
Eurographics Conference on Visualization (EuroVis) 2014
H. Carr, P. Rheingans, and H. Schumann
(Guest Editors)

Volume 33 (2014), Number 3

Fast RBF Volume Ray Casting on CPU and MIC

online paper id 268

Abstract

Modern supercomputers enable increasingly large N-body simulations using unstructured point data. The struc-
tures implied by these points can be reconstructed implicitly. Direct volume rendering of radial basis function
(RBF) kernels in domain-space offers flexible classification and robust feature reconstruction, but achieving per-
formant RBF volume rendering remains a challenge for existing methods on both CPU’s and accelerators. In
this paper, we present a fast method for direct volume rendering of particle data with RBF kernels. We propose a
novel two-pass algorithm: first sampling the RBF field using coherent bounding hierarchy traversal, then subse-
quently integrating samples along ray segments. Our approach performs interactively for a range of data sets from
molecular dynamics and astrophysics up to 80 million particles. It does not rely on level of detail or subsampling,
and offers better reconstruction quality than structured volume rendering of the same data, exhibiting compara-
ble performance and requiring no preprocessing other than the BVH. Lastly, our technique enables multi-field,
multi-material classification of atoms or particles for improved representation and analysis.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—
Raytracing I.3.2 [Computer Graphics]: Graphics Systems—Distributed/network graphics

1. Introduction

Direct volume rendering (DVR) is an increasingly popular
modality for visualizing 3D scalar fields in scientific data.
It flexibly reconstructs, classifies and shades any continu-
ous scalar field, enabling better insight than surface-based
visualization. Volume rendering of structured data is now
commonplace, and optimized methods have been developed
for unstructured mesh and finite-element data. Generally,
these methods have been implemented on GPUs, due to their
high computational throughput and built-in texture features.
However, volume rendering directly from unstructured point
data remains a challenge.

N-body codes in particular produce large quantities of data.
For example, large molecular dynamics simulations generate
megabytes-to-gigabytes per time step and tens- to-hundreds
of thousands of time steps;large astrophysics simulations can
generate terabytes to petabytes per timestep. At scale, post-
processing and moving such data is prohibitive. Resampling
particle data into a structured volume costs memory and
computational time, as well as sacrificing information and
visual quality (e.g., Figure 1). Computing isosurfaces is sim-
ilarly costly, and prevents interactive classification and anal-

ysis of the original scalar fields. These factors motivate in
transit and in situ visualization on high performance comput-
ing (HPC) resources, minimal post-processing, and efficient
algorithms for direct volume rendering of point data.

Existing methods for particle volume rendering vary.
Though efficient, splatting techniques that filter in screen-
space do not provide the same level of quality as vol-
ume rendering with full domain-space reconstruction. The
current state-of-the-art GPU technique [FAW10] resamples
data into an image-space structured grid, which is sensitive
to choice of resolution and limits multi-field classification.
More recent GPU implementations, e.g. using a grid acceler-
ation structure [RKN∗13] have proven interactive on current
GPU’s, but slow compared to structured DVR. Moreover,
for in situ and in transit visualization not all HPC resources
have GPUs. We desire the flexibility to efficiently render on
a wide variety of architectures with SIMD-capable CPUs,
and new CPU-like “many integrated core” (MIC) hardware
such as the Intel Xeon Phi coprocessor. MICs are increas-
ingly used in supercomputers, such as Tianhe-2 (currently #1
on the Top500 [TOP13]) and Stampede (currently #7). Effi-
cient visualization on these architectures requires a frame-

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

2 paper 268 / Fast RBF Volume Ray Casting on CPU and MIC

Figure 1: 5 million atom molecular dynamics glass (SiO2) fracture data, rendered on a SE10P Xeon Phi in Stampede at
2560× 1024. Top: RBF volume rendering and ball-and-stick glyphs using 2 transfer functions to separately classify silicon
and oxygen atoms as multiple fields (1.35 fps), rendered directly from the BVH of the ball-and-stick data using our technique.
Bottom: a single-field precomputed structured dataset (2 voxels per Angstrom, 1.5 GB) required 2 minutes to precompute,
exhibits noticeable loss in reconstruction quality and renders at almost exactly the same speed (1.38 fps).

work that takes advantage of SIMD vector instructions with
varying width and arithmetic capabilities.
Our contribution is a novel method for efficient RBF vol-
ume rendering on CPU and MIC hardware. Our algorithm
uses coherent bounding volume hierarchy (BVH) traversal
to efficiently evaluate the RBF field, and performs DVR inte-
gration along rays in a subsequent step. Crucially, this elim-
inates the need for costly per-ray neighbor search, and re-
peat queries of the same basis functions at different samples.
We implement this method in bnsView [KWN∗13] in the
IVL [LHW12] SPMD language, which generates optimized
vector instructions in C++ for multicore CPU or MIC back-
ends, enabling fast rendering. Our technique does not rely
on simplification or LOD, does not use a proxy to downsam-
ple ray samples, and achieves interactivity on both MIC and
CPU platforms. We show that our system performs compet-
itively with the best-available GPU approaches, and enables
a variety of different use cases in HPC-driven visualization.

