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Abstract. We apply Knoll et al.’s algorithm [9] to interactively ray-cast construc-
tive solid geometry (CSG) objects of arbitrary primitives represented as implicit
functions. Whereas modeling globally with implicit surfaces suffers from a lack
of control, implicits are well-suited for arbitrary primitives and can be combined
through various operations. The conventional way to represent union and inter-
section with interval arithmetic (IA) is simply using min and max but other oper-
ations such as the product of two forms can be useful in modeling joints between
multiple objects.

Typical primitives are objects of simple shape, e.g. cubes, cylinders, spheres, etc.
Our method handles arbitrary primitives, e.g. superquadrics or non-algebraic im-
plicits. Subdivision and interval arithmetic guarantee robustness whereas GPU
ray casting allows for fast and aesthetic rendering. Indeed, ray casting paral-
lelizes efficiently and trivially and thus takes advantage of the continuous in-
creasing computational power of hardware (CPUs and GPUs); moreover it lends
itself to multi-bounce effects, such as shadows and transparency, which help for
the visualization of complicated objects. With our system, we are able to render
multi-material CSG trees of implicits robustly, in interactive time and with good
visual quality.

1 Introduction

Constructive solid geometry objects involving implicit surfaces can be an effective ge-
ometric representation. Arbitrary-form implicit surfaces can be used to model a wide
variety of shapes, as well as perform interpolation and smoothing filters of multiple
varieties of data. Constructive solid geometry allows for generalized trimming of these
surfaces. Moreover, CSG implicits make for a compact and flexible model, in which the
CSG object itself can be represented simply by implicit functions consisting of min and
max operators.

Interactive, pixel-exact rendering of implicits poses a challenge to extraction and
rasterization methods. Ray casting methods employing interval arithmetic have conven-
tionally been among the most robust solutions for rendering general-form implicit sur-
faces, but also among the slowest. However, recent SIMD techniques for the CPU [10]
and GPU [9] have shown that IA bisection can be a practical method for interactive



rendering. The contribution of this paper is to show how, in addition to conventional
closed-form implicit functions, interval arithmetic methods can be employed in effi-
ciently rendering constructive solid geometry.

2 Related work

In 1982, Roth [17] presented the first algorithm for directly rendering CSG without
precomputing the combined boundary representations. His algorithm used the CSG op-
erators to classify the intersections found by ray casting. Goldfeather et al. [2] showed
in 1986 how an initial restructuring of the tree could allow CSG to be directly rendered
using Z-buffer rasterization. In 1992 Duff [1] demonstrated the use of IA and subdi-
vision for rendering CSG implicits. Nielson [14] presented applications of implicits
and CSG in the context of scattered data interpolation. Kirsch et al. [8] provided an
enhancement of Goldfeather’s algorithm. Giinter et al. [3] performed CSG modeling in
real-time while Romeiro et al. [16] focused on large CSG models. Not directly related to
CSG, the community Hyperfun [6] builds models using the F-rep representation which
includes the CSG one.

3 Background

3.1 Ray casting implicits: a root-finding problem

An implicit surface S in 3D is defined as the set of solutions of an equation
fxy,2)=0 ¢))

where f: Q C R® — R. In ray casting, we seek the intersection of a ray

p(t) =o+td 2)

with this surface S. By simple substitution of these position coordinates, we derive a
unidimensional expression

ﬁ(t) :f(0x+tdx;0y+tdy70z+tdz) (3)

and solve where f;(¢) = 0 for the smallest ¢ > 0. Therefore ray casting a 3D implicit
function reduces to a 1D root-finding problem.

Approaches for arbitrary implicits include:

e Closed-form solutions, which although fast, may suffer from numerical problems
in 32-bit float arithmetic.

¢ Point-sampling [4] evaluates the function at interval endpoints and exploits the
rule of signs. This is typically fast, but not generally robust (see Fig. 1(a)).

e Sturm sequences [18] break the ray segment into monotonic intervals by recur-
sively bracketing zeros of all derivatives. This is slow and requires differentiability.



o Piecewise algebraic surfaces [11], though efficient, are limited to low-degree al-
gebraics when relying on an analytical root-finding scheme.

Lipschitz methods [7] which rely on bounding Lipschitz constants to determine
where root-finding methods will converge. This works on a subclass of algebraics.
Distance functions [5] require derivation of a signed distance function from an
arbitrary point in space to the surface, and also requires Lipschitz.

Inclusion algebra methods which evaluate an inclusion extension of the implicit
(see Fig. 1(b)), and use that for spatial rejection or determining monotonicity. These
work for any computable function, but require implementation of an inclusion arith-
metic library.

