fibers are
defined by intersection of two such isosurfaces. Barring degeneracies,
these intersections will therefore be linear. For trilinear interpolant on
a cubic mesh, however, the isosurfaces are hyperbolic sheets [30], and
individual fibers will be found at the intersection of two such sheets,
and may have multiple connected components. For example, if two
copies of the most complex trilinear case (13.4.1) are rotated 90 degrees
from each other, each edge of the cube will have an isosurface of each
component intersecting it, and the intersection of the pair of isosurfaces
can be forced to generate at least 12 fiber components. Moreover, given
FSCPs that induce an arbitrary number of intersections of a fiber surface
with a given cube, it is clear that exact fiber surfaces cannot be extracted
as a polygonal mesh from trilinearly interpolated cubic cells, let alone
higher-order interpolants. Recently, Klacansky et al. [14] implemented
a highly-tuned implementation of fiber surface extraction based on
marching tetrahedra. Sakurai et al. [35] also utilize fiber topology as
analysis tool in mathmatics.

4 RAY TRACING FIBER SURFACES

If mesh geometry is not required, we can render fiber surfaces for these
meshes using ray tracing methods, as with scalar fields. There are
several advantages to this, chiefly performance, scalability, and the
ability to render pixel-exact surfaces, irrespective of the underlying
interpolant.

To ray trace fiber surfaces, as with isosurfaces, one may choose
between analytical intersection methods for implicit surface patches
defined within each voxel [31] or point-sampling techniques employing
the rule of signs [10]. In this paper we employ the latter, assuming the
multifield is piecewise-smooth, and that intersection points of the ray
and fiber surface can be solved for arbitrary segments along the ray.
This approach is more general but less robust, and sensitive to chosen
segment size and the frequency of the underlying FSCP and multifield.
However, as shown in similar work for fast intersection of isosur-
faces [7, 9], the sacrifice in robustness is well-suited for OpenGL/GPU
implementations with fast 3D texture interpolation.

Explicit ray-FSCP intersection. The simplest fiber surfaces are
defined by lines in the range, expressed as a general linear function
a f1 +b f2 =C. Given any point x on the fiber f−1(p) in the domain,
( f1(x), f2(x)) = p. The problem of finding the point x on the ray, which
also lies on the fiber f−1(p), in the domain can be seen as how to
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Fig. 2. From left to right: tracing a ray though grid of macrocells, tracing a ray in a 23 macrocell, sampling along the ray within the macrocell, finding
the intersection point in range space, and using distance field to accelerate intersection test.

find the intersection point between ray segment and fiber control line
segment in the range. In this work, domain-space segment size is given
by distance along the normalized ray. One unit corresponds to one
voxel width. Specifically, the segment size is δ t = t1− t0 in Fig. 4.
Assuming the transfer function is piecewise-constant within the ray
segment, a simple segment-segment intersection test can be used to
find the fiber. Thus, ray casting from a FSCP is straightforward: we
intersect the ray segment with all segments of polygon in the range to
find the nearest intersecting point. If fiber surface is transparent, the
ray segment will return the sum of the color of all intersected segments.
Then, we move to the next ray segment, and search for a fiber surface.

Challenges with the naı̈ve approach. Explicit ray-FSCP tests
become cumbersome when the FSCP consists of numerous line seg-
ments. Moreover, if the segment size is too large, the actual path of
ray segment in the range would become a complex curve which could
intersect with fiber line segment multiple times. Thus, we must sample
sufficiently in domain space so that piecewise-linear segments (chords)
closely approximate the image of the ray in range space. Clearly, the
smaller the segment size, the lower the performance of our method.

As with all ray tracing techniques, performance relies heavily on
skipping large regions of empty space with no fiber surfaces, as well
as efficiently intersecting fiber surfaces within each ray segment in
between volume samples. To implement an efficient fiber surface ray
caster, we require an acceleration structure and a conservative test
for defining regions of space that definitively contain no fiber surfaces,
allowing for occasional false positives but no false negatives. Guided by
previous GPU and CPU isosurface ray casters [9,18,31], we developed
a similar approach for fast ray casting of fiber surfaces.

5 EFFICIENT DIRECT RAY CASTING OF FIBER SURFACES

For efficient direct ray casting of fiber surfaces, we use a two-stage
precomputation step involving computation of a distance field and a
uniform grid of macrocells; followed by a two-stage rendering step
using uniform grid traversal and ray-FSCP intersection using a 2D
distance field in range space. The overall method is sketched in Fig. 2
and described in Algorithm 1.

