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Abstract Recent developments in magnetic resonance imaging (MR8 slaown
that displaying second-order tensor information recareséd from diffusion-weigh-
ted MRI does not display the full structure information aicgd by the scanner.
Therefore, higher-order methods have been developedd®&etie visualization of
derived structures such as fiber tracts or tractographediyr related to stream
lines in fluid flow data sets), an extension of Reynold’s gljghsecond-order ten-
sor fields is widely used to display local information. At geme time, fourth-order
data becomes increasingly important in engineering aslmogdels focus on the
change in materials under repeated application of streBseso the complex struc-
ture of the glyph, a proper discrete geometrical approxmnae.g., a tessellation us-
ing triangles or quadrilaterals, requires the generatfanany such primitives and,
therefore, is not suitable for interactive explorationhdts previously been shown
that those glyphs defined in spherical harmonic coordinzgashe rendered using
hardware acceleration. We show how tensor data can be egheiciently using a
similar algorithm and demonstrate and discuss the useearhaltive high-accuracy
rendering algorithms.
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1 Introduction

When implementing and testing novel visualization techa& basic methods for
displaying data are important to verify their correctné3ee of the best-known
techniques is the visualization of glyphs, i.e., small Eogpresenting the local data
values. Whereas in vector visualization a single diredtiolicated by an arrow can
be used to display the local information, second-orderrmédion can be repre-
sented by displaying scaled eigenvectors derived fromethgar’s matrix represen-
tation. Even though this representation displays all im@tion, surface glyphs are
often preferred as they show the continuous behavior argknieral, reduce visual
clutter: Spheres spanned by the scaled eigenvectors amosteyeneral representa-
tion for positive-definite symmetric second-order tenseld8, but a generalization
to higher-order tensors is hard to derive. Therefore, thenRle’s glyph for second-
order tensor fields has been extended to higher-order data.

For second-order tensors, the representation of the g/ptraightforward and
can be implemented by sampling a sphere and scaling thesradaording to the
function

f(x) = x"Dx, (1)

wherex is a unit vector an@ the tensor’s matrix representation. Rewriting the equa-
tion using Einstein’s sum convention, the extension to @igirder tensors becomes
obvious [6] and is given by

f(X) = Tigigig...inXiq XigXig - Xip- ()
where the sum is implicitly given over same indices. Theddad way of rendering
those glyphs is by sampling a tessellation of a sphere. Taetast common meth-
ods used to display higher-order glyphs are sampling thehgiyong the azimuthal
and longitudinal coordinates of a sphere, which leads tordralanced distribution
of sampling points close to the poles, and sampling the glhgiig a subdivision of
basic shapes, usually triangulated platonic solids (tetlea, octahedra, and icosa-
hedra). Applying those subdivision schemes produces akvendred triangles per
glyph and, when displaying slices of the data set with séVeradreds of glyphs,
the increasing memory consumption negatively influenceg#rformance of the
whole visualization system. Even though the described atethtroduces an al-
most uniform sampling on the sphere, it does not provide #éoumisampling on
the surface, which should be sampled depending on the cuevat the glyph, i.e.,
a refined sampling where large curvatures occur and a coarggiag in flat areas.
While increasing the smoothness of the glyph's represemtahis method leads to
an increased computational complexity. Given the factttafunctionf relates to
the spherical harmonic representation, which can be seaifraarier transform on
the sphere, it can be shown that higher-order tensors imteohore high-frequency
components on the surface that require finer tessellatiba.ificreasing angular
resolution of diffusion-weighted magnetic resonance s@md the increasing an-
gular precision provided by post-processing tools reghieedata to be represented
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at order eight to twelve (cf. Tournier et al. [20]) which egds the point where the
generation of geometry is no longer reasonable.

We review recent work on higher-order glyph visualizatiord ashow how to
apply these techniques efficiently to tensor data. Sevesaéis arise with this tech-
nique when moving to higher-order representations thategelve. \We propose
alternative rendering schemes for high-quality rendering

2 Related Work

Glyph rendering has a long history in visualization. Witk thise of modern graph-
ics boards, hardware acceleration has become a major tmpétficient rendering
of large amounts of glyphs for high-resolution displaysarfng from the ray trac-
ing of spheres and ellipsoids [4] where an analytical ptajeds possible, sphere
tracing and ray tracing became important for superquaggigs, Sigg et al. [18, 7])
where no analytical intersection can be calculated. Hkohita et al. [5] presented
a method of rendering superquadrics on the GPU-based éealud the glyph's
gradient function along the ray of sight and using a gradiestent method to ap-
proach the surface. In both cases, heuristics have beenadetard unused frag-
ments early on to speed up calculations. Both methods féérms of performance
for more complex surface functions.