This paper will focus on the latter approach, as it is robust and general, and requires
nothing more than a function definition. Historically, it has also been the slowest, pri-
marily due to inefficient implementation and impractical numerical assumptions.
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Fig. 1. The inclusion property. (a) Left: When a function f is non-monotonic on an interval /,
evaluating the lower and upper components of a domain interval is insufficient to determine a
convex hull over the range. (b) Right: This is not the case with an inclusion extension F', which,
when evaluated, will enclose all minima and maxima of the function within that interval. Ideally,
F(I) is equal or close to the bounds of the convex hull, CH(1).

3.2 CSG and implicits

The three basic operators in constructive solid geometry are the boolean union, inter-
section and difference. Considering two solid objects A and B respectively represented
by the implicit functions f4 and fp and with the following convention: f < 0 inside the
solid and f > O outside the solid (here f = O defines the solid), we can easily express
those operations in terms of implicit functions. Indeed the union between A and B is
defined by

AUB = min(fA,fB). )

The intersection between A and B is defined by

ANB = max(fA,fB). (5)



Finally the difference between A and B is defined by
A\B = max(fa,—[p)- (6)

Thus the construction of a complex CSG object using n boolean operators reduces
to the expression of a single implicit function formed by min, max, and the implicit
primitives.

3.3 Interval Arithmetic

Interval arithmetic (IA) was introduced by Moore [13] as an approach to bounding
numerical rounding errors in floating point computation. The same way classical arith-
metic operates on real numbers, interval arithmetic defines a set of operations on in-
tervals. We denote an interval as X = [x,X], and the base arithmetic operations are as
follows:

X+y=[x+yx+7], (7
X—IZ[X—Y,X—XL (8)
X Xy = [min(xy,xy,Xy,Xy), max(xy, xy,Xy,Xy)|. )

Moore’s fundamental theorem of interval arithmetic [13] states that for any function
f defined by an arithmetical expression, the corresponding interval evaluation function
F is an inclusion function of f (where F is the interval extension of f):

F@2f@) = {f(x) | xex} (10)
The inclusion property provides a robust rejection test, i.e.
0¢FE)=0¢ (). (an

Inclusion operations are powerful in that they are composable: if each component
operator preserves the inclusion property, then arbitrary compositions of these operators
will as well. As a result, in practice any computable function may be expressed as
inclusion arithmetic [12]. For example, the two IA functions we are mostly interested
in for performing CSG are min and max (see Algorithm 1).

3.4 Ray Casting CSG implicits with TA

The inclusion property extends to multivariate implicits as well, making it suitable for
a spatial rejection test in ray casting. Moreover, by substituting the inclusion exten-
sion of the ray equation (Equation 2) into the implicit extension CSG(x,y,z), we have
a univariate extension CSG;(X,Y,Z). To check whether any given ray interval 7 = [t,7]
possibly contains our surface, we simply check if 0 € CSG, (7). As a result, once the in-
clusion library is implemented, any function composed of its operators can be rendered
robustly.



Algorithm 1 min and max in IA with Cg.
typedef float2 interval;

interval imin(interval a, interval b)
{
return interval(min(a.x,b.x),min(a.y,b.y));

}

interval imax(interval a, interval b)
{
return interval(max(a.x,b.x),max(a.y,b.y));

}

4 Ray Casting CSG implicits with IA on the GPU: results and
discussion

Previously we showed how a complex CSG object reduces to a single implicit function.
To render these objects efficiently, we turn to the GPU implicit IA bisection algorithm
of Knoll et al. [9]. This method employs simple floating-point modulus to effect a stack-
less recursion method, bisecting along the ray and computing the interval extension of
the implicit function along each bisected segment. The following CSG examples are ob-
tained using this technique with relatively small € (in the order of 1e — 5 ). Indeed, when
dealing with multiple implicits, a precision of le — 3 (typically sufficient for non-CSG
objects) is too large for guaranteeing good visual quality, especially around the inter-
sections areas between the primitives (see Section 4.6). All benchmarks are measured
in frames per second on an NVIDIA 8800 GTX, at 1024x1024 frame buffer resolution.
The equations of the CSG primitives are provided in Table 1 of the Appendix.

4.1 Basic CSG operations

Figure 2 shows a simple example of implicit CSG functionality, using a cube (modeled
as a high-order superquadric) and a sphere. We have added transparency in some figures
for a better understanding of the resulting object.

4.2 More difficult examples

We can handle implicits defined by arbitrary complicated functions in the same way as
simpler forms. Figure 3 demonstrates two more difficult functions: the citrus and the
heart. CSG requires that its components be closed manifolds (i.e. without boundary); in
other words their combination defines a solid object.