The paper is organized as follows: Section 2 discusses state-
of-the-art in particle visualization; Section 3 covers theoret-
ical background; Section 4 describes our method; Section 5
describes implementation on the CPU and MIC; Section 6
details results and use cases; and we conclude in Section 7.

2. Related Work
Direct volume rendering, or DVR, [DCH88] is a process of
directly rendering a 3D scalar field by reconstructing the
field at sample points, classifying samples into colors via a
transfer function, and integrating these classified color val-
ues to produce a final image. Smoothed particle hydrody-
namics [Mon92] is a mesh-free (Lagrangian) method for
simulating motion of fluids, employed in cosmology, as-
trophysics, materials science, and more generally applica-

tions of computational fluid dynamics. SPH volume render-
ing [JFSP10,FAW10] refers to the process of volume render-
ing SPH data directly, using basis functions from the SPH
data for reconstruction. The same general method can in
fact be used for other particle data, for example atomistic
data from molecular dynamics. We refer to this more gen-
eral technique as RBF volume rendering.

2.1. Volume rendering of point data
RBF volume rendering is costly, and interactive applica-
tions have generally been limited to the GPU. Jang et
al. [JWH∗04] were the first to use a small number of RBF’s
to approximate larger volume data, reconstructed in a GPU
fragment shader and rendered with slice-based volume ren-
dering. This approach was extended to ellipsoidal basis func-
tions [JBL∗06] and density functionals from quantum chem-
istry [JV09]. For rendering of larger SPH data [JFSP10]
a kd-tree was used instead of an octree to improve bound
tightness, however performance remained sub-interactive.
Fraedrich et al. [FAW10] dynamically resample from an oc-
tree hierarchy into perspective-space uniform grids of pre-
determined size, and achieve nearly interactive performance
on an NVIDIA 280 GTX up to 42M particles (0.1 fps). This
approach likely remains state-of-the-art, and would be faster
still on current GPU’s. However, it is difficult to fairly eval-
uate, as it uses LOD to prune the particle octree, and filters
pixels through a (trilinearly interpolated) proxy grid volume.
Reda et al. [RKN∗13] demonstrate interactive performance
for megascale molecular data using a uniform grid as an ac-
celeration structure, and volume ray casting from RBF’s in
a GPU shader. Volume rendering of point data has also been
proven on the GPU using even more expensive kernels than
RBFs [LGM∗08, NLKH12].

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

paper 268 / Fast RBF Volume Ray Casting on CPU and MIC 3

2.2. Splatting, particle and glyph approaches
We differentiate between volume rendering of point data
and point-based volume rendering (splatting). Splatting per-
forms reconstruction in image space using different kernels
entirely. While less computationally costly, volume splatting
techniques [ZPvBG01a, CRZP04] are insufficient for repro-
ducing continuous surfaces, and techniques optimized for
surface reconstruction [ZPVBG01b] are ill-suited for vol-
ume rendering. In one of the first applications of volume
rendering SPH data, Kähler et al. [KAH07] used an octree
to simultaneously splat particle data (simplified using LOD)
and volume-render approximated data on a structured grid.
Absent image-space reconstruction, many techniques ex-
ist for fast rasterization or ray casting of large number of
points, glyphs or particle impostors. Gribble et al. [GIK∗07]
employed coherent ray tracing algorithms for the CPU to
efficiently render millions of opaque sphere glyphs. Meg-
amol [GBM∗12] uses a combination of GPU rasterization,
ray casting of sphere impostors, and image-space filter-
ing to efficiently render millions of atoms. Fraedrich et
al. [FSW09] demonstrated an extremely fast out-of-core
LOD particle renderer for real-time rendering of astro-
physics data. In contrast to their SPH volume rendering
work [FAW10], the particle approach is faster by 1-2 orders
of magnitude and excels at its specific application. How-
ever, to reconstruct smooth isosurfaces and classify mate-
rial boundaries, full volume rendering with postclassifica-
tion, thus RBF volume rendering, is necessary.

