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Abstract: We consider several applications of implicit surfaces in visualization, and
methods for rendering them. In particular we focus on geometry processing techniques
for mesh extraction; and ray tracing methods for direct rendering of implicits. Given
that both methods rely on sampling the implicit function in question, we design a soft-
ware framework that could accomodate both algorithms. We conclude by evaluating
the time complexity and performance of existing systems, and discuss the long-term
potential of both methods for rendering and computational goals.

1 Introduction

An implicit is a multivariate function over an RN domain. In 3-space, it is given
by a function

f : R3 → R

such that, for an isovalue v, the implicit surface, or isosurface, is defined where
f (x,y,z) = v, or

f (x,y,z)− v = 0

This formulation defines a level set, specifically a level surface.
In scientific computing and graphics, implicits generally serve to filters a scalar

field of discrete data. As such, implicits are the lingua franca of data analysis, at least
for data that does not lend itself to an immediate explicit visualization modality.

To render implicits in 3D, one is principally given three choices:

• Extract explicit polygonal (triangle mesh) geometry, and rasterize that trivially
on graphics hardware.

• Re-sample the implicit into some other proxy geometry, such as points or slices
of a volume, and render that proxy geometry.

• Ray-trace the implicit directly.

This paper will survey methods for rendering implicits. Noting that these rendering
systems share common algorithmic components, we propose a common framework
architecture for sampling implicits and comparing performance. Finally, we compare
the implicit sampling performance of several existing systems, and make predictions
concerning the long-term suitability of these various methods to various applications.



2 Applications of Implicits

Implicits are used across scientific disciplines such as mathematics, physics, biol-
ogy and engineering. As computer scientists, our goal is to determine which visual-
izations of implicits are most meaningful and practical for their specific application.
At the core of this issue lies the question of what the implicit itself is modeling.

Figure 1: Marching cubes (a), compared to ray-traced 13th-order Legendre polynomials approxi-
mating the computed implicits from the FE reference domain (b). From Nelson & Kirby [NK05].

In some scenarios, the implicit function itself models natural or physical phenom-
ena, and data is computed to approximate it discretely. This is the case for much
volume data in simulation. Theoretically, it is desirable to visualize the same implicit
employed in actual computation, as opposed to some arbitrary interpolant of the re-
sulting data. As an example, for first-order finite elements, piecewise-linear planar
interpolants of a tet mesh accurately represent the computed implicit surface. For
higher-order spectral finite elements, however, this is not the case, and it is desirable
to visualize higher-order implicit surfaces over the computational domain, or approxi-
mations thereof [NK05] (Figure 3).

For structured data, correct visualization is less clear. Finite differences computa-
tions approximate the differential operator and not the solution itself, thus no single im-
plicit is strictly “correct” in visualizing them. Instead, we choose a convolution filter,
the simplest being a first-order Lagrangian trilinear interpolant. This yields piecewise-
smooth isosurfaces; but as the choice of filter is arbitrary, rendering it correctly is a
dubious proposition (Figure 2). Scanned medical data, such as MRI and reconstructed
CT scans, pose a similar conundrum of which filter is “best”. This has partially been
addressed [ML94, MMMY97] for volume rendering.

In the case of raw point sets, an implicit is used to interpolate data points from
a scanner, allowing us to render a smooth surface. Here, the choice of implicit is
secondary compared to how well it reproduces features (particularly high-curvature
regions, and singularities) on the surface, and how efficient it is to render [CBC+01,
OBA+03, AA03].

Finally, the implicit function itself can be of interest, for example when rendering
superquadrics or blobby objects [Bli82], or graphing arbitrary algebraic [KB89] and
even non-algebraic [Mit90, PLLdF06] expressions.

3 Rendering Implicits

In general, four options exist for rendering implicits in 3-space: direct volume
rendering; extraction and rasterization; ray tracing; and point-based rendering. Volume
rendering and point-based methods are proxy methods. In practice these work quite



Figure 2: Left to right: a finite-differences CD simulation ray-traced using a piecewise C0 trilinear
interpolant filter, and centrally differenced gradient normals [KHW07]; Advancing front extraction
of structured data using piecewise-C1 Catmull-Rom spline interpolants; and the same technique
using piecewise-C2 B-spline filtering [SS06]. Aesthetics aside, it is questionable which filter, if any,
is “correct”.

