
Volume xx (200y), Number z, pp. 1–14

Fast Ray Tracing of Arbitrary Implicit Surfaces with
Interval and Affine Arithmetic

Aaron Knoll1,3 Younis Hijazi2,3 Andrew Kensler1 Mathias Schott1 Charles Hansen1,3 Hans Hagen2,3

1SCI Institute, University of Utah 2University of Kaiserslautern 3International Research Training Group (IRTG 1131)

Abstract
Existing techniques for rendering arbitrary-form implicit surfaces are limited, either in performance, correctness
or flexibility. Ray tracing algorithms employing interval arithmetic (IA) or affine arithmetic (AA) for root-finding
are robust and general in the class of surfaces they support, but traditionally slow. Nonetheless, implemented
efficiently using a stack-driven iterative algorithm and SIMD vector instructions, these methods can achieve in-
teractive performance for common algebraic surfaces on the CPU. A similar algorithm can also be implemented
stacklessly, allowing for efficient ray tracing on the GPU. This paper presents these algorithms, as well as an
inclusion-preserving reduced affine arithmetic (RAA) for faster ray-surface intersection. Shader metaprogram-
ming allows for immediate and automatic generation of symbolic expressions and their interval or affine exten-
sions. Moreover, we are able to render even complex forms robustly, in real-time at high resolution.

Categories and Subject Descriptors (according to ACM CCS): I.3.1, I.3.5, I.3.7 [Computer Graphics]: Graphics
processors; Curve, surface, solid and object representations; Raytracing

Figure 1: An animated sinusoid-kernel surface. Ray-traced
directly on fragment units, no new geometry is introduced
into the rasterization pipeline. IA/AA methods ensure robust
rendering of any inclusion-computable implicit.

1. Introduction
To render implicit surfaces, one is principally given two
choices: sampling the implicit and extracting proxy geom-
etry such as a mesh, volume or point cloud; or ray trac-
ing the implicit directly. Though the former methods are
often preferred due to the speed of rasterizing proxy ge-
ometries, extraction methods are view-independent and of-
ten scale poorly. Though computationally expensive, ray
tracing methods parallelize efficiently and trivially. Mod-
ern graphics hardware offers enormous parallel computa-
tional power, at the cost of poor efficiency under algorithms
with branching and irregular memory access. GPU-based
ray tracing [PBMH02,GPSS07] is increasingly common, but
often algorithmically inefficient.

Ray tracing methods for implicit surfaces have histori-
cally sacrificed either speed, correctness or flexibility. Piece-
wise algebraic implicits have been rendered in real-time on
the GPU using Bezier decompositions [LB06], but approxi-
mating methods do not render arbitrary expressions directly,
nor always robustly. Self-validated arithmetic methods, such
as interval arithmetic (IA) or affine arithmetic (AA), are
extremely general in that theoretically any composition of
Lipschitz-boundable functions can be expressed as an in-
clusion extension and solved robustly. However, these ap-
proaches have historically been among the slowest.

submitted to COMPUTER GRAPHICS Forum (7/2008).

2 A. Knoll et al. / Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic

This paper discusses optimization of interval and affine
arithmetic methods to allow for interactive ray tracing of
arbitrary-form implicit surfaces on the CPU and GPU. Knoll
et al. [KHW∗07b] proposed an optimized coherent inter-
section algorithm using SSE vector instructions, achieving
interactive ray tracing for most simple surfaces on a dual-
core CPU. We first discuss this SIMD CPU algorithm (Sec-
tion 4), and then extend it with two new contributions: an ef-
ficient implementation of a reduced affine arithmetic (RAA)
that correctly preserves the inclusion property (Section 5.3);
and a stackless interval bisection algorithm for ray tracing
implicits on the GPU (Section 5.5). Together, these enable
real-time rendering of complex implicit functions. Shader
metaprogramming allows users to design implicit forms and
procedural geometry flexibly and dynamically, with full sup-
port for dynamic 4D surfaces. Ray tracing allows multi-
bounce effects to be computed interactively without image-
space approximations, enabling effects such as transparency
and shadows which further assist visualization.

2. Related work

2.1. Proxy Geometry Methods

Due to the popularity of GPU rasterization, the most com-
mon approach to rendering implicits has been extraction
of a mesh or proxy geometry. Application of marching
cubes [WMW86] or Bloomenthal polygonization [Blo94]
can generate meshes interactively, but will entirely omit
features smaller than the static cell width. More sophisti-
cated methods deliver better results, at the cost of interac-
tivity. Paiva et al. [PLLdF06] detail a robust algorithm based
on dual marching cubes, using interval arithmetic in con-
junction with geometric oracles. Varadhan et al. [VKZM06]
employ dual contouring and IA to decompose the implicit
into patches, and compute a homeomorphic triangulation
for each patch. These methods exploit inclusion arithmetic
to generate desirable meshes that preserve topology within
geometric constraints. However, they generally compute of-
fline, and do not scale trivially. Moreover, each mesh is a
view-independent reconstruction.

Non-polygonal proxy geometry is also practical. Dynamic
particle sampling methods for implicits have been demon-
strated by Witkin & Heckbert [WH94] and extended by
Meyer et al. [MGW05]. Voxelization is also a valid approach
to representing implicit forms as scalar fields [SK01]. Ren-
dering of recursively voxelized object space with interval
arithmetic was first proposed by [WQ80]. Direct volume
rendering, or other GPU volume raycasting methods, can
also be viable ways of visualizing isosurfaces [HSS∗05].

2.2. Ray Tracing Implicit Surfaces
Hanrahan [Han83] proposed a general but non-robust point-
sampling algorithm using Descartes’ rule of signs to isolate
roots. Van Wijk [vW85] implemented a recursive root brack-
eting algorithm using Sturm sequences, suitable for differen-

tiable algebraics. Kalra & Barr [KB89] devised a method of
rendering a subclass of algebraic surfaces with known Lip-
schitz bounds. Hart [Har96] proposed a robust method for
ray tracing algebraics by defining signed distance functions
from an arbitrary point to the surface. More recently, Loop
& Blinn [LB06] implemented an extremely fast GPU ray
caster approximating implicit forms with piecewise Bern-
stein polynomials. [RVdF06] proposed a hybrid GPU/CPU
technique for casting rays through constructive solid geom-
etry (CSG) trees of implicits. [dTLP07] demonstrated GPU
ray casting of cubics and quartics using standard iterative
numerical methods. [FP08] employ rule-of-signs interval
methods in ray tracing generalized implicit (FRep) surfaces
on the GPU.

Ray Tracing with Interval and Affine Arithmetic:
Toth [Tot85] first applied interval arithmetic to ray trac-
ing parametric surfaces, in determining an initial convex
bound before solving a nonlinear system. Mitchell [Mit90]
ray traced implicits using recursive IA bisection to isolate
monotonic ray intervals, in conjunction with standard bisec-
tion as a root refinement method. Heidrich & Seidel [HS98]
employed affine arithmetic in rendering parametric displace-
ment surfaces. De Cusatis Junior et al. [dCJdFG99] used
standard affine arithmetic in conjunction with recursive bi-
section. Sanjuan-Estrada et al. [SECG03] compared perfor-
mance of two hybrid interval methods with Interval New-
ton and Sturm solvers. Florez et al. [FSSV06] proposed a
ray tracer that antialiases surfaces by adaptive sampling dur-
ing interval subdivision. Gamito and Maddock [GM07] pro-
posed reduced affine arithmetic for ray casting specific im-
plicit displacement surfaces formulated with blended noise
functions, but their AA implementation fails to preserve in-
clusion in the general case. Knoll et al. [KHW∗07b] imple-
mented a generally interactive interval bisection algorithm
for rendering arbitrary implicit forms on the CPU. Perfor-
mance was achieved though SSE instruction-level optimiza-
tion and coherent traversal methods; and exploiting the fact
that numerically precise roots are not required for visual ac-
curacy.