5.1 Distance Field Computation
Numerous 2D acceleration structures could be used to accelerate ray-
FSCP intersection for multiple FSCPs consisting of complex polygons.
We opted to use the distance field, the same approach used in the
original fiber surfaces paper [5]. The distance field serves as both a
rasterized approximation of arbitrarily complex FSCPs, an acceleration
structure pointing to the nearest FSCP, and an “inside out” test indi-
cating orientation of the (by necessity closed) polygon. Each element
in the distance field specifies its minimum distance to the polygon.
Positive and negative distances are used to distinguish outside and in-
side of the polygon, respectively. Ray-fiber surface intersection is then
straightforward: by traversing elements in the distance field, we find
the minimum distance from each element to all segments of FSCP and
set the minimum distance as the value in the distance field.

One issue is the shape of FSCP, which can be either convex or
concave. For the convex polygon, all segments are default as counter-

clockwise. The cross product of two vectors, the direction vector of the
polygon segment and the vector perpendicular to the segment, can be
used to determine whether it is inside or outside. For concave polygons,
the cross product alone cannot determine whether the element is inside
or outside; this can be solved by using Jordan curve theorem. We shoot
a semi-infinite ray from each points in the distance field and use many
edges it crosses to determine whether the element is inside or outside.

5.2 Macrocell Grid Build and Traversal
We used a single-level uniform grid acceleration structure, traversed
using 3D digital differential analyzer (3DDDA) method of Amantides
and Wu [2]. We use cells of the grid, or macrocells, to store n×n×
n voxels and store the min/max values of both fields. In bivariate
range space, this corresponds to a 2D box with vertices ( fmin,gmin),
( fmin,gmax), ( fmax,gmax), and ( fmax,gmin). Macrocells always include
the minima and maxima of forward-adjacent voxels vertices, to prevent
missing fibers. For example, a 13 macrocell computes intervals over
a 23 volume. While other structures (octree, BVH, etc.) could prove
faster, we chose the uniform grid for its efficient traversal on the GPU,
and in particular in a GLSL shader.

Ray traversal of this grid occurs in the shader, using a cell-based
3DDDA traversal method. If the ray segment intersects with macro-
cell’s min/max box, we sample along the ray within the cell to find
intersection point. In effect, this provides a conservative test which
ensures that macrocells are searched for fiber surfaces when the box
possibly overlaps FSCPs in range space.

However, intersection test between ray segment and min/max box
is expensive. Instead of doing that on the fly, we precompute it and
save a boolean value to indicate whether there is fiber surface inside.
Whenever FSCP is updated, we precompute the overlap between the
range-space min/max of the macrocell and the FSCP. If there exists an
overlap, which means fiber surface exists in that cell, we assign true
to the corresponding cell the 3D uniform boolean grid, otherwise, we
assign false.

5.3 Ray-FSCP intersection with the Distance Field
Assuming that the image of each ray segment in the domain space can
be approximated as a straight segment in the range space, we can use
linear interpolation to get the intersection point. Because of Bolzano’s
theorem, if distances of the segment endpoints are different signs, it
is guaranteed that there must be at least a root in the interval. After
fetching bivariate field data on the fly, we fetch its distance value. If
distances are d0 and d1 and the segment endpoints are f s0 and f s1, the
intersection point f st can be found using following equations.

dt = |d0/(d0−d1)| (1)

f st = f s0 +dt ∗ ( f s1− f s0) (2)

The main benefit of the distance field is accelerating the intersection
test. Compared with a 2D segment-based intersection test, our method
only needs to check signs of two values. Crucially, the distance field
test requires the same fixed time regardless of how many segments each
FSCP has. One limitation is that distance fields of multiple FSCPs
cannot be merged – thus, each FSCP has its own distance field. In
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Fig. 3. Our FSCP editor classifying the Ethane-Diol dataset from [5]. Left:
colored joint histogram and four FSCPs from Ethane-Diol. Right: fiber
surface visualization based on the given FSCP.

our implementation, we use 2D textures to store and upload distance
fields to the GPU. Each channel of the texture can be used to store one
FSCP’s distance field, and we visualize up to 4 fiber surfaces at a time.
One limitation is the distance field only works for closed polygons,
because the sign test (indicating presence of a root) requires us to know
whether a point is “inside” or “outside” the FSCP.

