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Abstract:
Octrees are attractive data structures for rendering of volumes, as they provide

simultaneously uniform and hierarchical data encapsulation. They have been success-
fully applied to compression, simplification, and extraction as well as rendering itself.
This paper surveys and compares existing works employing octrees for volume ren-
dering. It focuses specifically on extraction, direct volume rendering, and isosurface
ray tracing.

1 Introduction

An octree is a hierarchical binary decomposition of 3-space along its component axes. A
conventional octree guarantees regular, non-overlapping node spacing, thus is well-suited
as a container for rectilinear scalar field data. How this hierarchical container is used, how-
ever, varies with application. For general purposes, octrees allow data to be stored with
adaptive levels of resolution, and accessed quickly via a binary hash function. In volume
rendering, the octree often mutates to suit the individual technique, commonly delivering
occlusion, acceleration, adaptive multiresolution, compression, or a combination of sev-
eral features. We will examine the role of the octree structure in three different volume
rendering systems: extraction and rasterization; direct volume rendering; and interactive
ray tracing. As background, we survey several varieties of octree and efficient hashing
schemes for their traversal.

2 Octree Structures and Hash Schemes

The first actual octree publication is unclear [Sam90]. Among the first credited works
is that of Morton [Mor66] using quadtrees for geographic indexing scheme. The term
“quad-tree” was first used by Finkel and Bentley [FB74] for non-uniform point quadtrees.
The first definitive octree is credited to Jackins and Tanimoto [JT80], adapting the earlier
quadtree work of Hunter and Steiglitz [HS79] to three dimensions.

The principle of recursive eight-fold subdivision of space is common to all octrees. How-



ever, several varieties exist depending on the desired application. Different methods exist
to store the structure in memory and provide pointers from children to parents. Imple-
mentation of the structure in turn affects the behavior of data access. In general, data is
retrieved from an octree via a one-way hash function: given a point in octree space, it
seeks the leaf node containing that point. This process is often referred to as point loca-
tion. A related problem is neighbor finding: given a node deep in the tree, finding adjacent
or nearby nodes. Often, hashing is extended such that a hash code can refer to a region of
nodes, or coordinates of one node relative to another.

2.1 Pointer Octree and Hashing

In a traditional octree, a parent node stores pointers to all children. A leaf node could be
indicated by a eight null pointers, but most commonly it is given a separate pointerless
leaf structure, or represented implicitly within the parent node. While the pointer octree
carries a higher storage footprint than pointerless varieties, it is generally simpler to hash
as each pointer guarantees the path to the desired child octant. In addition, it is possible to
exploit memory tricks so that a node in a pointer octree does not require a full 32-bit (or
64-bit) pointer to each of its children.

Point Location. Numerous options exist for performing point location on an octree. The
simplest consists of applying comparisons at each parent to determine which child octant
the point lies in, until this process reaches a leaf. Comparison operators are expensive,
however. Another common scheme is to store a horizontal array containing 0-7 octant
indices at each element, in order of increasing depth. Thus, the traversal path is given
explicitly in this locational array. The locational array can be built from simple integer
coordinates by a process called interleaving proposed by Morton [Mor66]. Array-based
keys were popular in early implementations of octrees [Gar82, HS79, JT80].

More recently, Frisken and Perry [FP02] observed that octree and quadtree locational
codes could be simply represented by a vector of integer coordinates. Specifically, given a
maximum octree depth dmax and x,y,z ∈ ([0,2dmax ]∩N)3, one can hash directly to the cor-
rect child node until a leaf is reached. This is accomplished by a bitwise & of each x,y,z
component with a 1-bit mask corresponding to the current depth of the hash function. As
a result, point location can be performed by simply casting a vector to integer and hashing
to the desired node. It is important to note that while Frisken and Perry did not invent
the locational code, they were the first to recommend composing the code directly from
integer coordinates during hash operation.

Neighbor Finding. The problem of finding adjacent neighbors was addressed early on
in octree research. Gargantini [Gar82] provides a concise algorithm for finding adja-
cent nodes in the linear quadtree, using Morton’s [Mor66] array-based locational code.
Samet [Sam82] proposed a more general scheme for adjacent neighbor-finding, using
only an original node and a desired direction, and no knowledge of a locational code.



The algorithm was later applied to accelerating ray tracing using a pointer octree [Sam89].
Samet [Sam90] conducts rigorous analysis of the neighbor finding technique, decompos-
ing the algorithm into cases for edge, vertex and aligned neighbors. He concludes that the
average cost to find an adjacent neighbor at the same depth is O(1).