Figure 7 (in the Appendix) demonstrates a panel of CSG objects involving several
primitives such as the tangle, the decocube, superquadrics, ellipsoids, etc.
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Fig. 2. Toy examples. First row: union, intersection and difference of a cube and a sphere (20,
160, and 28 fps). Second row: union, intersection and difference of three cylinders (91, 84, 127
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Fig. 3. CSG of citrus and heart.Left: union (50 fps). Right: intersection (48 fps).

4.3 Arbitrary blending and dynamic CSG

Arbitrary blending: Implicits inherently support blending operations between mul-
tiple basis functions. Such forms need only be expressed as an arbitrary 4D implicit
f(x,y,z,w), where w varies over time. As ray-casting is performed purely on-the-fly
with no precomputation, we have great flexibility in dynamically rendering these func-



tions. Useful morphing methods include product implicits, linear interpolation between
surfaces, the hyperbolic and super-elliptic blends; and gaussian or sigmoid blending,
shown in Fig. 8 (see Appendix) between the decocube and the sphere. As the blending
scheme is also represented as an implicit function in our method, we are able to con-
struct any blend we want.

Dynamic CSG: By setting variables in the CSG objects instead of fixed values, e.g. for
a radius, we are able to model time-varying CSG operations. Figure 4 shows a dynamic
CSG object: the union of a cube and a radius-varying sphere.
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Fig. 4. Dynamic CSG: union of a cube and a radius-varying sphere, running at 48-117 fps.

4.4 Multi-material CSG

In addition to using the IA minimum and maximum operators to directly compute the
interval extensions of CSG objects, we can evaluate the extensions separately and em-
ploy boolean arithmetic to determine which surfaces are intersected by a given ray in-
terval. In addition, we can specify level-set conditions on the individual implicit compo-
nents, similarly to the CSG methods described in F-rep literature [15]. Given an implicit
f(®) and a condition g(®), inclusion arithmetic allows us to verify g, = {g(®) > 0}
or g = {g(®) < 0}, given the interval form of the inclusion extension G over an in-
terval domain @ C Q. Then, one can render f N g4 or fNg_ for arbitrary level sets
of g. Boolean evaluation of 3-manifold level sets allows us to perform many of the
same CSG effects, and at the same time determine which component object is inter-
sected. This allows us to shade components differently as desired (Fig. 5). In addition,
increased algorithmic sensitivity near CSG joints due to wider bounds (see Section 4.6)
is not an issue using this method.



Fig. 5. CSG objects using level-set conditions. Left: icos.csg (13 fps). Right: sesc.csg (9 fps).

4.5 Ray casting effects

As our algorithm relies purely on ray-casting, we can easily support per-pixel lighting
models and multi-bounce effects, many of which would be difficult with rasterization
(Fig. 6). We briefly describe those modalities.

Transparency: Transparency is useful in visualizing implicits (see Fig. 2 and 6(a)),
particularly functions with odd connectivity or disjoint features. It costs around 3 as
much as one primary ray per pixel.

Reflections: Reflections are a good example of how built-in features of rasterization
hardware can be seamlessly combined with the implicit ray casting system. Looking up
a single reflected value from a cubic environment map invokes no performance penalty.
Tracing multiple reflection rays in an iterative loop is not significantly more expensive
(20— 30%), and yields clearly superior results (see Fig. 6(a)(d)).

Gradient shading: Gradient shading is one example of features that can easily be
extracted from a ray-casted object; it can help understand its topology. The gradient
is computed approximately using central differences. Figure 6(b) shows the gradient
shading on an intermediate blend between a decocube and a sphere.

Shadows: Shadows often entail around 20 — 50% performance penalty. One can
equally use a coarser precision for casting shadow rays than primary rays. An example
of shadows is illustrated in Fig. 6(c).

4.6 Algorithmic Sensitivity

Much efficiency of the IA bisection technique is owed to the fact that fairly low sen-
sitivity is required for accurate rendering. For many implicit forms without CSG, a
termination criterion such as € = 2!! & 0.0005 is sufficient for accurate rendering.



However, in the case of CSG objects, the use of A minimum and maximum operators
cause local bounds to expand, particularly near joints. As a result, a finer discretization
is required by our rendering technique to reconstruct the correct surface. Generally, this
requirement is not significantly greater (€ = 27'¢ ~ le — 5 typically suffices); however
this constraint is view-dependent as well as dependent on the form of the implicit it-
self. Nonetheless, we find IA ray bisection is less sensitive to CSG joints than to fine
features in the implicit itself (for example the asymptotic features of the Steiner surface
shown in [9]). Moreover, despite the moderately finer € required to render CSG objects,
this sensitivity has little impact on the frame rate (perhaps 10%-20%) compared to the
costs of additional IA computation. We note that greater algorithmic sensitivity is not
an issue for multi-material objects computed using the boolean evaluation method of
Section 4.4.