5.4 Gradient Computation and Shading
Once intersection point is detected, the shading color should be cal-
culated based on its position in domain. Gradient is a crucial com-
ponent for correct shading calculation. In our examples, we shade
multiple data gradients ∇ f1 and ∇ f2 separately, using multiple central-
differences neighbor stencils, because ∇ f1 and ∇ f2 tends to exhibit
higher frequency than separate individual gradients. Thus, for fiber
g(x) = a f1(x)+ b f2(x), the gradient ∇g(x) is the linear combination
of ∇ f1 and ∇ f2, which means ∇C = g(x) = a∇ f1(x)+ b∇ f2(x) and
(a,b) is coordinate of intersection point in the range.

Algorithm 1 Fiber surface ray tracing
1: // traverse macrocell grid using using 3DDDA method
2: for each macrocell do
3: if there is fiber surface inside the macrocell then
4: // do ray marching within the macrocell
5: for each ray segment [p0, p1] do
6: f s0← fetch bivariate volume data(p0)
7: f s1← fetch bivariate volume data(p1)
8: d0← fetch distance( f s0)
9: d1← fetch distance( f s1)

10: if d0 ∗d1 < 0 then
11: find intersection point f st
12: shade( f st )
13: end if
14: end for
15: end if
16: end for

Algorithm 1 summarizes the our fiber surface ray tracing method.
The outer loop (lines 2-16) traverses on macrocell grid using 3DDDA
and the inner loop (lines 5 -14) performs ray marching within the
macrocell. At each macrocell, we first fetch the precomputed boolean
value as described in section 5.2. Distance value for endpoints of ray
segment are also precomputed as described in section 5.1.

5.5 Fiber Surface Control Polygon Editor
The main benefit of fiber surface ray casting is exploring fiber surfaces
interactively. We implement a FSCP editor, which allow users to drag
FSCP vertices and drag the entire polygon. Once FSCP is updated,
distance fields are updated and the boolean value of cells are updated
based on new distance fields.

As shown in Fig. 3, the 2D (joint) histogram is colored by the
number of voxels in each bins. Each FSCP has its corresponding fiber

surfaces. By dragging the polygon center, users are able to move the
entire polygon to any place they want. we also allow user to click and
drag the polygon corner to explore fiber surface features. Note that
once FSCP is updated, we have to precompute distance field and build
boolean grid of macrocells again.

Using the editor to manipulate one FSCP at a time is intuitive. How-
ever, choosing interesting fiber surfaces can be challenging – signifi-
cantly more difficult than choosing interesting isosurfaces of univariate
data. Generally, we find that FSCPs yield interesting fiber surfaces
where the gradient of values in range space is high, i.e. around “rooster
tails” (Fig. 3), or in regions where the fields exhibit clear nonlinear
relationships. It is also helpful to shrink and grow FSCPs, watching the
corresponding surfaces expand and contract to correspond to a single
point (fiber).

5.6 Implementation
We implemented all preprocess code in C++ on the CPU, and used
a GLSL shader-based ray caster for the actual fiber surface ray cast-
ing. However, our algorithm is intended to be generic, using as little
of the fixed-function OpenGL pipeline as possible, and suitable for
implementation in fast CPU frameworks, e.g., [1]. Besides sending
bivariate volume data to the GPU, the distance field is sent to the GPU
as a 2D texture. We utilize 3D texture to store four boolean values of
each macrocell, indicating whether the corresponding fiber surface is
contained. The 3D texture is updated whenever the FSCPs are modified
as the preprocess step and uploaded on the GPU. We use multithreading
in OpenMP to update the distance fields and boolean macrocell values
dynamically.

6 RESULTS

All benchmarks on CPU side were conducted on a Intel Core i7 3930K
Processor 3.20GHz with 32GB memory. We test GPU side performance
on NVIDIA GeForce GTX 780 and NVIDIA GeForce GT 650M 512
MB video card. We intentionally use a mobile GPU card to demonstrate
our algorithm doesn’t require any high end graphic card to get interac-
tivity. Unless otherwise stated, we used a frame buffer of 1024×1024
for all frame rate numbers on GT 650M.