While neighbor-finding is demonstratably less complex than point location from the root,
Samet’s algorithms for pointer octrees without locational codes consist of case decom-
positions that could be highly optimized. Frisken and Perry noted that the “reflection”
function for adjacent neighbors, implemented by Samet via a switch statement, can be ac-
complished by a binary exclusive “or” of the current location and the direction in which
we seek a neighbor. [FP02]. Then, the neighbor itself can be retrieved by recursing up
to the deepest common ancestor, and performing point location to find the target neighbor
node.

Region Finding. Another common goal in octree and quadtree hashing is a mechanism
for recovering all nodes in a certain region; or more simply determining if a given node
is within a region. With locational code schemes [Mor66, Gar82, FP02], a region can be
described by coverage of implicit parent nodes [Gar82]. This is done by marking lower
bits in the locational code with an appropriately high number, indicating that all children
form part of that region. Alternately, with a coordinate system similar to that of Frisken
and Perry [FP02], regions can more intuitively be described by a minimum and maximum
pair of vectors.

Region finding has proven useful in image processing applications; thus far its applica-
tion to volume rendering on octrees has been limited. However, it could conceivably be
used when individual sections of an octree volume require attention, particularly when the
region is not perfectly aligned with a parent block in the octree.

2.2 Octree Varieties

Other breeds of octree exist beside conventional pointer octrees, and are suited to vari-
ous applications. Full descriptions of most octree varieties are given by Samet [Sam90].
For our purposes, we will only examine octree structures that are of interest in volume
rendering.

Full Octree. In a full octree, it is possible to compute the address of any node based on
its location in the tree, and thus pointers are unnecessary. Clearly, however, a full octree
is undesirable in most cases where data could be compressed or consolidated; the added
space obviates most gains from not storing pointers. A common application of a full octree
would be one where the encapsulated data is non-homogenous and universally significant,
and where we make use of a coarser-resolution representation in interior nodes of the tree.



Linear Octree. The linear octree is a variety of pointerless octree in which only leaf
nodes are stored, and allocated contiguously in memory. This method was originally pro-
posed by Gargantini for quadtrees [Gar82]. Linear octrees make use of an interleaved
base-8 code similar to that proposed by Morton for traditional octrees [Mor66]. The im-
portant difference lies in storage: rather than connect the leaf nodes via interior nodes, the
leaf nodes are sorted by locational code and then laid out sequentially in memory. Then,
rather than matching the Morton code segment with the correct child at each depth of the
octree, point location consists of a binary search on the sorted array of leaves. This bi-
nary search performs node lookup in O(log2(L)) in a tree with L leaf nodes; as opposed
to O(log8(N)) complexity for a pointer octree with N total nodes. Except in the case of
highly vertical trees with few leaf nodes relative to interior nodes, the linear octree is gen-
erally slower to hash. The major advantage is that it requires storage of neither pointers
nor interior nodes. In applications where storage is of the utmost importance, and we only
care about leaf nodes, the linear octree is an attractive structure.

Thus far, no one has directly applied the linear octree to volume rendering. However, it
is an intriguing structure in it potential compression abilities. As compression is one of
the main goals of adaptive octree methods on volume data, it is worth mentioning this
structure.

Branch-on-need Octree. Wilhelms and Van Gelder [WV92] proposee an incomplete
pointer octree that subdivides space non-uniformly, the goal being to build an octree with
the fewest-possible empty subtrees within interior nodes. In this way, the ratio of nodes to
data points (scalars) is minimized, saving space. As it subdivides space non-uniformly, the
BONO may require multiple parent nodes at deeper regions of the tree where a traditional
octree would only require one. This potentially causes added traversal steps. In addition,
the non-uniform nature of subdivision precludes the use of a pure coordinate system (e.g.
Frisken and Perry [FP02]) as a direct hashing scheme.

3 Octrees in Volume Rendering

3.1 Extraction

Early interactive volume rendering commonly employed isosurface extraction via march-
ing cubes [LC87] or a similar variant; paired with z-buffer rasterization of the resulting
mesh. Before the widespread availability of GPU’s, the goal was to use the octree to sim-
plify the extraction process. In general, the purpose of the octree was to provide a structure
with a small memory footprint that could encapsulate cells of a volume, and from which a
mesh could be extracted.

Wilhelms and Van Gelder. Perhaps the first application of an octree in isosurface ex-
traction was by Wilhelms and Van Gelder [WV92]. Their system employed the aforemen-
tioned branch-on-need octree (BONO) to minimize the number of nodes stored relative



to cells in the extraction phase. The main downside of this choice, sacrifice in speed of
cell location, was a non-issue: the algorithm was bound by extraction, not octree structure
traversal.