2.3. Offline and surface approaches
The astrophysics and cosmology communities frequently
employ offline parallel batch tools [Pri07,DRGI08,TSO∗11]
for rendering, plotting and specialized analysis such as ra-
diative transfer [ACP08]. Generally, these do not take ad-
vantage of SIMD, have limited if any GPU acceleration, and
are not suitable for interactive rendering. Splotch [DRGI08]
assumes that particles do not overlap and blends in poten-
tially incorrect order, resulting in artifacts similar to those of
rasterization-based particle renderers. Yt [TSO∗11] converts
data to structured volumes and renderers in software.
A large body of existing work exists on extraction of im-
plicit surfaces from radial basis functions, as pioneered by
Wyvill et al. [WMW86]. Relevant to our examples below,
Navrátil et al. [NJB07] use marching cubes in VTK to ex-
tract single isosurfaces from multifield cosmological data.
Stone et al. [SHUS10] implement CUDA-accelerated iso-
surface extraction from Gaussian RBF fields for fast com-
putation of molecular surfaces. Though efficient, these ap-
proaches would sacrifice reconstruction quality and limit op-
portunities for dynamic classification.

3. Background
This section covers our method’s theoretical underpinnings.
Readers familiar with RBFs (Sections 3.1–3.3) and coherent
ray tracing (Section 3.4) may proceed directly to the presen-
tation of our algorithm in Section 4.

3.1. Radial Basis Functions
A radial basis function (RBF) is a continuous, real-valued
function φ whose value decays with respect to distance from
a particle. A RBF scalar field Φ is defined by summing the
kernels for all kernels i contributing to a point x in space:

di(x) = ||x−xi|| Φ(x) = ∑
i

φi(di(x)) (1)

Common choices of φ are Gaussians or piecewise-smooth
polynomials with compact support. Compact support has
the advantage of having zero contribution outside of the
radius, whereas Gaussians have infinite support and decay
smoothly. It is equally possible to use RBFs that model the
physical properties of the particles, based on empirical or
semi-empirical data (e.g., radially averaged plots for DFT-
plotted molecular data [KCL∗13]). In practice, truncating
Gaussians outside of a sufficiently wide radius of influence
(support) is effective, and allows the user control over de-
sired kernel width. Thus we use the Gaussian kernel

φi(x) = kie−di(x)2/2r2
i (2)

where ki is the value of the kernel (e.g. density), and ri is the
radius of the Gaussian (e.g. covalent radius for molecular
data). We truncate at a support radius of σri, defaulting to
σ = 2; this can be changed by the user dynamically.

3.2. Volume rendering integral
Volume rendering is a special case of the light transport
equation [Kaj86], in which (emissive) irradiance integrated
over t along a ray, for the scalar field Φ and transfer function
with color C and opacity α , is given as:

I(t) =
∫

C(Φ(t))α(Φ(t)) e−
∫ t

a α(Φ(s))dsdt (3)

This is integrated numerically by blending, as sketched in
Listing 1, where dt is the sampling step size.

Listing 1: DVR integration

void dvr_integrate(float Phi, Ray ray, TransFunc tf){
Color s = shade(tf.classify(Phi))
ray.color.a += 1-exp(-s.a * dt)

ray.color.rgb += s.rgb * ray.color.a * (1 - s.a)

}

The main challenge in RBF volume rendering is efficiently
evaluating Φ. As blending is non-commutative, the order in
which samples are integrated in Equation 3 matters. This has
ramifications on the choice of volume rendering algorithm.

3.3. Reconstruction
To reconstruct the scalar field Φ into discrete samples along
viewing rays, we have two options, as shown in Figure 4:

1. Direct method: for each sample, evaluate kernels for all
particles that overlap that sample

2. Proxy method: for each particle, evaluate kernels for all
samples that overlap that particle

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

4 paper 268 / Fast RBF Volume Ray Casting on CPU and MIC

In the direct approach the scalar field is evaluated per-
sample, which easily lends itself trivially to volume render-
ing. Reconstructing Φ(x) requires determining all kernels
whose support overlaps x. This problem is commonly re-
ferred to as region-finding [Sam90], and costs O(Pk N) to
O(P log N) depending on the chosen acceleration structure,
for k desired particles out of N total, and P pixels. While
slicers (e.g. [JWH∗04, JFSP10]) typically perform recon-
struction at all samples, methods employing ray casting with
acceleration structures (e.g. [RKN∗13]) can use the struc-
ture to region-find, skip empty space, and exploit early ray
termination. Though conceptually simple, the direct method
requires repeat evaluation of the same kernels (potentially far
apart in memory) inside a tight inner loop, making it costly.
Pseudocode is given in Listing 2.