Only recently, Peeters et al. [15] were the first to publish ethod to dis-
play fourth-order glyphs in spherical harmonic represémtausing hardware-
accelerated ray tracing for spherical harmonic functiansrgby
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where6 andg are the polar and the azimuthal angle, respectivlyis the spher-
ical harmonic function of degrdeand ordem, anda" are the factors defining the
function. After a bounding-sphere test for early ray temion, the ray is sampled
at a constant step size using a sign test on an implicit foncterived from Eq. 2 to
check whether the surface is hit. If a possible interseddound, a binary search
refines the intersection up to a visually reasonable level.

Several publications describe rendering implicit suréage the GPU [8, 9], but
most of them are not suitable because the simplicity of Pe¢td.'s approach sim-
ply outperforms the “optimizations” suitable for more cdepsettings.

Our method presented here differs from the method by Peeteis in various
ways. First, we compute all values using the Cartesian terpoesentation to avoid
the use of trigonometric functions. Second, our method idimited to symmetric
glyphs of order four, but can be used for a wider range of gdypkpecially glyphs
of higher order. Third, we present a method that automéyicgitimizes the code
to the given tensor representation and, therefore, theaddthoptimal in mem-
ory requirement and necessary computations for lowerrayiyphs as well as for
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higher-order glyphs. Finally, we tested our method on higitrder glyphs to en-
sure its suitability for data representations such as thegeired for the spherical
deconvolution method by Tournier et al. [20].

3 Method

We first derive a function representation suitable for reimdehigher-order tensor
data. We then show how to optimize the rendering and, finalispduce a different
approach using high-quality ray casting.

3.1 Implicit Function Representation

Spherical harmonics basis representations have proves éosbandard method of
computing and storing derived data from medical images,[@/316]. In general,
the explicit, parameterized representation of the surdaseribed in spherical coor-
dinates is

f:&-R3

f(6,¢) = V(97¢)Za1m\ﬁm(9,¢),

wherev(6, ) denotes a normalized vector pointing in directigh ¢), andY," is
called the spherical homogeneous polynomial of dey@ed ordem. Let 6 and
@ be the latitudinal and longitudinal angles indicating anppi< R3. The function
can be written as an implicit function with the varialple

V(ea¢)za1mYlm(ev¢) —p= 0

or simply
Zaf"\ﬁm(e,cb)— [pll=0.

Nevertheless, a transform from spherical coordinates tte€ian coordinates seems
appropriate to avoid trigonometric functions and the extiin of Legendre poly-
nomials, which both are numerically unstable at the polestand to be computa-
tionally challenging. Given data in spherical harmonicrciioates described by the
linearized version of the weighting factoss, the spherical harmonic badi¥;, and
the tensoiT;, the matrix given by

M(S).Ti(S))e

M:m; =
. [Tille
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defines the transform from spherical harmonic space to tespaxre [14, 2]. The
expression(-,-) denotes the scalar product on the sphere and the lineaeimsdrt
after the transform is

t=Mw.

A change of coordinate system leads to a representationrindmac polynomials
that can be written using an n-th order ten$6? as

fn(X) = XTi1i2i3...inXi1Xi3Xi3 <+ Xip- (3)

When evaluatingf at an arbitrary poinp, an implicit function representation for
|pll # O is derived from

I fa(P)II = IIp[™* =0,

which takes into account th&{p) is a polynomial of orden+ 1 regarding the radial
directions (i.e., regarding= ||p||). *

3.2 Surface Normal

Whereas the normal in glyph-based techniques is usuallpatstd using finite dif-

ferences to determine the tangent space and calculatatigsrit space’s normal,
using the previous definition of the spatial function, we campute the glyph’s
normal implicitly. The normal is given by the gradient at pisi on the isosurface
(contour), i.e.,

af(p)—|lpll _ df(p) dlpll

opi opi opi
af(p)
ap pillpll

1 We can rewritef,, to a function f: equivalent to the spherical harmonics case by scaling the
function by its distance from the center

n

~lpll el
and using the implicit function
fa(p) —[Ipll =0
we get
p fa(p)
L _ =0
il Tolr P!
1 f(p)
Ipll el

fo(p) = lIp[" =0
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4 Implementation