6.1 Overall Performance
In this section, we report performance statistics of our implementation.
Generally, rendering performance is related less to data size, and more
to the complexity of the fiber surfaces defined by the FSCPs. Preprocess
time relates chiefly to the size of macrocells and complexity of FSCPs.

Preprocess time. Though fiber surface ray casting is a direct vi-
sualization method, some analyses require preprocess time. Table 1
gives the precomputation time for building our boolean grid of macro-
cells. Macrocell computation achieves reasonable parallelization with
OpenMP: 6 threads yield a preprocess speedup of 2×-4× depending
on the dataset. The total precomputation time is the sum of the time
of updating the distance field and the time of updating the macrocell
boolean value as long as FSCP is updated. Clearly, preprocess time
depends on the total number of voxels linearly and more voxels per
macrocell reduce the number of macrocells that need to be computed.
We find that 23 macrocells generally give the best performance, but
that larger data (i.e., BSF) do not suffer a high penalty from 43 or 83

macrocells. Generally, smoother data and FSCPs with more empty
space to skip can achieve good performance with coarser macrocells,
preserving interactivity even when exploring larger datasets.

The time distance fields updating on the fly is fixed and only depends
on the size of distance field dimensions. In our tests, a 64×64 array
is accurate enough for the distance field. According to experiments,
it takes around 1 to 2 milliseconds to compute the distance field for
4 FSCP with 4 segments for each polygon. Generally, distance field
computation is on the order of milliseconds and not a bottleneck; we
included it in the overall preprocess time in Table 1.

Rather than use a continuous scatterplot [4] as in the original fiber
surface paper [5], we precompute a 2D histogram and color each pixel
based on the number of samples in the bin. We chose discrete his-
tograms for ease of implementation, and because they better convey
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Fig. 4. Fiber surfaces with different segment sizes (in voxel units) along the ray on GTX 780 with 23 voxels per macrocell. From left to right: segment
sizes of 0.4, 0.1, 0.025, and 0.00625, rendering at 58.73, 33.38, 11.47, and 3.21 fps respectively (see Table 2). The image converges with a segment
size of 0.03.

Table 1. Distance field and macrocell precomputation time in seconds,
which determines interactivity of the FSCP editor.

# Voxels/Macrocell 13 23 43 83

Dataset # Voxels
Ethane-Diol (115×116×135) 1.8M 0.321 0.036 0.007 0.003
OFC rt-time (427×152×152) 9.9M 1.481 0.182 0.036 0.005
Enzo (2563) 16M 2.568 0.299 0.039 0.005
BSF (665×290×170) 32M 4.775 0.612 0.077 0.010
Enzo (5123) 134M – 2.613 0.303 0.040

Table 2. Frame rate performance for 2563 Enzo with varying macrocell
sizes on two different GPU architectures.

# Voxels/Macrocell 13 23 43 83 13 23 43 83

Segment size GT 650M GTX 780
0.4 4.11 6.51 7.25 4.32 49.44 58.73 54.19 40.62
0.2 3.95 5.48 4.98 2.54 44.96 47.42 37.22 25.80
0.1 3.51 3.98 3.06 1.43 36.77 33.38 23.49 15.60
0.05 2.75 2.54 1.75 0.76 25.74 20.35 13.38 8.61
0.025 16.10 11.47 7.19 4.53
0.012 9.28 6.16 3.77 2.33
0.006 5.06 3.21 1.93 1.19
0.003 2.65 1.64 0.94 0.56

sparse regions of range space. Histogram computation is O(N), gener-
ally on the order of seconds for our largest data, and could be computed
simultaneously alongside macrocells. Since the histogram is a visual
aid and not necessary for actual rendering, we omit this time from our
numbers in Table 1.

Rendering performance. Table 2 gives the frame rate per second
for 2563 Enzo with varying macrocell size. Note that one unit of seg-
ment size corresponds to one voxel width in domain space. Generally,
performance without any acceleration structure is 4×-8× slower than
that with macrocells of 23-voxels. Compared with the mobile GPU, the
discrete GPU (NVIDIA 780 GTX) accelerates performance by 7×-12×
for 2563 Enzo. As seen in Table 3, performance is generally interactive
even on mobile GPU hardware. Exploring fiber surface by changing
the FSCP depends on both preprocess time and rendering time. There-
fore, even though 13 or 23 macrocell allows faster rendering time, we
recommend using 43 macrocells for best overall interactive rate.