Listing 2: Direct (per-sample) method

1 foreach ray
2 foreach sample t in {tenter..texit}

3 vec3f p = ray.org + ray.dir * t
4 {i} = find_neighbors(p)
5 foreach particle i in {i}
6 if (i contains p)
7 Phi += phi(i,p)
8 dvr_integrate(Phi,ray,tf)

Listing 3: Proxy (per-particle) method

1 foreach particle i in tree

2 foreach sample s in Phi_grid overlapped by i
3 vec3f p = Phi_grid.get_vertex(s)
4 Phi_grid[s] += phi(i,p)
5 //render grid with DVR

6 foreach ray
7 foreach sample t in {tenter..texit}

8 dvr_integrate(Phi_grid[t],ray,tf)

In the proxy, or per-particle method, each particle is evalu-
ated only once for all samples that it overlaps. This approach
is taken by all methods precomputing a structured volume,
e.g. the dynamic grid method of Fraedrich et al. [FAW10].
An acceleration structure can also be traversed to cull parti-
cles outside a view frustum or perform level-of-detail simpli-
fication. The obvious advantage is that proxy geometry can
be lower resolution or less expensive to render than the orig-
inal RBF field using the direct method. Equally important,
iterating once over particles that are close together in mem-
ory, for multiple samples in the proxy (also close together)
fosters better access patterns, hence performance gains. The
major disadvantage of the per-particle approach is the mem-
ory required to store the proxy (in many cases larger than the
original RBF data) and worst-case time required to compute
it (linear time for the selected particle data or grid, whichever
is greater). An example for a precomputed uniform grid, and
subsequent volume rendering is sketched in Listing 3.
3.4. Coherent ray tracing and bnsView
Coherent ray tracing [WSBW01] is a technique for bundling
rays together into packets that simultaneously perform
traversal, intersection, and shading routines in lockstep. It
enables efficient use of SIMD vector instructions, with each

(2)(1)

Figure 2: Options for RBF field reconstruction. (1) Direct
method: the field is evaluated directly at each sample along
the ray, which can prove expensive. (2) Proxy method: the
field is resampled into a grid, and then inexpensively recon-
structed from the proxy, at the cost of memory and/or quality.

ray mapped to a separate SIMD lane and ray data laid out in
structure-of-arrays (SOA) fashion. In particular for traver-
sal and intersection, the cost of memory access is amortized
over the number of rays in the packet. Coherent ray trac-
ing methods has enabled interactive ray tracing of polygonal
data on CPUs [BSP06], and efficient visualization of struc-
tured and unstructured data [WFKH07, KTW∗11, BPL∗12].
Coherent BVH traversal [WBS07] is likely the most popular
acceleration method due to performance, simplicity, avail-
ability of fast builders, and graceful degeneration to single-
ray performance for incoherent rays or large data. For struc-
tured volume rendering with coherent BVH traversal, Knoll
et al. [KTW∗11] show that coherent BVH traversal fosters
similar performance for small (2 MB) and large (8 GB) data
of varying resolution, given the same number of samples
along the ray. With SPMD languages such as IVL [LHW12]
and ISPC [PM12], it is possible to write coherent BVH ray
tracers (e.g. Embree [WBW13]) for multiple SIMD hard-
ware backends, including the Xeon Phi.

Our application is built on top of bnsView [KWN∗13], a
molecular visualization tool written in the IVL language that
achieves GPU levels of performance on CPU and MIC ar-
chitectures for ray tracing ball-and-stick molecular models.
Prior to this work, bnsView employed coherent BVH traver-
sal for ball-and-stick rendering, and uniform grid traver-
sal for structured volume rendering of precomputed volume
data. We experimented with straightforward implementation
of the direct approach in bnsView and IVL, using the BVH
for region-finding but not ray traversal, similar to the algo-
rithm in Listing 2. While efficient for small data and opaque
transfer functions encouraging early termination, it exhibited
very slow performance for larger data (over 100K atoms). In
extending bnsView to RBF volume rendering, it was appar-
ent that a new algorithm would be necessary.