We use hardware-accelerated ray tracing for renderingntipdidit function given
in Eq. 3. As the approach of Peeters et al. [15] targets the sdass of functions,
we closely relate their approach that consists of 1) copttiegdata to the vertex
shader; 2) utilizing early ray termination using a boundipbere; 3) approximation
of intersections of the ray with the implicit surface by sdimgpthe path using a fixed
step size and doing a sign check of the implicit function;efjning the point by a
bisection algorithm; and, finally 5) computing the surfacemal for lighting. In the
following sections, we only point out the major differenadghe two approaches
and refer the reader to the original paper for technicaliideta

Setup.We transform the ray into a local coordinate system so tleaglyph lies
in [—1,1)% and its center lies at the origin. This simplifies the raypgiyntersection
computation as all calculations are performed relativaéoglyph’s center.

Copying Data to the GPU.As we are dealing with higher-order tensors, the
number of scalars representing a single tensor value is &g, starting with the 28
values of a symmetric sixth-order tensor, reaches the duritent desktop hardware
allows us to pass to the shaders and between the shadecs(ityg# floating-point
variables). To bypass this issue, we have to store all dateximre memory and
access the data independently for each pisagment shader. An example of the
memory layout we use is shown in Figure 3 using a symmetrictfieorder tensor.
The exact location of the data is given by the tensor’s inddsich can be stored in
any free vertex attribute. Obviously, using texture memamy the need to extract
the tensor values per fragment affects the speed of theitlggrbut we keep the
number of texture look-ups small (four look-ups for ordenrfcseven look-ups per
pixel for order six,[ (n+1)(n+ 1)/8] look-ups for orden). In addition, the texture
look-ups are not required for the early ray termination steg, therefore, all texture
look-ups are performed after this step.

Ray-Surface Intersection.The preliminary ray—glyph intersection step is the
most important step in the algorithm. A failure to detect atelisection here will
discard the fragment and this error cannot be correcteddateT herefore, the sam-
pling step size has to be sufficiently small to ensure thatagh that hit the glyph
are correctly detected and, in addition, that they interadét the right “lobe” of
the glyph. If they accidentally miss a part of the glyph, séngpartifacts occur.

number of stepbisect (bisect Jbisect gbisect Jinterpolation

0.01 5.0 5.0 5.0 5.0 4.8
0.02 8.6 9.3 9.1 9.0 8.5
0.05 18.6 | 19.0 | 18.7 | 18.0 18.0

Table 1 Comparison of the performance for different rendering nsagieng frames per seconds.
The same data set is rendered repeatedly under the samegyiamgle for about two seconds and
the average frame rate is shown here.
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Fig. 1 Rows from top to bottom: comparison of different renderingdes using fixed step size;
fixed step size combined with one, two, and three bisectiepsstand fixed step size combined
with interpolation, respectively. Columns from left tohigtwo glyphs rendered using a step size
of 0.01, 0.02, and 0.05, respectively. None of the methodsiro@rove the quality of the shape
in those parts that are not captured by the initial samplitgpse artifacts become especially vis-
ible in the center of the right glyph, which has the same slasptle left one but is slightly tilted
which makes it numerically challenging. When the glyph isrectly sampled, a linear interpo-
lation performs better than two bisection steps. Dependmthe application and the size of the
glyphs, a step size of 0.2 and linear interpolation as shawthe center bottom panel seems to
provide the best tradeoff: A coarser initial sampling iscialiespecially for rays that do not hit the
glyph, as those account for most function evaluations ardittear interpolation does not need
any additional function evaluations but provides visuakjter results than three bisection steps.

Refinement Step.Given a proper pair of points, one lying outside the glyph
towards the eye point and one lying inside the glyph, biseds in fact an efficient
method to increase the quality as it requires a single fanaaluation to reduce
the interval by a factor two, giving a binary digit in preadsi In our experiments
we found that a final linear interpolation of the given in@rimproves the quality
of the rendering tremendoushythout requiring an additional interpolation because
we store the previous pair of function values and the size@tearch interval. Let
fa, fb pe the function values for parameteandb, respectively, we compute the
ray parametefr a

t= fb,fa(

b—a)+a.
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This reduces stair-stepping artifacts when using lowergdiaug rates along the ray
as seen in Figure 1.