Figure 3: Piecewise-smooth partition-of-unity implicit reconstruction of raw point data, recon-
structed with high polygonization, coarse polygonization, and sphere traced (e.g. Hart [Har96]).
From Ohtake et al. [OBA+03].

well, due to efficient mapping on graphics hardware. However, they can vary widely
in actual implementation, depending on desired fidelity and type of data. Partly for
this reason we shall focus primarily on extraction and ray tracing, as they represent
algorithmic extremes that are either designed to accurately construct a mesh, or render
a view-dependent scene.

3.1 Volume Rendering

Direct volume rendering, samples the scalar field (usually regularly) and convolves
these samples via a transfer function. When a transfer function is sufficiently sharp,
or singular, at a desired value, volume rendering can approximate a surface. However,
volume rendering is computationally demanding, and only interactive when imple-
mented efficiently on graphics hardware. For rendering discrete isosurfaces, a near-
singular transfer function is imperfect, particularly for large, entropic, data. In practice
however, volume rendering of isosurfaces is useful, and worth mentioning as a feasi-
ble alternative to methods that render surfaces directly. An efficient implementation
combining GPU volume rendering with isosurface rendering is given in [HSS+05].



3.2 Mesh Extraction

For rendering implicit surfaces, the most common method is to extract a mesh
from the given data, and rasterize that mesh trivially on Z-buffer graphics hardware.
The best-known method for surface extraction is Marching Cubes (MC), developed
independently by Cleary & Wyvill [WMW86] and Lorensen & Cline [LC87]. The
general idea in extraction is to subdivide the scalar field into convex “cell” primitives,
and solve where the isosurface intersects cell boundaries. In conventional marching
cubes, cells are voxels of the volume, and the isosurface is approximated by solving
where linear interpolation yields the desired isovalue along a voxel edge. By consid-
ering the values at vertices of the cell, the algorithm knows which edges will contain
a surface; moreover for a trilinear interpolant implicit only 15 different configurations
exist for piecewise-linear iso-polygons within a given voxel. As voxels are C0 at their
edges, the resulting mesh is guaranteed to be continuous. More generally, this method
allows a mesh to approximate any implicit, as solving for arbitrary f (x,y,z) reduces to
a 1D problem when any two coordinate axes are constant.

Mesh Extraction Variants Marching cubes is popular due to its simplicity and
ease of implementation. However, it possesses several limitations. Some MC config-
urations cause ambiguities in orientation that must be resolved to preserve continu-
ity, but this has been addressed [NH91]. Fundamentally, marching cubes is limited
in that it samples regularly over a uniform grid. While this is adequate for small
structured volumes, it is ill-suited for irregular point sets and unstructured data. For-
tunately, a similar algorithm, Marching Tetrahedra (MT), was developed by Doi &
Koide [DK91] to operate natively on unstructured tet meshes, though it can equally
be applied to structured data due to the dual relationship between tetrahedra and vox-
els. Though MT addresses some sampling issues of marching cubes with unstruc-
tured data, both algorithms generate poor-quality, irregular meshes, and fail to capture
topological features such as singularities. Dual contouring [JLSW02] and dual march-
ing cubes [Nie04, SW04] alleviate these problems, reducing overall triangle counts,
and effectively capturing singularities. However, “thin” features below a geometric
subdivision criteria can still be lost using these techniques, as evident from Paiva et
al. [PLLdF06], and meshes generating using dual marching cubes still suffer from
irregularity (Figure 4). For generating high-quality triangle meshes, Scheidegger et
al. [SFS05] proposed an advancing front meshing algorithm using a curvature-based
guidance field. Schreiner et al. [SS06] extended this method to structured and unstruc-
tured scalar volume fields, and modified the guidance field to minimize both geometric
error and number of required samples.

Dynamic Extraction and Visualization For larger data, it becomes necessary
to manage overall scene complexity, measured in the number of cells or tetrahedra
visited by the extraction algorithm. As long as this is controlled, it is generally
trivial to render the resulting mesh interactively on graphics hardware. To reduce
the visited set of cells, Wilhelms & Van Gelder [WV92] proposed a min/max hier-
archy embedded in a branch-on-need octree for trivially ignoring empty regions of
a volume. Livnat et al. refined the interval tree concept in creating a span space
tree [LSJ96]. Livnat & Hansen [LH98] extended the min-max octree technique with
view-dependent frustum culling using a shearing transformation visibility test. Wester-
mann et al. [WKE99] implemented adaptive marching cubes on multiresolution octree
data. Pesco et al. [PLPS04] proposed an occlusion test for the implicit itself, further
reducing the cost of isosurface extraction at render-time. With few exceptions these
techniques enable interactive rendering of data up 5123. For larger data, interactive
visualization is difficult, and extraction techniques often rely on topologically-guided
simplification [LMM06] into Morse-Smale complexes. Though this does not render