The Wilhelms and Van Gelder system is best known as the first application of a min/max
tree for acceleration. While not explicity mentioned in their paper, they make use of a
dual relationship between voxels of the volume and cells from which surface points are
extracted. Specifically, a cell is composed of eight voxels, and always indexed by a voxel
at a single corner. In the octree, voxels are grouped into eights at the maximum depth
level. The min/max tree, then, is built by examining 27 voxels: the original voxels, and
their neighbors that constitute the far boundaries of the cells.

During extraction, the marching algorithm need only examine octree nodes when the de-
sired isovalue falls in between the minimum and maximum pair. These nodes can be
quickly identified by traversing the octree from top-down as a min/max tree.

Livnat and Hansen. Wilhelms and Van Gelder only effectively used their octree to ac-
celerate the extraction process. However, in real-time adaptive surface reconstruction, the
same octree structure can be used to order visibility based on the user-specified camera po-
sition. This was exploited by Livnat and Hansen. [LH98]. In addition to using the octree
to prune empty subtrees (hence, nodes containing no surface), Livnat and Hansen perform
visibility culling on nodes that are occluded by previously-traversed nodes closer to the
camera. Thus, the octree is used not only to speed extraction, but rasterization as well.

Westermann et al. While the technique of Wilhlems and Van Gelder allowed large re-
gions of 3D scalar data to be systematically ignored, their extraction technique essentially
processed leaves at the deepest level of the octree. Westermann et al. [WKE99] recognized
that speedups could be gained by exploiting the multiresolution nature of the octree struc-
ture; namely by adaptively deciding to extract the mesh from fewer, coarser-resolution
nodes corresponding to the same region. This permits higher-resolution volumes to be
processed at real-time rates with appropriate level of detail.

The main problem with adaptive surface reconstruction is that cell corner values may vary
at junctions in the octree. Such junctions occur when a finer-resolution group of cells
is adjacent to a coarser cell. When surfaces are extracted from adjacent cells of different
resolution, they are not connected at junctions and therefore cracks appear. A major insight
in Westermann et al.’s work is how to patch the resulting meshes to guarantee continuity.

For adaptive multiresolution, the authors built upon previous view-dependent extraction
methods (e.g. Livnat et al. [LH98]). They proposed a single pass of the octree, building
an “oracle” structure that determines the level of detail, hence the depth of the octree to be
traversed, based on view-dependent and geometric criterion. Specifically, they implement
one “oracle” for predicting maximum surface curvature within each leaf node. Regions
of low curvature are represented with fewer polygons, hence allow shallower traversal of
the multiresolution octree. Regions of high curvature merit traversal to the finest level
available. In addition to curvature, the octree traversal depth is determined by a “focus
point” oracle based on distance to the camera view position.



Velasco and Torres. Thus far, extraction-based techniques employing octrees used the
structure for indexing existing volume data, and accelerating extraction or rasterization.
The advantage to this technique is that cells can be reconstructed from the original grid
data without no costly neighbor-finding [WV92]. The disadvantage is that the full original
3D scalar array must be stored in memory, in addition to a separate octree structure.

Velasco and Torres [VT01] propose a format called a Cells Octree, which enumerates
several types of distinct octree nodes. Internal nodes contain pointers to eight children.
“Single-cell leaf” nodes consist of a single cell, bordered by eight scalar values. Finally,
“eight-cell” leaf nodes contain eight cells at the maximum depth of the octree, rolled into
their parent node. The cells are represented entirely at every level of the octree, and no
neighbor-finding is required to reconstruct cells from voxels. Unfortunately, this technique
falls short of the compression achievable by storing only single-scalar voxels within an
octree. Moreover, the largest volume tested has dimensions 1283; which is sufficiently
small that no compression would be necessary to store even a full octree, in addition to the
original uncompressed volume, at the time of its publication.

Worse still, Velasco and Torres propose modifying the original scalar data to smooth values
across cells, and thus guarantee continuous surfaces. This approach differs markedly from
that of Westermann et al. [WKE99]; from a visualization standpoint it is arguably wrong as
the source data is being modified to create a smooth surface. However, one could equally
argue that any piecewise linear mesh is itself an inexact representation of an interpolating
isosurface, no matter how well refined. In practice, the results of Velasco and Torres appear
acceptable, and theirs is the first published application of an octree towards visualization
of compressed structured data.

3.2 Direct Volume Rendering

An alternative to rendering a mesh is direct volume rendering (e.g. Levoy [Lev90]), which
integrates rays intersecting a volume. While this is slow in ray tracing, it is effective on
current GPUs by accumulating gradients across sequential cutting planes of the volume
stored as 2D textures. This no longer restricts the viewer to rendering an isosurface, al-
though choosing a singular color map yields a surface approximation if desired.