Overcoming the Singularity at the Origin. Similarly to the spherical harmonics
definition, the implicit function defined here has high-fuegcy components close
to the glyph’s center, i.e., the origin of our local coordamaystem. Whereas mov-
ing the coordinate system to the glyph's center in genesliess higher numerical
precision for some operations, it does not solve the prol@eonder-sampling by
the simple ray casting. Even though the glyphs shown in Eiduare rare in stan-
dard imaging techniques like g-Ball imaging [21, 22], in {h@st-processing step
and to ensure better visibility, a sharpening filter is aggblio the surface function
that introduces high-frequency components and, in genreralbves the major part
of the isotropic behavior. Therefore, it is not uncommon awenglyphs that touch
their center point. There are two ways to overcome this gmbFirst, one can use
a redefinition of the glyph that avoids those situations aedond, one could use a
finer sampling of the data. Even though the first approachgdsthe glyph, it can
be used to visualize the data since the user is aware of tttis fa

As a finer sampling of the data reduces the speed of the digotiemendously
(which is mainly due to the fact that a large number of rayenéit the surface and,
therefore, account for the majority of function evaluagprwe adapt the sampling
to the expected frequency pattern of the surface by charbagtep size to a finer
step size in closer vicinity to the center of the glyph whilaintaining the coarser
step size at the outer parts. A result of this approach is shioWwigure 2.

LY EWILY A Y IA\ YT E Y IA\TEY
/\I\,\’\/\/\/\/\

Fig. 2 The problem of under-sampling the glyph in the center (firstupe) can be solved in dif-
ferent ways. The introduction of a basic isotropic componeevery glyph avoids high-frequency
components in the implicit function and, therefore, prastia picture without gaps while only
slightly changing the glyph (second picture). A better soluis an approach based on adaptive
sampling towards the center of the glyph. The two pictures@ndered with a step size of 0.2 and
0.5 (third and fourth picture, respectively), and incretmesampling step size to a third of their
original step size towards the center. While slowing dowrdeging speed slightly (from 18 fps to
15 fps in our test case), we are able to produce more precsalidations.

Function Implementation. Depending on the type of input data, we automat-
ically generate the suitable rendering code. This is usafuthe tensor function
simplifies for lower-order tensors as well as for symmeteicsors. Especially the
reduced amount of texture look-ups during rendering lea@stincrease in perfor-
mance.

We compute the function depending on the data using

f(x,y,2) = Z [Xhi,xyhi,yzhi.z} o \/mn+1 "
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Fig. 3 Layout of the tensor in texture memory using the example ofransetric fourth-order
tensor: Depending on the graphics board used, the use of 2D ¢extures may result in better
performance. Usually, the tensor data is not a power of tveh) trerefore, leaving memory ele-
ments empty may be necessary to achieve better frame réditese Texture elements can be used
as additional information for example for color coding oalgng.

for non-symmetric tensors. The optimized version for syrniméensors is
i Ny A n+1
f(X,y7 Z) = Z |:7-Exh|.xyh|.yzh|,zi| _ X2+y2+22 (5)
|

where
3I’l

h|‘xl h|7y| h|‘zl
is the number of occurrences of each term byydis the number of occurrences of
the digit 0 (1, 2) in the number i represented to the base .3the power ok (v, 2),
respectively.

For higher shading quality and faster evaluation of the igretdwe also provide
the partial derivatives of the function used as surface agrwhich can be derived
analytically from Equation 5, e.g., for the symmetric case

0f(X y7 _ Z |:V7'ﬂh| X 'thl yZh' zi| _ (n+ 1), /X2+y2+22n,
Al y’ -2 vy e —2y(n+ 1)/ +y2+ 2", and
X y7 Z |:V7'ﬂh| ZXhIX |yzh| z:| _ 22(n+ 1>‘ /)(24,)/24>22n7

T§ =

with
ha=ha—-1andv=1 Vhia>0,
hi,=0 andv=0 otherwise.
Given the flexibility of automatic glyph function generatian implementation

of the spherical harmonics case described by Peeters &bals[possible with only
minor changes in our existing code. We used the real-valeédition as defined



10 Mario Hlawitschka, Younis Hijazi, Aaron Knoll, and Berkthmann

by Descoteaux et al. [3] using sine and cosinefoand ¢, and the radius as

input parameters of a modified spherical harmonic functhgain, we store the
parameter vectoa linearly in a texture similarly to the tensor parameter tiest
discussed before.