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

paper 268 / Fast RBF Volume Ray Casting on CPU and MIC 5

4. RBF DVR with Coherent BVH Traversal
This section describes our algorithm, which applies fast CPU
ray tracing techniques to RBF volume rendering. In particu-
lar, we use coherent BVH traversal to traverse and compute
samples in a RBF field per packet instead of per-ray.

We compute Φ independently of DVR integration by main-
taining a sample buffer, and computing φ once for each par-
ticle for all samples in that buffer. When traversal completes,
the buffered samples are integrated per packet in the correct
order. This approach fosters more coherent memory access
by ensuring that each particle is traversed once in for the
whole packet of rays. In this way, we achieve the advan-
tages of both the direct and proxy methods, accessing mem-
ory in a more coherent per-particle fashion (Listing 3), but
maintaining only a small buffer of samples with little over-
head and the exact same quality as the direct ray casting ap-
proach (Listing 2). Pseudocode for this algorithm is sketched
in Listing 4, and the concept is illustrated in Figure 3.

While it shares some common features with the dynamic
image-space proxy method of Fraedrich et al. [FAW10], our
algorithm is fundamentally new in that:

• by computing samples per-packet versus per-frame, we
require less memory and can store and integrate all sam-
ples required for full ray casting, i.e. without subsampling

• with coherent BVH traversal, we ensure a particle is tra-
versed once for each packet, not once per sample, improv-
ing memory access patterns. We are simultaneously able
to skip space and scale to larger data with no LOD.

• using object-decomposition (the BVH) instead of spa-
tial decomposition (a grid [RKN∗13], kd-tree or octree),
we can efficiently use the same structure for both RBF
volume rendering and ball-and-stick ray tracing, without
traversing duplicate objects/RBFs.

• by performing this integration in multiple passes, we are
able to further lower the memory requirements of our
buffer, and take advantage of early ray termination

Moreover, as discussed in Sections 5 and 6, this algorithm
can run efficiently on non-GPU platforms with larger mem-
ory, and enables analyses that would be difficult with proxy
methods (multi-field classification of different particles).

Listing 4: RBF DVR with coherent BVH traversal

1 void rbf_dvr(Packet packet, float tenter, float texit){

2 foreach bvh leaf i intersected by packet
3 foreach t in {tenter.. texit}

4 Phi_buffer[t] += phi(i,packet.org + packet.dir * t)
5 foreach t in {tenter..texit}

6 dvr_integrate(Phi_buffer[t],packet,tf)
7 if (packet.color.a > .99) break //early termination

8 }

4.1. Coherent RBF volume rendering algorithm
Given a list of particles, a bounding volume hierarchy, a sam-
pling step size dt, transfer function and shading method, our

algorithm performs volume ray casting, e.g. it reconstructs
Φ for samples along each ray, and integrates these samples
front to back (Equation 3).

To accomplish this efficiently, we group rays into packets,
(number of rays per packet N maps to chosen SIMD width;
see Section 5). For each packet, we then do the following:

1. Intersect the packet with the root bounds of the BVH to
find tenter, texit

2. Determine the total number of samples along any ray in
the packet, K = texit - tenter / dt

3. Create a buffer Phi_buffer with K samples for each ray

4. Traverse the BVH, summing φ for every leaf at every
sample (Equation 1) and storing that in Phi_buffer.

5. Integrate Phi_buffer front-to-back along the rays, clas-
sifying and shading as necessary (Equation 3).

This algorithm requires (and takes advantage of) methods to
compute phi() and dvr_integrate() for entire packets
as opposed to single rays. On GPUs this is handled inter-
nally; on CPU and MIC it entails SIMD vector instructions.

Listing 5: Multi-pass algorithm

1 void rbf_dvr_multipass(){
2 foreach packet
3 {first_t, last_t} = AABB_test(packet, bvh.bounds)

4 for (t = first_t; t < last_t; t += Phi_buffer.size){
5 rbf_dvr(packet, t, t + Phi_buffer.size)
6 if (packet.color.a > .99) break
7 }

8 }

4.2. Multi-pass algorithm with early termination
On the CPU and MIC, dynamically allocating a single large
Phi_buffer for each packet works fine and delivers accept-
able performance. However, not surprisingly, we found that
even better performance was possible by allocating a smaller
buffer once and filling it in several separate BVH traversals.
This simply requires replacing Step 2 with K=32 samples)
once and putting Listing 4 in a loop, as sketched in List-
ing 5. For larger data in particular, this has the advantage of
enabling early termination without traversing the full BVH:
when every ray in the packet has reached maximum opacity,
we do not need to proceed with further passes.