3. Background

3.1. Ray Tracing Implicit Surfaces

A surface S in implicit form in 3D is the set of solutions of
an equation

f (x,y,z) = 0 (1)

where f : Ω⊆ R3 → R. In ray tracing, we seek the intersec-
tion of a ray

~p(t) =~o+ t~d (2)

with this surface S. By simple substitution of these position
coordinates, we derive a unidimensional expression

ft(t) = f (ox + tdx,oy + tdy,oz + tdz) (3)

and solve where ft(t) = 0 for the smallest t > 0.

submitted to COMPUTER GRAPHICS Forum (7/2008).

A. Knoll et al. / Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic 3

(a)

f(h)

f(l)

f(v) v

hl

I=[l,h]

x

f(x)

f(I)

(b)

f(v) v

hl

I=[l,h]

x

f(x)
CH(I)

F(I)

Figure 2: The inclusion property. (a) When a function f is
non-monotonic on an interval I, evaluating the lower and
upper components of a domain interval is insufficient to de-
termine a convex hull over the range. This is not the case
with an inclusion extension F (b), which encloses all min-
ima and maxima of the function within that interval. Ideally,
F(I) closely envelopes the actual convex hull, CH(I), en-
closing the upper and lower Lipschitz bounds of f .

In ray tracing, all geometric primitives are at some level
defined implicitly, and the problem is essentially one of solv-
ing for roots. Simple implicits such as a plane or a sphere
have closed-form solutions that can be solved trivially. More
complicated surfaces without a closed-form solution require
iterative numerical methods. However, easy methods such
as Newton-Raphson, and even “globally-convergent” meth-
ods such as regula falsi, only work on ray intervals where
f is monotonic. As shown in Fig. 2, “point sampling” us-
ing the rule of signs (e.g. [Han83]) fails as a robust rejection
test on non-monotonic intervals. While many methods exist
for isolating monotonic regions or approximating the solu-
tion, inclusion methods using interval or affine arithmetic are
among the most robust and general. Historically, they have
also been among the slowest, due to inefficient implementa-
tion and impractical numerical assumptions.

3.2. Interval Arithmetic and Inclusion

Interval arithmetic (IA) was introduced by Moore [Moo66]
as an approach to bounding numerical rounding errors in
floating point computation. The same way classical arith-
metic operates on real numbers, interval arithmetic defines
a set of operations on intervals. We denote an interval as
x = [x,x], and the base arithmetic operations are as follows:

x+ y = [x+ y,x+ y], x− y = [x− y,x− y] (4)

x× y = [min(xy,xy,xy,xy),max(xy,xy,xy,xy)] (5)

Moore’s fundamental theorem of interval arith-
metic [Moo66] states that for any function f defined
by an arithmetical expression, the corresponding interval
evaluation function F is an inclusion function of f :

F(x)⊇ f (x) = { f (x) | x ∈ x} (6)

where F is the interval extension of f .

The inclusion property provides a robust rejection test
that will definitely state whether an interval x possibly con-
tains a zero or other value. Inclusion operations are power-
ful in that they are composable: if each component opera-
tor preserves the inclusion property, then arbitrary composi-
tions of these operators will as well. As a result, in prac-
tice any computable function may be expressed as inclu-
sion arithmetic [Mit90]. Some interval operations are ill-
defined, yielding empty-set or infinite-width results. How-
ever, these are easily handled in a similar fashion as standard
real-number arithmetic. A more difficult problem is convert-
ing existing efficient real-number implementations of tran-
scendental functions to inclusion routines, as opposed to im-
plementing an IA version from base operators. This requires
ingenuity, but is usually possible and far faster than imple-
menting an extension approximation from scratch.

The IA extension is often referred to as the natural inclu-
sion function, but it is neither the only mechanism for defin-
ing an inclusion algebra, nor always the best. Particularly in
the case of multiplication, it greatly overestimates the actual
bounds of the range. To overcome this, it is necessary to rep-
resent intervals with higher-order approximations.

3.3. Affine Arithmetic

Affine arithmetic (AA) was developed by Comba &
Stolfi [CS93] to address the bound overestimation problem
of IA. Intuitively, if IA approximates the convex hull of f
with a bounding box, AA employs a piecewise first-order
bounding polygon, such as the parallelogram in Fig. 3.

IA AA

Figure 3: Bounding forms resulting from the combination
of two interval (left) and affine (right) quantities.

An affine quantity x̂ takes the form:

x̂ = x0 +
n

∑
i=1

xiei (7)

submitted to COMPUTER GRAPHICS Forum (7/2008).

4 A. Knoll et al. / Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic

where the xi,∀i ≥ 1 are the partial deviations of x̂, and ei ∈
[−1,1] are the error symbols. An affine form is created from
an interval as follows:

x0 = (x+ x)/2, x1 = (x− x)/2, xi = 0, i > 1 (8)

and can equally be converted into an interval

x = [x0− rad(x̂),x0 + rad(x̂)] (9)

where the radius of the affine form is given as:

rad(x̂) =
n

∑
i=1
|xi| (10)

Affine operations in AA, where c ∈ R, are as follows:

c× x̂ = cx0 + c
n

∑
i=1

xiei

c± x̂ = (c± x0)+
n

∑
i=1

xiei (11)

x̂± ŷ = (x0± y0)±
n

∑
i=1

(xi± yi)ei

However, non-affine operations in AA cause an additional
error symbol ez to be introduced. This is the case in multi-
plication between two affine forms,

x̂× ŷ = x0y0 +
n

∑
i=1

(xiy0 + yix0)ei + rad(x̂)rad(ŷ)ez (12)

Other operations in AA, such as square root and transcen-
dentals, approximate the range of the IA operation using a
regression curve – a slope bounding a minimum and maxi-
mum estimate of the range. These operations are also non-
affine, and require a new error symbol.

3.3.1. Condensation and Reduced Affine Arithmetic

The chief improvement in AA comes from maintaining cor-
related error symbols as orthogonal entities. This effectively
allows error among correlated symbols to diminish, as op-
posed to always increasing monotonically in IA. Unfortu-
nately, as the number of non-affine operations increases, the
number of non-correlated error symbols increases as well.
Despite computing tighter bounds, standard AA ultimately
is inefficient in both computational and memory demands.
To remedy this, AA implementations employ condensation.
If x̂ has n symbols, then it can be condensed into an affine
entity ŷ with m < n symbols as follows [CS93]:

yi = xi ∀i = 0, ...,m−1

ym =
n

∑
i=m

|xi| (13)

While ŷ indeed bounds x̂, condensation destroys all corre-
lations pertaining to em. As a result, after condensation in-
volving a symbol em, only positive-definite affine operations
involving that symbol may be applied in order to preserve
inclusion. Gamito & Maddock [GM07] employ a three-term

reduced affine arithmetic that performs such condensation
for every non-affine operation. Though symbol correlation
is destroyed, they construct their specific extension evalua-
tion to preserve inclusion. Nonetheless, condensation is ill-
suited for arbitrary expressions, which may perform affine
or non-affine operations in any order.

3.3.2. Inclusion-Preserving Reduced Affine Arithmetic

In our own search for a correlation-preserving reduced affine
arithmetic, we adopted a formulation equivalent to that pro-
posed by Messine [Mes02]. In his AF1 formulation, conden-
sation of an entity with n+1 total symbols,

x̂ = x0 +
n

∑
i=1

xiei + xn+1en+1 (14)

entails arithmetic operations as follows:

c± x̂ = (c± x0)+
n

∑
i=1

xiei + |xn+1|en+1

x̂± ŷ = (x0± y0)+
n

∑
i=1

(xi± yi)ei +(xn+1 + yn+1)en+1

c× x̂ = (cx0)+
n

∑
i=1

cxiei + |cxn+1|en+1 (15)

x̂× ŷ = (x0y0)+
n

∑
i=1

(xoyi + y0xi)ei+

(|x0yn+1|+ |y0xn+1|+ rad(x̂)rad(ŷ))en+1

Here, affine operations enforce positive-definite correla-
tions between error symbols. While this does not compute
as tight bounds as conventional AA, it is suitable for fixed-
size vector implementation, and is in most cases a significant
improvement over IA. We therefore use this as our formula-
tion for reduced affine arithmetic (RAA).