Figure 4: Left: a robust meshing algorithm employing interval arithmetic and dual marching cubes
fails to determine the correct connectivity of a surface, likely due to insufficiently fine geometric
sampling [PLLdF06]. Right: ray tracing using a similar interval arithmetic technique can also
experience difficulty sampling thin features, but samples in a view-dependent fashion and thus better
recovers features for closer views [KHH+06].

the entire original data set, topological simplification and segmentation is arguably
more useful for data analysis.

3.3 Ray Tracing

While extraction methods focus on sampling the full scalar field, ray tracing sam-
ples the implicit directly at the intersection point of a viewing ray and the implicit
surface. For rendering large data, this potentially entails far fewer samples than an
adequate extraction method, and “better” samples in the sense that we sample exactly
(and only) the regions required to fill a 2D uniform grid in screen space. Thus, ray
tracing performs both view frustum and object-occlusion culling automatically. With
an efficient acceleration structure, it performs spatial subdivision as well and renders
objects in O(logN) time as opposed to O(N). For large volume data, this is extremely
important. In structured volumes, the number of voxels multiplies eight-fold every
time dimensions double; large data can easily overwhelm an extraction/rasterization
method, even one with comprehensive subdivision and occlusion culling algorithms.
The main drawback of ray tracing is that, particularly when not optimized, it can be
slow. However, the inherent scalability of ray tracing, combined with increasing power
of multicore CPU’s and flexibility of GPU’s, suggests the algorithm will increase in
feasibility and popularity.

General implicit ray tracing In a sense, all primitives are formulated implicitly
implicit in ray tracer, including the plane equation of a triangle. In general, ray tracing
solves the implicit function for a parameter t along each ray. This is accomplished by
substituting Pi = Oi +tDi for i = {X ,Y,Z}. Then, f (x,y,z) becomes a one-dimensional
function ft(t), and finally ft(t) = v may be solved for t. Thus, ray tracing implicits is a
root-finding problem; it solves for the first root along a given interval. Simple implicits
of second degree and lower can be solved analytically. Blinn’s blobbies [Bli82] were
the first application of ray tracing higher order or rational implicit surfaces. Kalra &
Barr [KB89] devised a general method for ray tracing algebraic surfaces with known
Lipschitz-condition bounds for the gradient and curvature. The key issue with ray
tracing arbitrary implicits is that globally convergent numerical methods fail to handle
discontinuous or non-monotonic functions. One solution is to evaluate intersection by
finding and minimizing a signed distance function for the implicit surface, as proposed



by Hart [Har96]. Yet more general is the use of an inclusion algebra such as interval
arithmetic [Mit90] or affine arithmetic [dCJdFG99]. General methods for implicit ray
tracing have historically proven slow, but recent work [KHH+06] using coherent opti-
mizations suggests that pure interval bisection is surprisingly practical and interactive.
However, this method has not been thoroughly tested on fitting and filtering point and
scalar data, and it should be assumed to be slower than optimized special-case inter-
section for most third-degree and lower implicits. Higher-order and rational implicits,
however, can be rendered efficiently using interval ray tracing methods.

Figure 5: Left: Morse-Smale topological segementation and simplification of large data [LMM06].
Center: 2048x2048x1920 Richtmyer-Meshkov instability field, losslessly compressed from 7.5 GB
to 1.8 GB and rendered at multiple fps on a multicore laptop. [KWPH06]. Right: hybrid extrac-
tion and point-based rendering system, rendering the 512x512x1024 visible female dataset interac-
tively [LT04].

Structured data isosurface ray tracing Parker et al. [PSL+98] were the first
to ray trace isosurfaces from structured volumes, employing these piecewise implicit
interpolating patches. Though a small supercomputer was necessary to render them
at the time, the method proved powerful in the size of volume data it could render at
full resolution. The scalability of this method to large data was further demonstrated
by DeMarle et al. [DPH+03] on clusters, rendering the 2048x2048x1920 Richtmyer
Meshkov CFD data set in its entirety using a software distributed shared memory layer.
More recently, Knoll et al. [KWPH06] implemented a lossless octree compression
scheme for structured volumes, allowing both volume data and acceleration structure
to be compactly represented in less than 25% the original volume footprint. In con-
junction with an efficient ray-octree traversal algorithm, this enables rendering the
Richtmyer Meshkov data on a laptop with 2 GB RAM at multiple frames per second,
and interactively on a 16-core workstation.