Fig. 6. Shading Effects. Top left to bottom right: (a) reflections and transparency on multiple-
unions CSG object (11 fps); (b) gradient shading on a decocube/sphere blending (41 fps); (c)
shadows on 4-Bretzel U torus (30 fps); and (d) tangle U torus with up to six reflection rays (11.5
fps).



5 Conclusions and Future Work

We have demonstrated a system which can render multi-material CSG objects of im-
plicits robustly, in interactive time and with good visual quality. Moreover we can add
multi-bounce effects, such as shadows and transparency, which help for the understand-
ing of complicated objects. Our system is general: it handles arbitrary primitives; robust:
it relies on robust techniques; and efficient: it exploits recent GPU’s capabilities.

There are several directions for future work. One desirable direction would be to
develop a CSG language similar to [6] and adapt the existing GUI to be able to model
large multi-material CSG objects. Extending the ray casting system with a bounding
volume hierarchy traversal would allow for a scene graph of piecewise implicit primi-
tives for use in modeling or visualization, and would accelerate rendering. Also com-
paring interval and (reduced) affine arithmetic as in [9] for the task of CSG modeling
may lead to interesting observations. Another direction would be to work on the interac-
tion paradigm of the system so that the user could intuitively build primitives, including
free-form surfaces using control points. Using this system to prototype trimmed mov-
ing least squares implicits, for example, would be an interesting application. Finally, a
virtual reality environment would be perfectly well-suited for such a direct-interaction
CSG modeling system.
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A Equations of the implicit primitives

sphere

2P

pseudo-cube

X300 +y500 =+ Z500 — 2

cylinder 2421
torus
(1— /(2 +y2)*+22—.125
4-bretzel
15 (2(1.21 =x%)2(3.8 —x2)3 — 10y%)? + 607> — 2
tangle
g 4yt —5y2 4t 52+ 11.8
decocube
(2 +52 —0.82)2 + (22 = ) ((4* +2° —0.8%)*+
(=12 (2 +x2—-0.81)2+ (32— 1)) —0.02

superquadric

petd x200 4 (.5y4 + .524)4 —

Ilipsoid
crpsel 2524252421
heart
ca 22 432+ 2~ 1P — (12 42
citrus
¥ +22 —4y3(1 - 5y)3

trigonometric

£ (1—+/(x2+y2))% +sin(z)* —.125
1008.¢88 ic(x,y,z) =2 — (cos(x+ Ty) +cos(x — Ty) +cos(y + 72)+

cos(y— 1z) +cos(z— Tx) +cos(z+ Tx)), T= H'T\@
CSG condition (on inclusion intervals):
(0 € ic) and spherejyper < 0 and sphereyyser > 0

SESC.Csg

CSG of superellipsoid (se) and sinusoid convolution (sc)
se(x,y,2) = x84+ 5 (y* +2%)* - 20

sc(x,y,z) = xy+cos(z) + 1.741 sin(2x) sin(z) cos(y) + sin(2y) sin(x) cos(z)

+ sin(2z) sin(y) cos(x) — cos(2x) cos(2y)
+cos(2y) cos(2z) 4 cos(2z) cos(2x) +0.05
CSG condition (on inclusion intervals):

((sc > 0) and (0 € se)) or ((se < 0) and (0 € sc))

multiple-unions csg

min(min(min(mi (min(x3%0 4390 4 7500 _ 25,

(x —1) +(y—1)? ( —1)2-2 ((x2+y2—o.82)2+(z2—1)2)
((*+22-0.8%)* + ( 1)2)(( x*—0.82)%+ (y2 —1)?) —0.02),
(222 +y?*+2° 1) (~1x2+y2)z3),

(1= (2 +y2)* +22—.125), (x+ 12+ v+ 12+ (z+1)* = 1)

Table 1. Formulas of the CSG primitives.




B More examples of CSG implicits
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Fig.7. CSG with arbitrary primitives. First row: tangle U sphere (12.7 fps), decocube U heart
(22 fps) and trigonometric function U sphere (16 fps). Second row: superquadric U ellipsoid (41
fps), superquadric \ ellipsoid (60 fps) and multiple-unions CSG object (21 fps).

Fig. 8. 4D sigmoid blending of the decocube and a sphere running at 33 — 50 fps.