3.4. Ray Tracing Implicits with Inclusion Arithmetic

The inclusion property extends to multivariate implicits as
well, making it suitable for a spatial rejection test in ray
tracing. Moreover, by substituting the inclusion extension
of the ray equation (Equation 2) into the implicit exten-
sion F(x,y,z), we have a univariate extension Ft(X ,Y,Z).
To check whether any given ray interval t = [t, t] possibly
contains our surface, we simply check if 0 ∈ Ft(t). As a re-
sult, once the inclusion library is implemented, any func-
tion composed of its operators can be rendered robustly.
To pick domain intervals on which to evaluate the exten-
sion, one has a wide choice of interval numerical meth-
ods. The simplest option is pure recursive bisection of in-
tervals, examined in the order of the ray direction [Mit90,
dCJdFG99, GM07, KHW∗07b]. Alternatives involve quasi-
Newton methods and variants of the Interval Newton algo-
rithm [CHMS00, SECG03] that rely on the inclusion exten-
sion of the function gradient.

submitted to COMPUTER GRAPHICS Forum (7/2008).

A. Knoll et al. / Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic 5

4. SIMD CPU Ray Tracing Algorithm

The SIMD CPU implementation was originally presented
in [KHW∗07b], and was motivated by the relatively high
performance of coherent ray tracing algorithms involving
grids [WIK∗06] or octrees [KHW07a], compared to exist-
ing work in rendering algebraic surfaces. The approach of
this system is to treat interval bisection as an iterative spa-
tial traversal algorithm, exploiting ray coherence and SSE
vector instructions to achieve speedup over conventional re-
cursive single-ray algorithms. As shown in Section 6.1.3,
brute-force bisection outperforms more sophisticated quasi-
Newton methods, particularly for the purpose of rendering
implicits which requires relatively low numerical precision.
Ultimately, in Section ??, we find that strategies for max-
imizing SIMD coherence and performance differ on CPU
and GPU platforms.

4.1. SIMD Interval Arithmetic

The largest cost in rendering general-form implicits is in
evaluating the interval extension. The first optimization is
therefore to write an interval arithmetic library that exploits
SIMD vector instructions. Although an interval is itself a 2-
vector, it is most effective to operate on a vector of intervals.
For example, given the four-float SSE type __m128:

Algorithm 1 SIMD Interval Arithmetic.
struct interval4{

__m128 lo, hi;
};

interval4 isub4(interval4 a, interval4 b){
interval4 i;
i.lo = _mm_sub_ps(a.lo, b.hi);
i.hi = _mm_sub_ps(a.hi, b.lo);
return i;

}

This computes an interval extension F(X ,Y,Z) composed
of these operators for four interval values, permitting simul-
taneous evaluation of the extension on four rays.

4.2. Coherent Traversal

As interval evaluation is performed on four values at once
in SIMD, the bisection algorithm must also operate on four
rays simultaneously. Since bisection of the ray distance
parameter t is equivalent to subdivision of world space,
our problem is essentially similar to acceleration structure
traversal. Coherent SIMD methods [WBS02] perform a sim-
ilar task by considering whether any ray in a packet inter-
sects a node or descend a subtree; we instead query whether
a given world-space region possibly contains a zero of the
implicit surface for any ray.

Coherent traversal algorithms perform best when rays in
the same packet exhibit similar behavior, in our case de-
scending the same sides of the binary search tree whenever
possible. As seen in Figure 4(a), direct bisection of the t dis-
tance parameter can cause ray behavior to diverge, requiring
more traversal steps. Our solution is to instead determine a
major march direction K and bisect along that axis, resulting

Figure 4: Spatial traversal with interval bisection. The con-
ventional single-ray method (a), as well as our GPU algo-
rithm, bisects the ray distance parameter t until a surface is
located to the satisfaction of a termination criterion. SIMD
CPU traversal (b) picks the dominant ray direction K of a
group of rays, and bisects that axis. This ensures more co-
herent and less divergent behavior during traversal, and thus
greater SIMD speedup.

in improved coherent behavior (Fig. 4(b)). Other strategies
for ensuring coherence involve unitizing the rays, or nor-
malizing directions with respect to a single reference ray in
the packet. However, we have found that for explicit SIMD
traversal, picking the dominant K axis works best.

SIMD traversal on the CPU is executed in a multithreaded
coherent ray tracer, such as Manta [BSP06]. The SSE al-
gorithm is iterative, not recursive, employing a precom-
puted array of t-space and world-space increments multi-
plied by 1/2dmax , where dmax represents the maximum bi-
section depth. Redundant computation can be avoided by
maintaining and incrementing the x,y,z intervals separately,
rather than always computing the ray equation extension as
a function of t. A writable array of booleans keeps track of
which side of the bisection tree is visited at each depth level.
This approach relies on numerous registers and L1 cache as
efficient substitutes for stack recursion, and is well-suited to
CPU architectures. Pseudocode for this algorithm is given
in [KHW∗07b].

5. GPU Algorithm

The new contributions of this paper are a GPU implementa-
tion of the interval bisection algorithm (Section 5.5) and an
implementation of reduced affine arithmetic suitable for the
GPU 5.3. Overall, shader languages such as Cg 2.0 allow
for a more graceful implementation than the optimized SSE
C++ counterpart on the CPU. Just-in-time shader compila-
tion, in conjunction with metaprogramming, can easily and
dynamically generate IA/AA extension routines from an in-
put expression. Nonetheless, implementing a robust interval-

submitted to COMPUTER GRAPHICS Forum (7/2008).

6 A. Knoll et al. / Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic

bisection ray tracer on the GPU poses challenges. Princi-
pally, the CPU algorithm relies on an efficient iterative al-
gorithm for bisection, employing a read/write array for the
recursion stack. Storing such an array per-fragment occupies
numerous infrequently-used registers, which slows process-
ing on the GPU. Similar problems have clearly hampered
performance of hierarchical acceleration structure traversal
for mesh ray tracing [PGSS07]. Our most significant contri-
bution is a traversal algorithm that overcomes this problem.
By employing simple floating-point modulus arithmetic in
conjunction with a DDA-like incremental algorithm operat-
ing on specially constructed intervals, we are able to perform
traversal without any stack. Though this algorithm would be
inefficient on a CPU, it is well-suited for the GPU architec-
ture thanks to efficient floating-point division.

5.1. Application Pipeline

As input, the user must simply specify a function in implicit
form, a domain Ω ⊂ R3, and a termination precision ε that
effectively bounds relative error (see Section 6.1.2). User-
specified variables are stored on the CPU and passed dy-
namically to Cg as uniform parameters. Some runtime op-
tions, such as the implicit function, choice of inclusion alge-
bra, or shading modality, are compiled directly into the Cg
shader through metaprogramming. In simple cases, the CPU
merely searches for a stub substring within a base shader file,
and replaces it with Cg code corresponding to the selected
option. More advanced metaprogramming involves creating
routines for function evaluation. Given an implicit function
expression, we require two routines to be created within the
shader: one evaluating the implicit f , and another evaluat-
ing the inclusion function, the interval or affine extension F .
We use a simple recursive-descent parser to generate these
routines in the output Cg shader. Alternately, we allow the
user to directly provide inline Cg code. Because the shader
compiler identifies common subexpressions, this is seldom
necessary for improving performance. Our only examples
employing inline code are special-case conditional evalua-
tions in CSG objects (Fig. 10).