GPU volume rendering is quite fast; easily permitting medium-sized volumes (up to 5123)
to be viewed at interactive rates. The main problem is that larger volumes are absolutely
limited by GPU memory. To bypass this, it is necessary to store the volume out-of-core in
CPU main memory, and page it into GPU memory.

Boada et al. The notion of rendering octree-compressed data was first applied by Boada
et al. [BNS01], with an important caveat: scalars are not compressed into a pure octree,
but rather an octree is built around bricks of a certain size. From these bricks, “cuts” of the
octree are reconstructed into textures, and then sent to the GPU for volume rendering. The
octree lookup process was a bottleneck in their implementation; they report sub-interactive
frame rates for medium-sized (2563) volumes. Admittedly, however, available GPU mem-



ory at time of publication was a fraction of this size.

Ruijters and Vilanova. More recently, a similar technique was applied by Ruijters and
Vilanova [RV06] with stunning results. Here, the authors do not use an octree for data
paging at all; instead they use the octree to speed up rendering of bricks by skipping empty
space. The octree itself is stored in main memory and used in an out-of-core preprocess
phase, where the desired bricks are decomposed into visible regions (non-empty octree
nodes) and those in turn are mapped to triangular cuts of the volume.

The technique of Ruijters and Vilanova demonstrates that GPU volume rendering can scale
to large data. However, it still requires that that data remain uncompressed in main mem-
ory, and rendered on the GPU using a paging scheme.

3.3 Ray tracing

Ray casting involves traversing the path of a ray from an origin pixel in our frame buffer
to a point on some surface in space. Then, one evaluates a shading model to color that
pixel. Ray tracing is more computationally costly than rasterization, however the relative
cost decreases as scene complexity rises, as is the case for large volumes. Moreover, recent
advances in parallel or coherent ray tracing [PSL+99, WSBW01] allow for interactive ren-
dering rates on moderately powerful CPU hardware. Nonetheless, interactive ray tracing
is generally limited to isosurfacing, due to the high complexity of direct volume rendering.

Ray tracing does entail certain advantages, however. As a purely CPU technique, it has
access to full system memory and more sophisticated use of branching and caching than a
GPU. As such, it can process a pure octree structure without need of a proxy. Moreover,
isosurface ray tracing as proposed by Parker et al. [PSL+98] promises topologically correct
surfaces within each cell. Although the global surface is only g0-continuous at cell borders,
it is guaranteed to be “correct” with respect to the original data and a forward-differencing
stencil.

Before 1995, octrees were popular spatial acceleration structures for general-purpose polyg-
onal ray tracing [Gla84, Sam89, Sun91, GA93]. Afterwards, hierarchical grids and sub-
sequently kd-trees came into favor due to their faster traversal and better adaptability to
irregular geometry. Nonetheless, the octree remains potentially well-suited to volumes,
whose voxels are uniformly spaced and non-overlapping.

Knoll et al. The authors combine the min/max acceleration functions of the Wilhelms
and Van Gelder [WV92] octree with a compressed format similar to the “cells octree” of
Velasco and Torres [VT01]. Instead of containing cells as was the choice of the latter au-
thors, Knoll et al. [KWPH06] build the octree directly around voxels. This requires a fast
neighbor-finding scheme to retrieve the values of cell corners when ray tracing; for this
the authors borrow (and improve upon) the algorithm of Frisken and Perry [FP02]. Ray
traversal is performed on the min/max octree structure, which is the same structure encap-



sulating the voxel data. For this, the authors employ a traversal similar to that proposed by
Gargantini and Atkinson [GA93].

Even employing non-coherent single-ray traversal techniques, Knoll et al. achieve inter-
active frame rates on multicore architectures. Performance is underwhelming compared
to that of GPU volume renderers; however it allows extremely large and time-variant data
to be rendered that otherwise would be difficult to accomodate even with a GPU paging
scheme. Octree volumes as proposed by Knoll et al. generally allow volumes to be loss-
lessly compressed into 10-30% their original size, even though they are ordinary pointer
octrees and optimized more for fast traversal than maximum compression.

4 Conclusion

In conclusion, octrees are useful for a variety of purposes in volume rendering. In ex-
traction and direct volume rendering they traditionally serve the purposes of acceleration
and adaptive multi-resolution representation. For interactive ray tracing applications, it
is possible to employ a pure octree volume structure and render extremely large volume
data in compressed format. Future applications of octree volume rendering could attempt
to combine the pure octree volume with GPU rendering approaches, using out-of-core
methods.
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