Our implementation allows users to change segment size at run time;
full interactivity can be ensured by increasing the segment size when
the user moves the camera, if necessary.

Rendering performance depends on the number of rays cast and
the number of samples per ray, as well as the empty space in the
dataset and the efficacy of the macrocells. Table 3 gives the frame
rate per second for datasets with different resolution in segment size
0.1, at 1024×1024 (1 megapixel). For small datasets, such as Homo-
Lumo, our technique easily achieves 20 fps even on our mobile GPU.
Frame rate depends somewhat on data size, but not linearly – with a
uniform grid, complexity is best-case O(1) and worst-case (O(N3/2)).
Comparing two Enzo datasets with different size, we note that fps for
the 5123 dataset is only .77× that of the 2563 dataset, despite 8× more
voxels. This performance can be attributed to macrocells and early

Table 3. Frame rates with segment size 0.1 on our mobile GPU.

# Voxels/Macrocell 13 23 43 83

Dataset
Homo-Lumo (413) 19.90 23.25 20.11 12.92
Ethane-Diol (115×116×135) 10.97 17.23 16.55 7.95
OFC rt-time (427×152×152) 23.05 23.83 19.40 14.67
Enzo (2563) 3.51 3.98 3.06 1.43
BSF (665×290×170) 10.30 14.90 16.64 14.95
Enzo (5123) 1.88 2.76 2.31 1.50

termination of the ray casting approach.

6.2 Robustness and Quality
Generally, the frequency of the fiber surface is governed by the product
of the frequencies of both fields, and the frequency of the specified
FSCP. However, since our method relies on the rule of signs [10], it
is impossible to guarantee a sampling rate that would ensure robust
root isolation. In other words, the main drawback of our method is
that we cannot guarantee the intersection point will never be missed
and assumes there is only one intersection point in the interval. When
segment endpoints have distance field values with the same sign, this
can result in false negatives and missed fiber surfaces. When they have
different signs, false positives may occur. If the FSCP is very small,
like a thin line, our intersection may lose parts of fiber surface as well.
These issues are more prevalent for high-frequency data such as Enzo.
As shown in Fig. 4, the impact of segment size on the fiber surface
rendering, reducing segment size will alleviate this issue, but at the
expense of performance. Though our method cannot guarantee never
missing fibers, Fig. 4 demonstrates that the artifacts will become less
and converge, when segment size is sufficiently small. However, the
right segment size doesn’t depends on data size, but only depends on
the frequency of data and curvature of FSCP. In theory, if segment size
is infinite small, then intersection would never be missed. For very
small segment sizes, we are occasionally limited by floating point error
and chosen discretization of the distance field.

Higher-order filtering A major benefit of our approach is that it
operates independently of the choice of interpolation filter. As long
as the underlying multifield is piecewise smooth, and the user has pro-
vided an interpolation kernel, the rule-of-signs method will suffice to
extract fiber surface geometry, with the noted robustness limitations.
In contrast, mesh extraction methods would require subdivision, and
analytical ray-surface intersection would be potentially intractable for
arbitrary higher-order interpolants. As demonstration, we implemented
a 3D tricubic B-spline filter using the method of Sigg et al. [38]. As
shown in Fig. 5, higher order interpolation ensures smoother reconstruc-
tion of fiber surfaces, though at a cost of 3× time than base method.
Our approach would extend to any interpolation filter for structured or
unstructured data.

6.3 Comparison with Extraction and Volume Rendering
Fig. 3 and 6 show the results of fiber surface ray casting on Ethane-
Diol and Enzo, two datasets from the original paper [5]. In comparing
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Fig. 5. Higher-order interpolation of the Homo-Lumo dataset. Left:
rendering image with B-spline filter (8 fps). Right: without B-spline filter
(23 fps).

our techniques, we consider frame rate performance of ray casting vs
rasterization, the time required to generate fiber surfaces via marching
cubes extraction, and image quality, particularly near edges of fiber
surface geometry. For Ethane-Diol, our directly ray-cast fiber surfaces
deliver pixel-exact results and allow for correct rendering of sharp
features along edges, for example the edge of the green fiber surface
corresponding to the non-covalent bond interaction between oxygen
atoms. This stands in contrast to the marching cubes results (see,
e.g., Fig. 1 and 4 in [5], which exhibit noticeable facets. Even for
this small dataset, they report an extraction time of 1.7s, implying
significantly less interactive specification of fiber surfaces than our
16 fps. The Enzo dataset (Fig. 6), while not particularly large, is
more entropic and yields complex fiber surface geometry. Our system
renders at 3.98 fps on a mobile integrated GPU (Table 3); this compares
favorably to the extraction time of serial marching cubes in VTK (17
seconds in [5]), and is in fact better than the rendering time of the
extracted fiber surfaces (0.69 seconds). While the original paper did
not consider the larger Enzo data, we note that performance for a 5123