Optimization. The obvious drawback of this automatic code generationds th
missing manual optimization of code. There are many caticuia of powers that
are used in several places across the functions that couklibed. This is even par-
tially true across functions; the function evaluationlitseares major parts with the
gradient evaluation. For three reasons, we did not exploseadditional potential:
When looking at the generated compiled code, many of thetimiaations already
were performed by the compiler and we doubt there is much foomwptimization
at this point. Second, most of these optimizations requdditenal storage which
is limited on the graphics board and, therefore, may limé ttumber of threads
running on the GPU in parallel. Third, besides the additiom@amory requirement,
cross-function storage between the function evaluatiehthe gradient vector cal-
culation is not possible when interpolating the parametén¢rease precision (as
done in the bisection and in our linear interpolation apphda

Rendering. We implemented our approach using Nvidia’s Cg and OpenGL in
our existing visualization system. We trigger the fragmsrdder by rendering the
front-facing quadrilaterals of a bounding box around thyb| which is projected to
image space in the vertex shader and parameterized usagtmrdinates that help
with the calculation the ray parameters. Even though wedccaddl another early ray
termination step here by ignoring all pixels that do not lighim the projection of the
bounding sphere, we currently skip this step for simpliciiye sphere intersection
test is responsible for discarding abglibf the rays hitting the bounding box [12]
and, therefore, is a mandatory optimization. Based on tresgzhere intersection,
the ray is parameterized and the main algorithm starts asided in the preceding
paragraphs.

Color Coding. Whereas there are many different ways to color-code second-
order tensor information, to the best of our knowledge, éwtymajor color-coding
schemes are used for higher-order tensors: The frequesglgl color coding by
scalar value and the less frequently used color coding ctiom. Both schemes
fit seamlessly in our approach as the information requirecesobtained from the
surface position itself. Given a poipton the surface and the normalized vegqtor
pointing from the origin towardp,

¢ = colormap(||p|)
represents the first and
CcC= RGB(abS{ FTX)a abf{ 5y)7 abf{ FTZ))

the latter color coding scheme. Both can be implementediesftly in the frag-
ment shader, as the only required information, the hit pojiig already computed.
Examples of different color codings are shown in Figure 5.
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5 Robust intersection using interval and affine arithmetic

Even though the constant step size approach has proven ffidien¢ and we have
shown how to improve the rendering quality even further, mteoduce another
glyph rendering approach, relying on interval analysis,eieen more accurate re-
sults. This approach is based on Knoll et al.’s implicit aogf rendering [8, 9], which
can be used to render almost any implicit surface up to adesi@ned precision. The
algorithm is based on interval arithmetic (IA) and reducEuha arithmetic (RAA)
which are sketched below. We integrated Knoll's algorithrour software and may
use it as an option for the glyph rendering.

Interval arithmetic and reduced affine arithmetic. We first implemented an
IA and an RAA library in Cg and re-implemented the glyphs fiimes using these
two new types. Interval arithmetic was introduced by Modk@][as an approach
to bounding numerical rounding errors in floating point cartaion. |A is partic-
ularly well-known for its robust rejection test, espegidlbr ray tracing, but it can
suffer from overestimation problems. To address this isauew decades later,
affine arithmetic (AA) was developed by Comba & Stolfi [1]. Iraptice we might
want to truncate the number of elements composing an affime dwe to memory
consumption, in which case it is referred to as reduced affittemetic. Intuitively,
if IA approximates the convex hull of a functiohwith a bounding box, AA em-
ploys a piecewise first-order bounding polygon, such as #hnellelogram in Fig. 4.
For our class of glyph functions, RAA is up to five times fasten IA.

1A ZTopyY AA ; op ¥y
A < A
(@.7) @7 :
g Yuen <:, p E
7o ol '
(z.y) (T, y) —
z %o

T1€1

Fig. 4 Bounding forms resulting from the combination of two intr¢left) and affine (right)
guantities.

Rejection test.Moore’s fundamental theorem of interval arithmetic [1Gtes
that for any functionf defined by an arithmetical expression, the corresponding
interval evaluation functiof is aninclusion function of f: F(X) O f(X) = {f(x) |
x € X} whereX is an interval. Given an implicit functiori and an-dimensional
bounding boxB defined as a product af intervals, we have a very simple and
reliable rejection test for the bd& not intersecting the image of the functidén(in
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our case, the glyph surface)¢dF (B) = 0 ¢ f(B). This property can be used in ray
tracing or mesh extraction for identifying and skipping éymggions of space.