Though our system is built on top of OpenGL, we use the
fixed-function rasterization pipeline very little. Given a do-
main Ω ⊂ R3 specified by the user, we simply rasterize that
bounding box once per frame. We specify the world-space
box vertex coordinates as texture coordinates as well. These
are passed straight through a minimal vertex program, and
the fragment program merely looks up the automatically in-
terpolated world-space entry point of the ray and the bound-
ing box. By subtracting that point from the origin, we gener-
ate a primary camera ray for each fragment.

5.2. Shader IA Library

Implementing an interval arithmetic library (Section ??) is
straightforward in Cg. Most scalar operations employed by
IA (such as min and max) are highly efficient on the GPU,
and swizzling allows for effective horizontal vector imple-
mentation (Algorithm 2), unlike SSE SIMD on the CPU.

Transcendental functions are particularly efficient for both
their floating-point and interval computations. Integer pow-
ers are yet more efficient, thanks to a bound-efficient IA rule
for even powers, JIT metaprogramming and Russian peasant
multiplication [Mid65].

5.3. Shader RAA Library

In implementing our RAA library on the GPU, we adopt a
formulation similar to AF1 in Messine et al. [Mes02], with
changes to the absolute value bracketing that are mathemat-
ically equivalent but slightly faster to compute. We imple-
mented AF1 with n = 1 using a float3 to represent the re-
duced affine form. We also experimented with n = 2 (float4),
and n = 6 (a double-float4 structure). For all the functions in
our collection, the float3 version delivered the fastest results
by far. We also found that the computational overhead of the
bound-improved AF2 formulation [Mes02] was too high to
be efficient. Examples of the float3 version of the forms in
Equation 15 are given in Algorithm 3.

The float3 implementation of AF1 makes for a versatile
and fast reduced affine arithmetic. Particularly for functions
with significant multiplication between non-correlated affine
variables, such as the Mitchell or the Barth surfaces involv-
ing cross-multiplication of Chebyshev polynomials, signifi-
cant speedup can be achieved over standard IA.

Algorithm 2 Excerpt of GPU Interval Arithmetic.
typedef float2 interval;

interval iadd(interval a, interval b) {
return interval(add(a.x, b.x), add(a.y, b.y));

}
interval imul(interval a, interval b) {

float4 lh = a.xxyy * b.xyxy;
return interval(min(lh.x, min(lh.y, min(lh.z, lh.w))),

max(lh.x, max4(lh.y, max(lh.z, lh.w))));
}
interval ircp(const float inf, interval i) {

return ((i.x <= 0 && i.y >= 0) ?
interval(-inf, inf) : 1/i.yx);

}

Algorithm 3 Excerpt of GPU Reduced Affine Arithmetic.
typedef float3 raf;

raf interval_to_raf(interval i){
raf r;
r.x = (i.y + i.x);
r.y = (i.y - i.x);
r.xy *= .5; r.z = 0;
return r;

}
float raf_radius(raf a){

return abs(a.y) + a.z;
}
interval raf_to_interval(raf a){

const float rad = raf_radius(a);
return interval(a.x - rad, a.x + rad);

}
raf raf_add(raf a, raf b){

return (a + b);
}
raf raf_mul{raf a, raf b){

raf r;
r.x = a.x * b.x;
r.y = a.x*b.y + b.x*a.y;
r.z = abs(a.x*b.z) + abs(b.x*a.z) +

raf_radius(a)*raf_radius(b);
return r;

}

submitted to COMPUTER GRAPHICS Forum (7/2008).

A. Knoll et al. / Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic 7

5.4. Numerical Considerations

A technical difficulty arises in the expression of infinite
intervals, which may occur in division; and empty inter-
vals that are necessary in omitting non-real results from a
fractional power or logarithm. While these are natively ex-
pressed by nan on the CPU, GPU’s are not always IEEE
compliant. The G80 architecture correctly detects and prop-
agates infinity and nan, but the values themselves (inf = 1/0
and nan = 0/0) must be generated on the CPU and passed
into the fragment program and subsequent IA/AA calls.

Conventionally, IA and AA employ a rounding step af-
ter every operation, padding the result to the previous or
next expressible floating point number. We deliberately omit
rounding – in practice the typical precision ε is sufficiently
large that rounding has negligable impact on the correct
computation of the extension F . However, numerical issues
can be problematic in certain affine operations: RAA im-
plementations of square root, transcendentals and division
itself all rely on accurate floating point division for comput-
ing the regression lines approximating affine forms. Though
inclusion-preserving in theory, these methods are ill-suited
for inaccurate GPU floating point arithmetic; and a robust
strategy to overcome these issues has not yet been developed
for RAA. We therefore resort to interval arithmetic for func-
tions that require regression-approximation AA operators.

5.5. Traversal

With the IA/RAA extension and a primary ray generated
on the fragment unit, we can perform ray traversal of the
domain Ω ⊂ R3. Though not as trivial as standard numeri-
cal bisection for root finding, the ray traversal algorithm is
nonetheless elegantly simple (Algorithm 4).

Initialization: We begin by computing the exit point pexit
of the generated ray and the bounding box Ω. We reparame-
terize the ray as~r(t) :=~penter +t(~pexit−~penter). The interval
t along the ray intersecting Ω is now [0,1]. We now perform
a first rejection test outside the main loop.

Rejection test: In the rejection test, we evaluate the
IA/AA extensions of the ray equation to find X ,Y and Z over
t, and use these (as well as scalars w,ri for time and other an-
imation variables) to evaluate the extension of our implicit
function. The result gives us an interval or affine approxima-
tion of the range F . If 0∈ F , then we must continue to bisect
and search for roots. Otherwise, we may safely ignore this
interval and proceed to the next, or terminate if it is the last.

Main loop: If the outer rejection test succeeds, we com-
pute the effective bisection depth required for the user-
specified ε . This is given by the integer ceiling:

dmax := ceil(log2(
||~pexit −~penter||

ε
)) (16)

We initialize our depth d = 0, and distance increment,
tincr = 0.5. Now, recalling the bisection interval t, we set
t := t + tincr. We then perform the rejection test on this new

t. If the test succeeds, we either hit the surface if we have
reached d = dmax, or recurse to the next level by setting
tincr := tincr/2, and incrementing d.

If the rejection test fails, we proceed to the next interval
segment at the current depth level by setting t := t. Within
the main loop, we now perform another loop to back-recurse
to the appropriate depth level.

Back-recursion loop: In back-recursion, we decrement
the depth d (and update tincr) until we find an unvisited seg-
ment of the bisection tree. This allows us to perform ray bi-
section iteratively, not recursively, and without employing
registers to mimic a recursion stack. Specifically, we perform
floating-point modulus (t % 2tincr = 0) to verify whether the
current distance has visited one or both bisected segments in
question. Currently on the G80, the fastest method proves to
be performing division and examining the remainder. Back-
recursion proceeds iteratively until it finds an unvisited sec-
ond branch of the bisection tree, or d = −1 in which case
traversal has completed.