Unstructured and point-set ray tracing Ray tracing is equally suited to visual-
izing implicit point-set surfaces using radial basis functions, as demonstrated by Wald
et al. [WS05]. Large unstructured data has also recently been investigated [WFKH07].
With coherent BVH traversal and an optimized ray-isopolygon intersection similar to
marching tetrahedra, CPU ray tracing is surprisingly competitive with GPU shader-
based extraction techniques [WKME03, BCCS07], even on modest multicore desktop
hardware.

3.4 Point-Based Rendering

Though CPU ray tracing tackles large data easily, its overall performance on moderate-
size data is still underwhelming compared to GPU rendering methods. It is worth



mentioning the contributions of point-based rendering methods on the GPU, conceived
by Levoy & Whitted [LW05] and proven for large point-set data by Rusinkiewicz et
al.[RL00] with QSplat. Point-based rendering is spiritually similar to ray tracing in that
acceleration structure traversal and primitive intersection are computed out-of-core on
the CPU, but shading and actual rasterization occur on the GPU. Co et al. [CHJ03]
extended the isosurface ray tracing technique of Parker et al. to point-based rendering
on the GPU. Livnat & Tricoche [LT04] took this system one step further, implement-
ing a hybrid isosurface render that combined extraction and point-based methods, and
handled reasonably large data interactively. Zhou et al. [ZG06] develop a system for
rendering higher-order finite element volumes very efficiently, though it requires pre-
segmenting data into point sets.

4 A Unified Framework for Extraction and Ray Tracing

Rasterization and ray tracing ultimately both sample the input data in world space,
though their means of sample generation and processing differ. It would not be dif-
ficult to share a common spatial subdivision and data sampling framework between
an extraction and ray tracing application. At the lower algorithmic level, ray tracing
and extraction methods can vary (between themselves, as well as each other) in actual
implementation, largely in whether they iteratively evaluate or analytically solve roots
on the implicit to generate the sample.

4.1 Framework Overview

The general idea of our framework is to abstract data acquisition, subdivision struc-
ture generation, and implicit expression generation, which are used by multiple com-
mon extraction and ray tracing implementations. In short, our pipeline is designed to
handle two common-case ray tracing and extraction systems with varying degrees of
generality; and an unlimited number of fixed-function techniques for ray tracing or
rasterization that can use other components as necessary. We require three inputs from
the user: data; an implicit to filter that data; and a sampler (either a ray tracing or
extraction method). After processing these inputs, the system outputs either a mesh or
a ray-traced image, as shown in Figure 6.

4.2 Pairing Ray Tracing and Extraction

In the previous sections 3.2 and 3.3, we have discussed common techniques for
extracting and ray tracing implicits. We note that the bounded spectral radius for the
minimal guidance field in advancing front extraction [SS06] is similar to the geometric
bounds of the L-G surfaces in Kalra & Barr [KB89]. Both techniques assume the filter
implicit to be twice differentiable (or at least have constant gradient or curvature) with
known bounds on gradient and curvature (Jacobian and Hessian, respectively). Hence,
they could logically be paired together as techniques for C2 algebraic implicits.

For rendering of arbitrary non-algebraic implicit functions, the interval arithmetic
method proposed by Paiva et al. [PLLdF06] is roughly analagous to ray tracing using
interval bisection [Mit90, KHH+06]. Extraction methods using this technique would
require a spatial subdivision structure such as an octree or BVH over which to evaluate
intervals, followed by application of dual marching cubes or a similar algorithm over
these regions.

The term “subdivision structure” in Figure 6 is somewhat vague; particularly in the
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Figure 6: Proposed framework for extraction and ray-tracing.

context of rendering functions as in [KHH+06] and [PLLdF06]. Both techniques in-
volve sampling within the implicit function domain, not merely the data domain. How-
ever, in Paiva et al. [PLLdF06] samples are constructed explicitly from dual marching
cubes over this domain, whereas Knoll et al. [KHH+06] recommend no explicit spatial
subdivision, and instead sample the implicit on-the-fly during intersection.