Enzo dataset is not significantly worse (2.76 fps in Table 3). Recently,
Klacansky et al. [14] demonstrate a highly-tuned implementation of
fiber surface extraction based on marching tetrahedra employing a
BVH for improved performance. Though the underlying techniques
are different, direct ray casting is generally faster for large or entropic
data (33 fps for ray casting vs 3 fps for extraction on the 2563 Enzo
dataset). Generally, sublinear-time ray casting performs better with
large data than linear-time extraction and rasterization approaches.
Overall, both methods have advantages: extraction allows for analysis
of the mesh as well as rendering. However, the per-pixel accuracy,
inherent scalability and support for arbitrary interpolation filters make
ray casting compelling.

In Fig. 7 we compare fiber surface ray casting to direct volume
rendering. For the volume rendering transfer function, we convert the
distance field to a color sample with a specified threshold; distance
field values beneath that threshold have color and opacity of zero. This
threshold serves as a fine to coarse “brush size” specifying the width of
fiber surfaces (for actual fiber surfaces, that brush size is infinitesimally
small, or zero). We find that for “fine” brush sizes (threshold .001),
we find that direct fiber surface ray casting is an order of magnitude
faster than equivalent volume rendering. For a “coarse” brush size
(threshold .05), volume rendering performance is clearly competitive
– however one loses the ability to precisely classify regions of range
space, and the resulting renderings are more susceptible to occlusion
and clutter. Although strategies for classifying and sampling vary
widely with dataset, we have found our approach to be roughly an
order of magnitude faster than the method of Kotava et al. [19] for
comparable transfer functions.

6.4 Use Case: Combustion
To evaluate how fiber surface ray casting could be used in practice,
we collaborated with mechnical engineers at the University of Utah
Carbon Capture Multidisisciplinary Simulation Center (CCMSC) to
investigate multifield volume data from coal boiler simulations. Specif-

ically, we analyze data from two simulations: the large “BSF” boiler
in Fig. 1 and a smaller oxy-fuel combustor simulation “OFC”. These
simulations were created in the Uintah framework, using the Arches
computational code. These are fluid dynamic simulations with 130
fields pertaining to different physical attributes of the systems. Here,
we explore several fields, such as the gas-phase residence time, O2 mass
fraction, devolatilization and char oxidation rates, particle temperatures,
and radiative and convective energy transfer rates of various-sized coal
particles. Fiber surfaces may provide a new tool for comparative anal-
ysis of these multifield data, and ultimately assist in the simulation,
validation and design of coal combustion systems.

Devolatization vs char oxidation. During the combustion of
coal particles, devolatilization is the process where heat causes the
particles to partially decompose into fuel rich gases. Char oxidation
is the heterogeneous reaction of the organic material in the particle
with oxidizers that are able to diffuse to the surface of the particle.
The simulation measures the rate at which these separate phenomena
occur (kg/m3/s) in two fields, “η1” for devolatization and “η2” for
char oxidation. In Fig. 8, we use fiber surfaces to compare these two
quantities. The fiber surfaces show that char oxidation dominates at
later residence times, which is as expected. In the leftmost image, we
compare the η1 and η2 fields directly. The fiber surfaces show that
devolatization and char oxidation occur simultaneously in a narrow
central column above the inlet. Devolatilization dominates close to the
inlet, and char oxidation dominates further away from the inlet as O2
is able to get to the particle surface. Then, in the two right images we
compare them separately with respect to residence time (in seconds)
over the course of the simulation.

Radiation vs convection. Another question we sought to answer
is whether the heat transfer in the coal combustion system is predom-
inately due to radiation or convection. In Fig. 9, we compare the
radiation and convection heat transfer rates, both entities in W/m3. We
see from the 2D histograms that radiation dominates the energy output
of combustion inside the boiler. The red and green fiber surfaces show
the respective regions dominated by radiation and convection, respec-
tively – we note that for the largest particle size, convective regions
extend further into the center of the furnace. The blue fiber surfaces
show that convection and radiation occur together only in a small re-
gion near the tip of the inlet, and the three cooling ports where the
temperature differences are greatest.