Algorithm 4 Traversal algorithm with RAA.
float traverse(float3 penter, float3 pexit, float w,

float max_depth, float eps, float nan, float inf){
const float3 org = penter;
const float3 dir = pexit-penter;
interval t(0,1);
raf F, it, ix, iy, iz;
//rejection test
ix = raf_add(org.x, raf_mul(it, dir.x));
iy = raf_add(org.y, raf_mul(it, dir.y));
iz = raf_add(org.z, raf_mul(it, dir.z));
F = evaluate_raf(ix, iy, iz, w, nan, inf);
if (raf_contains(F, 0)){

int d=0;
float tincr = .5;
const int dlast = log2(length(dir)/epsilon);
//main loop
for(;;){

t.y = t.x + tincr;
(compute ix, iy, iz, F again for rejection test)
if (raf_contains(F, 0)){

if (d==dlast){ return t.x; /*hit*/}
else{ tincr *= .5; d++; continue; }

}
t.x = t.y;
//back-recursion
float fp = frac(.5*t.x/tincr);
if (fp < 1e-8){

for(int j=0; j<=dlast; j++){
tincr *= 2;
d--;
fp = frac(.5*t.x/tincr);
if (d==-1 || fp > 1e-8) break;

}
if (d==-1) break;

}
}

}
return -1; //no hit

}

5.6. Traversal Metaprogramming

The traversal algorithm largely remains static, but some
functions and visualization modalities require special han-
dling. To render functions containing division operations,
we must check whether intervals are infinitely wide before
successfully hitting, as detailed in Knoll et al. [KHW∗07b].
Multiple isovalues and transparency require modifications

submitted to COMPUTER GRAPHICS Forum (7/2008).

8 A. Knoll et al. / Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic

to the rejection test and hit registration, respectively, as dis-
cussed in Section 6.2. More generally, modifications to the
traversal algorithm are simple to implement via “inline” im-
plicit files (Section 5.1). We allow the user to directly pro-
gram behavior of the rejection test, hit registration and shad-
ing. This is particularly useful in rendering special-case con-
structive solid geometry objects (Fig. 10).

5.7. Shading
Phong shading requires a surface normal, specifically the
gradient of the implicit at the found intersection position.
We find central differencing to be more than adequate, as it
requires no effort on the part of the user in specifying analyt-
ical derivatives, nor special metaprogramming in computing
separable partials via automatic differentiation. By default
we use a stencil width proportional to the traversal precision
ε; variable width is often also desirable [KHW∗07b].

6. Results
All benchmarks are measured in frames per second at
1024x1024 frame buffer resolution.

CPU GPU
ε 2−11 2−11 2−11 converged ε

arithmetic IA IA RAA IA or RAA

sphere 15 75 147 165 /RAA /2−10

steiner (6) 7.5 34 40 38 /RAA /2−12

mitchell (5) 5.2 16 58 60 /RAA /2−10

teardrop (7a) 5.5 102 115 121 /RAA /2−10

4-bretzel (7c) 13 78 48 90 /IA /2−10

klein b. (7b) 11 30 110 101 /RAA /2−12

tangle (7d) 3.2 15 68 71 /RAA /2−10

decocube (9) 5.5 28 27 28 /IA /2−11

barth sex. (8l) 7.4 31 76 88 /RAA /2−10

barth dec. (8r) 0.92 4.9 15.6 15.6 /RAA /2−11

superquadric 18 119 8.3 108 /IA /2−12

icos.csg (10l) 1.8 13.3 - 13.3 /IA /2−11

sesc.csg (10r) 1.6 8.9 - 7.2 /IA /2−13

sin.blob (1) 0.71 6.0 - 6.0 /IA /2−12

cloth (11l) 2.2 38 - 44 /IA /2−9

water (11r) 2.2 37 - 44 /IA /2−9

Table 1: Performance in fps for various surfaces at
1024x1024 resolution, with corresponding renderings indi-
cated by the figure numbers in parentheses. The CPU SIMD
algorithm is benchmarked on a four-core 2.33 GHz Intel
Xeon desktop, using only IA. The GPU algorithm runs on
an NVIDIA 8800GTX; results are shown with both IA and
RAA. Results in these first three columns are evaluated with
common ε = 2−11; the last column labelled “converged ε”
shows performance at the the highest ε yielding a correctly
converged visual result, using either IA or RAA on the GPU.

6.1. Performance
Table 1 shows base frame rates of a variety of surfaces using
single ray-casting and basic Phong shading. Performance on
the NVIDIA 8800 GTX is up to 22× faster than the SIMD

SSE method on a 4-core Xeon 2.33 GHz CPU workstation.
Frame rate is determined both by the bound tightness of the
chosen inclusion extension, and the computational cost of
evaluating it. In practice, the order of the implicit form has
little impact on performance. Forms of these implicits can be
found in the Appendix.

6.1.1. IA vs RAA

For typical functions with fairly low-order coefficients and
moderate cross-multiplication of terms, reduced affine arith-
metic is generally 1.5− 2× faster than interval arithmetic.
For functions with high bound overestimation, such as those
involving multiplication of large polynomial terms (e.g. the
Barth surfaces) or Horner forms, RAA is frequently 3 to
4 times faster. Conversely, thanks to an efficient inclusion
rule for integer powers, IA remains far more efficient for
superquadrics, as evident in Table 1. As explained in Sec-
tion 5.4, IA is currently required for extensions of division,
transcendentals, and fractional powers.

ε = 2−6 2−8 2−10 2−12

Mitchell

IA 63 fps 34 fps 19 fps 13 fps

RAA 80 fps 64 fps 59 fps 56 fps
Barth Decic

IA 29 fps 13 fps 7.1 fps 4.9 fps

RAA 25 fps 19 fps 17 fps 16 fps
Figure 5: Rendering the Mitchell (top) and Barth Decic
(bottom) functions, with IA and RAA at various ε .

6.1.2. Error and Quality

As seen in Equation 16, a global user-specified ray-length
precision ε is used to determine a per-ray maximum bisec-
tion depth dmax. If a candidate ray interval t contains a zero,

submitted to COMPUTER GRAPHICS Forum (7/2008).

A. Knoll et al. / Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic 9

then the actual error is

εactual ≤ ||t||= 2−dmax ≤ ε (17)

This effectively specifies an upper bound on the absolute er-
ror in ray space t; by scaling by the magnitude of the ray seg-
ment over Ω, ||pexit − penter||, we normalize to bound rela-
tive error in world space. Our application also allows the user
to specify a tolerance δ , which halts bisection only when
the width of the interval ||F ||< δ . This would seem a more
adaptive way of guaranteeing convergence, as bisection pro-
ceeds until the interval width is sufficiently small to better
guarantee existence (or non-existence) of a root. However,
range interval width varies widely by function, and is more
difficult for the user to gauge than the domain-space ε .

Choice of appropriate ε depends greatly on the implicit
in question. For most of our examples, ε = 2−11 yields a
topologically correct rendering, and thus is suitable as a de-
fault. Figure 5 shows the impact of precision ε , controlling
relative error, on the Mitchell and Barth decic surfaces, both
examples with particularly high bound overestimation and
sensitivity to low precision. RAA generally converges far
more quickly than IA, given lesser bound overestimation at
low ε . In addition, refining ε has lesser impact on frame
rate once RAA has effectively converged. Finally, we note
that increasing ε generates progressively tighter convex hulls
around the ideal surface at ε = 0.

function Mitchell Barth Decic
ε 2−11 2−22 2−11 2−22

CPU SSE
t-bisection 5.0 1.0 0.90 0.061
K-bisection 5.1 1.2 0.92 0.18
Mitchell 0.54 0.22 0.19 0.036

GPU (IA)
t-bisection 16 6.2 4.9 1.4
K-bisection 11 5.6 4.4 1.1
Mitchell 3.9 1.0 1.1 0.29

Table 2: Performance of various algorithms on the Mitchell
and Barth decic functions, using interval arithmetic only.