Comparison with our previous glyph rendering algorithm. IA/AA numeri-
cal approaches are more robust than point-sampling meffgogisusing the rule
of signs) but they require more computations and therefareslawer; they work
well when a function is generally non-Lipschitz (Knoll et {8]), as is the case at
singularities in our functions. However, our glyph funcisoare generally Lipschitz
outside these singularities, causing point-sampling@ggres to work well in prac-
tice. Note that brute-force methods like point-samplingkamest on the GPU [19].
When combined with a bisection scheme (with enough itemajion the GPU, IA-
based approaches provide high-quality glyphs at interactites [9] regardless sin-
gularities such as the one at the center; in this way IA hedpsrgy the singularity
problems discussed previously.

6 Results

We applied our algorithm to several real-world data set® filst data set shown
in Figure 5 is a 3« 3 x 3 x 3 stiffness tensor of order four generated by Alisa Nee-
man [11].

The second data set is a human brain image data set of a healtimteer and
was provided by the Max Planck Institute for Human Cogniéinel Brain Sciences,
Leipzig, Germany. It had been acquired using 60 gradiemictions, using three-
times averaging and 19 b0 images on a three Tesla Siemenscanoer. The input
was mapped to symmetric tensors using least-squares fiing turns out that the
standard resolution glyphs are shown is quite small andetbes, a lower-quality
rendering can be employed without notable difference idityuaf the final visual-
ization.

Performance.We tested our algorithm on a late 2008 Apple MacBook Pro 15”
laptop computer with the build-in Nvidia GeForce 9600M Ghgjnics board and
512MB of VRAM. There, using an OpenGL window size of 800x60Kep we
achieve a rendering typical speed of 15 to 20 frames per se&omen though this
is lower than the speed of standard tessellation-basedagmes, there is almost
no overhead when pre-processing the geometry. Therefoamging the glyph’s
location, e.g., by changing the plane in the data set or mimdjfa region of interest,
can be done at almost the same frame rates.

Memory Requirements. The memory use highly depends on the amount of
glyphs displayed, whether display lists are generated gramal the order of the
tensor information. The texture memory used has the saraasithe data in main
memory. Only when an additional padding is used, e.g., wiogrep-of-two textures
lead to increased performance, slightly more memory is .uadditional memory
on the GPU may be required to store the bounding box infoonatvhich could be
generated on the fly using geometry shaders.
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Fig. 5 A fourth-order stiffness tensor data set from material rsmés shown using RGB color

coding, a magnitude color coding ranging from black to regefbow, and a uniform blue color

coding. The data shows a simulated force applied to a briclowfplex material.
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Systenj#glyphdgtensor #triangles/time generatioffps rendering
L 258 | 4n | (res7) 1s 60s T
L 258 | 4n | (res 10) 3s 5951
L 258 | 4n | (res 20) 9s 5051
L 258 | 4n [ray tracing <1s 1851

Table 2 Number of glyphs, type of glyph (order and s=symmetric n=apmmetric), number of
triangles per glyph, time to create geometry, and frame irafeames per second (fps) of final
rendering. The computer system is a MacBook Pro 15" Laptap|aider.

7 Discussion

Due to the flexibility of the implicit function ray tracinghé presented approach
can be used to display different kinds of glyphs: Using syinimepositive-definite
second-order tensors as input, the output is the Reyndligthd11, 6]. Using the
function
1 2 2 1 2 1

)= ot e, ™ m g ™ e,
leads to a representation of the ellipsoidal glyph, whiahloaselected as an option
in our implementation. Using the functions provided®ygarslan and Mareci [13]
we could even render this glyph directly from higher-ordatad However, as there
is an explicit ray-ellipsoid intersection algorithm, thésnot recommended. Even
though the superquadric tensor glyph [7] can be represdayté@uiplicit functions,
currently, it does not fit in this scheme as the function isllam the relation of two
parameters (cf. [7] for details.) Even though this couldrhplemented as well, we
advice to use more efficient implementations as presentétldwitschka et al. [5],
for example.

In contrast to displaying geometry, which is usually copthe GPU in smaller
packets, our method relies on most data residing in GPU mermbis implies that
the GPU’s main memory and the order of the glyph limits the benof glyphs that
can be displayed in one rendering pass. This can be circuet/éy splitting the
data set into smaller subsets that are rendered succgssivel

Future research will target optimizations to reduce the lpemof glyphs that
are rendered even though they are occluded by other glypferied shading is
not suitable in our case because most of the time is used doadtual ray-glyph
intersection, which has do be done anyway. In addition, rdefleshading requires
additional data lookups and, when a small number of glypbsdtuded, this would
slow down the system tremendously.
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