Residence time vs particle temperature. Lastly, in Fig. 10, we
compare residence time with the temperature of the three different
sizes of coal particles. Curiously, although the 2D histograms exhibit
some differences, classification of fiber surfaces along the horizontal
(time) axis appear nearly identical. While at first we thought this was a
mistake, further experimentation showed that indeed, the fiber surfaces
are similar with respect to the time axis. Slight variations can be seen
in the green fiber surface geometry (early residence time, very close to
the inlet), but our overall finding is that most particles quickly exhibit
the same temperature, regardless of size. This conclusion would be
difficult to reach examining the 2D histogram or individual scalar fields
alone.

Interactive exploration of fiber surfaces in the OFC combustion
data sheds light on how to use them for analysis of scientific data.
Conventionally, these multifield data would be visualized side-by-side
via single-field volume rendering. Bivariate transfer functions would
help us better correlate volume renderings against the joint histogram,
but lack precision. Crucially, fiber surfaces let us explore not only
whether fields of the simulation exhibit similar behavior, but where
exactly that behavior occurs in domain space.

7 CONCLUSION AND FUTURE WORK

We have demonstrated a ray casting method for directly rendering fiber
surfaces from bivariate data, defined by control polygons specified
in range space. Our method requires negligible precomputation time
and enables interactive classification of all datasets we considered. In
particular, this enables us to explore larger volumes such as cosmology
and combustion datasets, without having to generate fiber surfaces in
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Fig. 6. Ray-cast fiber surfaces from the Enzo cosmology dataset, classifying matter (X axis) and dark matter density (Y axis). The red fiber surfaces
show the filamentary backbone of the cosmology simulation (red), combining both fields. Isocontours of matter (green) and dark matter (blue),
implemented as horizontal and vertical FSCPs, do not show this independently, even when restricted with respect to the other value. Direct ray
casting at 3–5 fps on an NVIDIA Geforce GT 650M enables faster interaction than marching cubes-based fiber surface meshes (17 seconds
extraction, 0.6 seconds rasterization).

Fig. 7. From left to right: fiber surface ray casting with segment size 0.1 – 3.6 fps; volume rendering with segment size 0.1 (“fine” distance field
threshold 0.001) – 3.6 fps; volume rendering with segment size 0.025, (“fine” distance field threshold 0.001) – 0.9 fps; and volume rendering to find
the root (“coarse” distance field threshold = 0.05) – 4.3 fps. In these examples, rendering exact fiber geometry with volume rendering requires 4× the
sampling rate, and thus lower performance. While volume rendering with a coarse threshold can render smooth features quickly, it introduces clutter
and lacks the precise classification of of fiber surfaces.

offline precomputation. Moreover, ray casting ensures pixel-accurate
rendering of fiber surface geometry and allows for the use of higher-
order interpolation filters. As shown in our case studies, fiber surfaces
are useful in discovering not only how scalar fields relate in quantity
via a 2D (joint) histogram, but correlating that to where they relate in
the domain. The ability to draw boundaries in range space, and use that
to define regions of interest in the domain, is particularly helpful when
scientists already use 2D histograms to understand their data.

There are several opportunities for improvement. The main limi-
tation of our approach is that it relies on point sampling and the rule
of signs, similar to GPU isosurface ray casting methods [9, 18]. This
is fast, but not always accurate, as explored in Fig. 4. Because our
multifield and fiber surfaces are piecewise-smooth, increasing segment
size does ultimately result in accurate rendering of surface geometry.
However, ray-fiber intersection within each cell [3, 31] or interval arith-
metic [17] would be more robust alternatives. Moreover, fiber surface
geometry is extremely sensitive to the dynamic range of multifield data.
Solutions for dynamically zooming, panning and even clustering in
range space would help better define FSCPs. Extracting fiber surfaces
from double-precision data would be desirable. To this end, integration
into a multifield data curation platform such as ViSUS [32], or using
CPUs for access to larger memory, may be desirable. Lastly, fiber
surfaces are defined for bivariate scalar fields; new research is required
to extend the concept to higher-dimensional multifield data.
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