6.1.3. Algorithm Coherence and Performance

Table 2 shows the relative performance of various algorithms
on the Mitchell and Barth Decic functions shown in Fig. 5,
at ε = 2−11 and ε = 2−22. Our suggested implementations
(also used in Table 1) are shown in boldface. The efficiency
of both CPU (Section 4) and GPU (Section 5) algorithms
depends on exploitation of SIMD coherence. The CPU SSE
algorithm benefits from explicit spatial coherence, as shown
in Fig. 4(b). With the t-marching method in SSE (Fig. 4(a)),
rays in the same packet can fall out of lockstep, destroy-
ing coherence. Conversely, the GPU algorithm requires more
general instruction-level coherence, with a minimum of used
registers. A modification of the GPU algorithm to march
along the major K-axis yielded noticeable performance de-
crease. We also note that both the SSE CPU and GPU imple-

Figure 6: Fine feature visualization in the Steiner sur-
face. Left to right: shading with depth peeling and gradient
magnitude coloration; close-up on a singularity with IA at
ε = 2−18; and with RAA at the same depth.

mentations of the Mitchell [Mit90] algorithm (employing in-
terval arithmetic followed by standard numerical root refine-
ment) perform far worse than naïve bisection, particularly at
higher ε . This can be attributed to the high cost of evaluating
the gradient interval, and both worse instruction-level coher-
ence on the GPU and spatial coherence in the SSE CPU al-
gorithm. Though difficult to fairly evaluate on the GPU, our
experimentation with SSE versions of other quasi-Newton
methods such as Interval Newton method and [CHMS00]
empirically suggested far worse results. However, these al-
gorithms could prove desirable if efficiently mapped to a
SIMD architecture.

6.1.4. Feature Reproduction and Robustness

As it entails more floating-point computation than IA, RAA
has worse numerical conditioning, particularly with smaller
ε . Fig. 6 illustrates the challenge in robustly ray tracing the
Steiner surface with IA and AA. Both inclusion methods
identify the infinitely thin surface regions at the axes, but a
small ε < 2−18 is required for correct close-up visualization
of these features. Affine arithmetic yields a tighter contour of
the true zero-set than IA, but with some speckling. Nonethe-
less, both IA and RAA yield more robust results than non-
inclusion ray tracing methods [LB06] on the Steiner sur-
face, or than inclusion-based extraction [PLLdF06] on the
teardrop (Fig. 7(a)).

6.2. Shading Modalities

As our algorithm relies purely on ray-tracing, we can easily
support per-pixel lighting models and multi-bounce effects,
many of which would be difficult with rasterization (Fig. 7).
We briefly describe the implementation of these modalities,
and their impact on performance.

Shadows: Non-recursive secondary rays such as shadows
are straightforward to implement. Within the main fragment
program, after a successfully hit traversal, we check whether
~N ·~L > 0, and if so, perform traversal with a shadow ray. To
ensure we do not hit the same surface, we cast the shadow
from the light to the hit position, and use their difference
to reparameterize the ray so that t = [0,1], as for primary
rays. Shadows often entail around 20− 50% performance
penalty. One can equally use a coarser precision for casting
shadow rays than primary rays. RAA is sufficiently accurate

submitted to COMPUTER GRAPHICS Forum (7/2008).

10 A. Knoll et al. / Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic

Figure 7: Shading Effects. Top left to bottom right: (a)
shadows on the teardop (40 fps); (b) transparency on the
klein bottle (41 fps); (c) shadows and multiple isovalues of
the 4-Bretzel (18 fps); and (d) the tangle with up to six re-
flection rays (44 fps).

for secondary rays even at ε > .01; which can decrease the
performance overhead to 10−30%.

Transparency: Transparency is also useful in visualiz-
ing surfaces, particularly functions with odd connectivity or
disjoint features. With ray tracing, it is simple to implement
front-to-back, order-independent transparency, in which rays
are only counted as transparent if a surface behind them ex-
ists. Our implementation lets the user specify the blending
opacity, and casts up to four transparent rays. This costs
around 3× as much as one primary ray per pixel.

Multiple Isosurfaces: One may equally use multiple iso-
values to render the surface. This is significantly less expen-
sive than evaluating the CSG object of multiple surfaces, as
the implicit extension need only be evaluated once for the
surface. The rejection test then requires that all of those iso-
values miss. At hit registration, we simply determine which
of those isovalues hit, and flag the shader accordingly to use
different surface colors. With no other effects, multiple iso-
values typically entail a cost of anywhere from 10−40%.

Reflections: Reflections are a good example of how built-
in features of rasterization hardware can be seamlessly com-
bined with the implicit ray tracing system. Looking up a sin-
gle reflected value from a cubic environment map invokes no
performance penalty. Tracing multiple reflection rays in an
iterative loop is not significantly more expensive (20−30%),
and yields clearly superior results (Fig. 7d).

6.3. Applications

Mathematical Visualization: The immediate application
of this system is a graphing tool for mathematically interest-
ing surface forms in 3D and 4D. Ray tracing ensures view-
dependent visualization of infinitely thin features, as in the
teardrop and Steiner surfaces. It is similarly useful in render-
ing singularities – Fig. 8 shows the Barth sextic and decic
surfaces, which contain the maximum number of ordinary
double points for functions of their respective degrees in R3.

Figure 8: The Barth sextic and decic surfaces.

Figure 9: Blending between a sigmoid convolution of a de-
cocube and a sphere, with interpolation and extrapolation
phases, running at 33−50 fps.

Interpolation, Morphing and Blending: Implicit forms
inherently support blending operations between multiple ba-
sis functions. Such forms need only be expressed as an arbi-
trary 4D implicit f (x,y,z,w), where w varies over time. As
ray-tracing is performed purely on-the-fly with no precom-
putation, we have great flexibility in dynamically rendering
these functions. The blending function itself can operate on
multiple kernels, and be of arbitrary form. Figure 9 shows
morphing between a decocube and a sphere by interpolating
a sigmoid convolution of those kernels.

Constructive Solid Geometry: Multiple-implicit CSG
objects can accomplish similar effects to product surfaces
and sigmoid blending, but with C0 trimming. Unions and in-
tersections of functions can be expressed natively using min
and max operators, which are well-defined for both interval
and affine forms. However, this inevitably requires evalua-
tion of all sides of a compound expression. A more efficient
approach employs 3-manifold level-sets, or inequality oper-
ations on CSG solids, as conditions over an implicit or set
or implicits. Given an implicit f (ω) and a condition g(ω),

submitted to COMPUTER GRAPHICS Forum (7/2008).

A. Knoll et al. / Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic 11

inclusion arithmetic allows us to verify g+ = {g(ω)≥ 0} or
g− = {g(ω) ≤ 0}, given the interval form of the inclusion
extension G over an interval domain ω ⊆ Ω. Then, one can
render f ∩g+ or f ∩g− for arbitrary level sets of g, as well
as identify during traversal which surface is which. In the
case of union, only the first condition need be evaluated if
it contains a zero. Solid conditions are evaluated indepen-
dently as boolean expressions; by determining which level
sets are intersected inside the traversal, we can shade com-
ponents differently as desired (Fig. 10).

Figure 10: CSG using inequalities on 3-manifold solids.

Figure 11: Sinusoid procedural geometry for dynamic sim-
ulation of cloth and water. With IA, these surfaces render at
38 and 37 fps respectively.

Procedural Geometry: Implicits have historically been
non-intuitive and unpopular for modeling large-scale ob-
jects. However, the ability to render dynamic surfaces and
natural phenomena using combinations of known closed-
form expressions could prove useful in modeling small-scale
and dynamic features. Sinc expressions, for example, define
closed-form solutions of simple wave equations for mod-
eling water and cloth (Fig. 11). Previous applications of
implicit hypertextures focused on blended procedural noise
functions [PH89,GM07]. Recently, implicits based predom-
inately on generalized sinusoid product forms similar to that
in Fig. 1 have been used within some modeling communi-
ties [k3d]. Arbitrary implicits are intriguing in their flexi-
bility, and ray tracing promises the ability to dynamically
render entire new classes of procedural geometries, indepen-
dently from any polygonal geometry budget.