4.3 Fixed-Function Components

We recommend a fixed workflow for certain types of implicits, mostly for com-
parison purposes. For example, one could implement standard marching cubes using
trilinear interpolation over voxels, or optimized ray-trilinear patch intersection using
the Marmitt et al. [MFK+04] technique. Fixed functionality need not be absolute
throughout the system; the Marmitt intersector could be used in conjunction with ei-
ther a BVH or an octree, for example. Another practical option, used inherently by
point-based implicits such as MPU [OBA+03] and sphere tracing [Har96] would be
allowing the user to specify a signed distance equation as opposed to the implicit for-
mulation itself.

4.4 Expected Quality and Performance

Using this framework, it would be fairly simple to benchmark the number of sam-
ples collected by ray tracing and mesh extraction techniques for similar views. These
numbers would be somewhat unfair unless the rasterization system performed all the



appropriate culling optimizations [WV92, LSJ96, LH98, WKE99, PLPS04]. How-
ever, we can make some general assumptions about anticipated behavior. Assuming
the implicit is an accurate representation of our data (and more specifically, what we
seek to visualize), we expect the quality of the image or mesh to be dependent on the
number of samples, and where these samples are spent.

With ray casting, samples are created from a camera by ray generation. For vi-
sualization purposes, it is hard to go wrong with this technique, as samples are spent
exactly where the user wishes to see. Even when a sample misses the surface, it is still
meaningful (and usually cheaper to compute). One could argue that this purely view-
dependent sampling strategy is flawed when the projected object feature frequency
exceeds the viewing ray frequency, causing aliasing. However, this could be solved
either by supersampling rays or downsampling the object (via level-of-detail meth-
ods) over high object-frequency regions – both well-known techniques in computer
graphics.

In extraction, mesh construction works best when sampling adapts to the curvature
of the surface – specifically when regions of high curvature are allocated more samples.
When the user only requires one mesh as output, it makes sense to generate the best
mesh possible, and employ an adaptive and topologically sensitive method such as
advancing front. For dynamic visualization purposes, however, the quality of the mesh
is generally secondary to the extraction time; naive marching cubes (perhaps with
some view-dependent adaptivity) is likely preferable in this case.

Empirically, existing literature suggests it is more difficult to extract a good mesh
than to ray trace a good image. For example, Schreiner et al. [SS06] report the small
2563 Aneurism data requiring 7 seconds to extract 134K triangles using conventional
marching cubes, and over 5 minutes to extract 462K triangles using advancing front.
On a single-core 2.4GHz Opteron CPU, using the Marmitt trilinear patch intersection
method, Wald et al. [WFM+05] ray traced an isosurface of this data in over 6 fps at
640x480. Assuming conservatively that only 1/20 of the samples hit the surface, and
normalizing for number of processing cores on an Opteron 2.2 GHz, ray tracing pro-
cesses 112K samples per second, whereas marching cubes generates 10K samples per
second, and advancing front around 720 samples per second. The number of samples
per second processed in point-based GPU methods are easily two orders of magnitude
even than ray tracing, though point set data must be precomputed in advance [ZG06].
For higher-resolution data, ray tracing should perform similarly well due to its loga-
rithmic acceleration structure traversal complexity. Advancing front should fare better
compared to marching cubes, due to its adaptivity. While these comparisons are ex-
tremely rough and not completely fair, they are consistent with the findings of Livnat
& Tricoche [LT04], in comparing their point-based isosurface rendering technique to
full extraction. In their hybrid method, they find that view-dependent extraction works
well for moderately near views, but for closeup or far away views point-based methods
are more effective. The overall lesson is not that ray tracing is superior to extraction,
but that view-dependent sampling is necessary for efficient, dynamic visualization.

5 Conclusion

Comparing ray tracing and extraction is an apples-and-oranges affair. The decision
on which to perform should depend purely on the application. When the isosurface is
ultimately used for modeling, for example with rigid-body mechanical simulations,
mesh extraction is the most appropriate solution. For rendering animated blobby
shapes in a computer game that can be deformed dynamically by in-game physics,
extracting a mesh is all but necessary; for general-purpose rendering, rasterization is
unlikely to be replaced anytime soon, if ever. When mesh generation is acceptable
as an offline process, it is desirable to generate the cleanest mesh possible. For this



reason, and their topological and geometric adaptivity, methods such as dual marching
cubes and advancing front are more useful than marching cubes, particularly for larger
data. For the same reason of effective sample use, ray tracing and point-based methods
are better suited to dynamic visualization than on-the-fly rasterization and extraction.
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