7. Conclusion

We have demonstrated a fast, robust and general algorithm
for rendering implicits of arbitrary form, using interval and
affine arithmetic. On both the CPU and GPU, the key to per-
formance lies in optimization of the interval bisection algo-
rithm. Coherent traversal using SIMD vector instructions;
and a stackless fractional modulus traversal algorithm, aid
the efficiency of CPU and GPU algorithms, respectively.
We also demonstrate a correct inclusion-preserving reduced
affine arithmetic, which exhibits improved bound estimation
and performance compared to interval arithmetic.

IA/AA methods require more computation than ap-
proaches involving point sampling [Han83], though those
methods are not generally robust. Inclusion methods may be
slower than approximating methods (e.g. [LB06]), but more
accurately render the original form. Finally, methods for ren-
dering implicits formulated as distance functions [Har96]
may be competitive as well. A comprehensive comparison
of optimized implementations of these methods would be
useful. Also, while robust per-ray, our system ignores alias-
ing issues on boundaries and sub-pixel features. To robustly
reconstruct the surface between pixels would require super-
sampling and ideally beam tracing.

Many extensions to this implementation would be useful.
Further development of approximating regression operations
for RAA could allow for correct and fast affine extensions
of transcendental functions and their compositions. Opti-
mized implementation of the coherent K-marching method
could perform better in a data-parallel SIMD setting such
as CUDA; or on future wider SIMD vector hardware such
as Intel Larrabee. More generally, the application front-end
could be extended to support point, mesh or volume data,
which could then be reconstructed by arbitrary implicit fil-
ters. Scalable rendering of complex objects featuring multi-
ple piecewise implicits with CSG operators is also important
future work. Finally, though applied here to general implic-
its, inclusion methods could potentially be employed in ren-
dering arbitrary parametric or free-form surfaces.

8. Acknowledments

This work was supported by the German Research Founda-
tion, the Deutsche Forschungsgemeinschaft (DFG) through
the University of Kaiserslautern International Research
Training Group (IRTG) 1131; as well as the U.S. Department
of Energy through CSAFE grant W-7405-ENG-48, the Na-
tional Science Foundation under CISE grants CRI-0513212,
CCF-0541113, and SEII-0513212, and NSF-CNS 0551724.
It was also supported by the US Deparment of Energy Sci-
DAC VACET, Contract No. DE-FC02-06ER25781 (SciDAC
VACET). Additional thanks to Warren Hunt, Bill Mark, Ingo
Wald, Steven Parker, Alex Reshetov and Jim Hurley for their
insights, and to Intel Corporation and NVIDIA for support
and equipment.

submitted to COMPUTER GRAPHICS Forum (7/2008).

12 A. Knoll et al. / Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic

References

[Blo94] BLOOMENTHAL J.: An implicit surface polygo-
nizer. 324–349.

[BSP06] BIGLER J., STEPHENS A., PARKER S.: Design
for parallel interactive ray tracing systems. Proceedings of
the IEEE Symposium on Interactive Ray Tracing (2006),
187–195.

[CHMS00] CAPRIANI O., HVIDEGAARD L.,
MORTENSEN M., SCHNEIDER T.: Robust and effi-
cient ray intersection of implicit surfaces. Reliable
Computing 6 (2000), 9–21.

[CS93] COMBA J. L. D., STOLFI J.: Affine arithmetic
and its applications to computer graphics. In Proc. VI
Brazilian Symposium on Computer Graphics and Image
Processing (SIBGRAPI’93) (1993), pp. 9–18.

[dCJdFG99] DE CUSATIS JUNIOR A., DE FIGUEIREDO

L., GATTAS M.: Interval methods for raycasting implicit
surfaces with affine arithmetic. In Proceedings of XII SIB-
GRPHI (1999), pp. 1–7.

[dTLP07] DE TOLEDO R., LEVY B., PAUL J.-C.: It-
erative methods for visualization of implicit surfaces on
gpu. In ISVC, International Symposium on Visual Com-
puting (Lake Tahoe, Nevada/California, November 2007),
Lecture Notes in Computer Science, SBC - Sociedade
Brasileira de Computacao, Springer.

[FP08] FRYAZINOV O., PASKO A.: Interactive ray shad-
ing of FRep objects. In WSCG 2008 Communications Pa-
pers Proceedings (2008), pp. 145–152.

[FSSV06] FLOREZ J., SBERT M., SAINZ M., VEHI J.:
Improving the interval ray tracing of implicit surfaces.
In Lecture Notes in Computer Science (2006), vol. 4035,
pp. 655–664.

[GM07] GAMITO M. N., MADDOCK S. C.: Ray casting
implicit fractal surfaces with reduced affine arithmetic.
Vis. Comput. 23, 3 (2007), 155–165.

[GPSS07] GÜNTHER J., POPOV S., SEIDEL H.-P.,
SLUSALLEK P.: Realtime ray tracing on GPU with
BVH-based packet traversal. In Proceedings of the
IEEE/Eurographics Symposium on Interactive Ray Trac-
ing 2007 (Sept. 2007), pp. 113–118.

[Han83] HANRAHAN P.: Ray tracing algebraic surfaces.
In SIGGRAPH ’83: Proceedings of the 10th annual con-
ference on Computer graphics and interactive techniques
(New York, NY, USA, 1983), ACM Press, pp. 83–90.

[Har96] HART J. C.: Sphere tracing: A geometric method
for the antialiased ray tracing of implicit surfaces. The
Visual Computer 12, 10 (1996), 527–545.

[HS98] HEIDRICH W., SEIDEL H.-P.: Ray-tracing proce-
dural displacement shaders. In Graphics Interface (1998),
pp. 8–16.

[HSS∗05] HADWIGER M., SIGG* C., SCHARSACH H.,

BUHLER K., GROSS* M.: Real-Time Ray-Casting and
Advanced Shading of Discrete Isosurfaces. Computer
Graphics Forum 24, 3 (2005), 303–312.

[k3d] K3DSURF: The K3DSurf Project.
http://k3dsurf.sourceforge.net/.

[KB89] KALRA D., BARR A. H.: Guaranteed ray in-
tersections with implicit surfaces. In SIGGRAPH ’89:
Proceedings of the 16th annual conference on Com-
puter graphics and interactive techniques (New York, NY,
USA, 1989), ACM Press, pp. 297–306.

[KHW07a] KNOLL A., HANSEN C., WALD I.: Co-
herent Multiresolution Isosurface Ray Tracing. Tech.
Rep. UUSCI-2007-001, SCI Institute, University of Utah,
2007. (to appear in The Visual Computer).

[KHW∗07b] KNOLL A., HIJAZI Y., WALD I., HANSEN

C., HAGEN H.: Interactive ray tracing of arbitrary im-
plicits with simd interval arithmetic. In Proceedings of
the 2nd IEEE/EG Symposium on Interactive Ray Tracing
(2007), pp. 11–18.

[LB06] LOOP C., BLINN J.: Real-time GPU rendering of
piecewise algebraic surfaces. In SIGGRAPH ’06: ACM
SIGGRAPH 2006 Papers (New York, NY, USA, 2006),
ACM Press, pp. 664–670.

[Mes02] MESSINE F.: Extentions of affine arithmetic: Ap-
plication to unconstrained global optimization. Journal of
Universal Computer Science 8, 11 (2002), 992–1015.

[MGW05] MEYER M. D., GEORGEL P., WHITAKER

R. T.: Robust particle systems for curvature dependent
sampling of implicit surfaces. In SMI ’05: Proceedings of
the International Conference on Shape Modeling and Ap-
plications 2005 (SMI’ 05) (Washington, DC, USA, 2005),
IEEE Computer Society, pp. 124–133.

[Mid65] MIDONICK H. O.: The Treasury of Mathematics.
Philosophical Library, 1965.

[Mit90] MITCHELL D.: Robust ray intersection with in-
terval arithmetic. In Proceedings on Graphics Interface
1990 (1990), pp. 68–74.

[Moo66] MOORE R. E.: Interval Analysis. Prentice Hall,
Englewood Cliffs, NJ, 1966.

[PBMH02] PURCELL T. J., BUCK I., MARK W. R.,
HANRAHAN P.: Ray Tracing on Programmable Graphics
Hardware. ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH) 21, 3 (2002), 703–712.

[PGSS07] POPOV S., GÜNTHER J., SEIDEL H.-P.,
SLUSALLEK P.: Stackless kd-tree traversal for high per-
formance gpu ray tracing. Computer Graphics Forum 26,
3 (Sept. 2007). (Proceedings of Eurographics), to appear.

[PH89] PERLIN K., HOFFERT E. M.: Hypertexture. In
SIGGRAPH ’89: Proceedings of the 16th annual confer-
ence on Computer graphics and interactive techniques
(New York, NY, USA, 1989), ACM Press, pp. 253–262.

submitted to COMPUTER GRAPHICS Forum (7/2008).

A. Knoll et al. / Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic 13

[PLLdF06] PAIVA A., LOPES H., LEWINER T.,
DE FIGUEIREDO L. H.: Robust adaptive meshes
for implicit surfaces. In 19th Brazilian Symposium
on Computer Graphics and Image Processing (2006),
pp. 205–212.

[RVdF06] ROMEIRO F., VELHO L., DE FIGUEIREDO

L. H.: Hardware-assisted Rendering of CSG Models. In
SIBGRAPI (2006), pp. 139–146.

[SECG03] SANJUAN-ESTRADA J. F., CASADO L. G.,
GARCIA I.: Reliable algorithms for ray intersection in
computer graphics based on interval arithmetic. In XVI
Brazilian Symposium on Computer Graphics and Image
Processing, 2003. SIBGRAPI 2003. (2003), pp. 35–42.

[SK01] STOLTE N., KAUFMAN A.: Voxelization of im-
plicit surfaces using interval arithmetics. Graphical Mod-
els 63, 6 (2001), 387–412.

[Tot85] TOTH D. L.: On ray tracing parametric surfaces.
In SIGGRAPH ’85: Proceedings of the 12th annual con-
ference on Computer graphics and interactive techniques
(New York, NY, USA, 1985), ACM Press, pp. 171–179.

[VKZM06] VARADHAN G., KRISHNAN S., ZHANG L.,
MANOCHA D.: Reliable implicit surface polygonization
using visibility mapping. In SGP ’06: Proceedings of
the fourth Eurographics symposium on Geometry process-
ing (Aire-la-Ville, Switzerland, Switzerland, 2006), Euro-
graphics Association, pp. 211–221.

[vW85] VAN WIJK J.: Ray tracing objects defined by
sweeping a sphere. Computers & Graphics 9 (1985), 283–
290.

[WBS02] WALD I., BENTHIN C., SLUSALLEK P.:
OpenRT - A Flexible and Scalable Rendering Engine
for Interactive 3D Graphics. Tech. rep., Saarland
University, 2002. Available at http://graphics.cs.uni-
sb.de/Publications.

[WH94] WITKIN A. P., HECKBERT P. S.: Using particles
to sample and control implicit surfaces. In SIGGRAPH
’94: Proceedings of the 21st annual conference on Com-
puter graphics and interactive techniques (New York, NY,
USA, 1994), ACM Press, pp. 269–277.

[WIK∗06] WALD I., IZE T., KENSLER A., KNOLL A.,
PARKER S. G.: Ray Tracing Animated Scenes using Co-
herent Grid Traversal. ACM Transactions on Graphics
(2006), 485–493. (Proceedings of ACM SIGGRAPH).

[WMW86] WYVILL G., MCPHEETERS C., WYVILL B.:
Data structure for soft objects. The Visual Computer 2
(1986), 227–234.

[WQ80] WOODWARK J., QUINLAN K.: The derivation of
graphics from volume models by recursive subdivision of
object space. In Proc. Computer Graphics’80 Conference,
Brighton, UK (1980), pp. 335–343.

submitted to COMPUTER GRAPHICS Forum (7/2008).

14 A. Knoll et al. / Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic

Appendix A: Reference Implicits

sphere
x2 + y2 + z2− r2

steiner
x2y2 + y2z2 + x2z2 + xyz

mitchell
4(x4 +(y2 + z2)2)+17(x2(y2 + z2)−20(x2 + y2 + z2)+17

teardrop
x5+x4

2 − y2− z2

4-bretzel 1
10 (x2(1.21− x2)2(3.8− x2)3−10y2)2 +60z2−2

klein bottle
(x2 + y2 + z2 +2y−1)((x2 + y2 + z2−2y−1)2−8z2)

+16xz(x2 + y2 + z2−2y−1)

tangle
x4− rx2 + y4−5y2 + z4−5z2 +11.8

decocube
((x2 + y2−0.82)2 +(z2−1)2)((y2 + z2−0.82)2+
(x2−1)2)((z2 + x2−0.82)2 +(y2−1)2)−0.02

barth sextic
4(τ2x2− y2)(τ2y2− z2)(τ2z2− x2)− (1+2τ)(x2 + y2 + z2−1)2

where τ is the golden ratio, 1+
√

5
2

barth decic
8(x2− τ4y2)(y2− τ4z2)(z2− τ4x2)(x4 + y4 + z4−2x2y2−2x2z2−2y2z2)+
(3+5τ)(x2 + y2 + z2−w2)2(x2 + y2 + z2− (2− τ)w2)2w2 , τ = 1+

√
5

2

superquadric
x500 + 1

2 |y|
35 + 1

2 z4−1

icos.csg ic(x,y,z) = 2− (cos(x+ τy)+ cos(x− τy)+ cos(y+ τz)+
cos(y− τz)+ cos(z− τx)+ cos(z+ τx)) , τ = 1+

√
5

2
CSG condition (on inclusion intervals):

(0 ∈ ic) and sphereinner < 0 and sphereouter > 0

sesc.csg CSG of superellipsoid (se) and sinusoid convolution (sc)
se(x,y,z) = x6 + 1

2 (y4 + z4)4−20
sc(x,y,z) = xy+ cos(z)+1.741sin(2x)sin(z)cos(y)+ sin(2y)sin(x)cos(z)

+sin(2z)sin(y)cos(x)− cos(2x)cos(2y)
+cos(2y)cos(2z)+ cos(2z)cos(2x)+0.05

CSG condition (on inclusion intervals): ((sc > 0) and (0 ∈ se)) or ((se < 0) and (0 ∈ sc))

sin.blob 1+ r1(y+w)+ cos(r2z)+4(sin(4r0r2x)sin(r0z)cos(r1y)
+sin(2r0r1y)sin(r2x)cos(r2z)+ sin(2r2z)sin(r1y)cos(r2x))

−(cos(2r2x)cos(2r0y)+ cos(2r0r1y)cos(2r2z)+ cos(2r2z)cos(2r2x)))
where r0 = 0.104, r1 = 0.402, r2 =−0.347

cloth y−0.5sin(x+3w)−0.1(1+ .1sin(xz))cos(z+3w)
where w = [0,2π] is a time-dependent variable

water
sin(

√
((x+ r1)2 + z2)−w)/(10+

√
((x+ r1)2 + z2))+ sin(

√
((x− r1)2 + z2)−w+ r0)/(10+√

((x− r1)2 + z2))+
sin(2

√
((z− r1)2 + x2)−w− r0)/(10+

√
((z− r1)2 + x2))− y

2
where r0 = 2.736, r1 = 15, r2 =−.830746 and w is time-dependent.

Table 3: Formulas of test surfaces used in Table 1.

submitted to COMPUTER GRAPHICS Forum (7/2008).