5. Implementation
In this section we describe implementation of this method
on CPU and MIC. We chose these architectures for the rea-
sons outlined in the introduction (platform portability, larger
memory) but also because they are well-suited to tackle this
problem. Specifically, CPU and MIC offer:

• Relatively large memory per core (for storing the buffer)

• SIMD vector units, and explicit mechanisms for control
flow both inside and outside of SIMD lanes (to ensure co-
herent traversal and better memory access)

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

6 paper 268 / Fast RBF Volume Ray Casting on CPU and MIC

(a)
X

i

�i()

�

Phi buffer[]

(c)(b)

�1

�2

�3

Z
C�↵� e�

R
↵� ds dt

Figure 3: Coherent RBF algorithm. (a) Iterate through samples along a packet, depositing into a fixed-size buffer. (b) Each
BVH leaf node (particle) adds its value to all samples it overlaps in the buffer. (c) When this buffer has finished traversal, it is
integrated front-to back using Equation 3, and we proceed to the next set of samples.

• Encouragement of large, multi-function kernels designed
to operate independently across separate hardware threads

It would be possible to implement our method effectively
in a framework such as Manta [BSP06], using explicitly
defined ray packets and manually-coded SIMD intrinsics.
However, for portability we desire a system that enables op-
eration on a wider variety of CPUs with different SIMD
“backend” architectures (different versions of SSE, 8-float
AVX, 16-float MIC, and potentially ARM NEON and Blue-
Gene/Q intrinsics). For this, we employ the IVL SPMD com-
piler [LHW12] and the RIVL framework.

5.1. IVL SPMD language

BnsView is a module for RIVL, a ray tracing engine writ-
ten in the IVL SPMD language [LHW12], a research com-
piler which is a close relative of the open-source Intel SPMD
Program Compiler (ISPC) [PM12] maintained by Intel. As
with other SPMD languages on the GPU, IVL kernels are
written in scalar form and execute in parallel across many
threads. Unlike GPU languages, the IVL compiler generates
C++ code, with data automatically laid out in structure-of-
arrays (SOA) format for efficient use of SIMD. In both IVL
and ISPC, the programmer defines variables as uniform

or varying. Semantically, this determines whether they are
scalar or vector quantities, respectively. SPMD control flow
within each thread is handled automatically by the compiler,
which emits standard (C++) conditionals for uniform vari-
ables and SIMD masks for varying quantities. Like ISPC,
IVL has support for multiple SIMD backends (4-float SSE,
8-float AVX, 16-float Xeon Phi, and a “generic” backend for
other architectures), enabling performance and functional-
ity on a wide variety of CPU and MIC hardware. As a re-
search prototype, IVL offers several advantages over ISPC
(full C++ class inheritance, operator overloading, embedded
C++ code). Both ISPC and IVL offer advantages over GPU
languages (support for recursion, little penalty for large ker-
nels or high in-kernel memory usage). It would be straight-
forward to reproduce this work in ISPC using the publicly-
available Embree [WBW13] framework.

5.2. Preprocess
The preprocessing phase is performed when data is read
from disk, either statically or as part of in-transit visualiza-
tion. The BVH is constructed on the host and, if necessary,
data are then sent across the PCI bus to the MIC.

For BVH construction, we currently use the existing single-
threaded SAH builder implemented in RIVL and described
in [KWN∗13]. We use 4 primitives (points) per leaf node;
this can be modified for faster construction at some cost in
rendering performance.

5.3. BnsView framework
BnsView and RIVL, including ball-and-stick and structured
volume rendering are covered in greater detail in [KWN∗13].
RIVL generates camera rays, distributing work to all
CPU/MIC threads and calling the SPMD entry kernel. In,
bnsView, the trace() kernel called by the RIVL renderer
(either a ray tracer or ray caster) consists of two passes:

1. opaque geometry (e.g. ball-and-stick), using the bound-
ing volume herachy. This stores a single opaque hit posi-
tion t_hit along the ray and primitive ID.

2. volume rendering (either structured data, or RBF DVR
using the new technique in this paper), which is then com-
puted for samples from t=0 to t=t_hit, and stores an
integrated color and opacity.

Calling this function recursively, we can achieve secondary
ray effects, such as shadows or ambient occlusion.

5.4. Coherent RBF DVR in IVL
IVL implementation of our method is very similar to the
pseudocode in Listing 4. In SPMD, a packet is simply a
varying Ray, traversed with a uniform stack and pointers
for all SIMD lanes. Otherwise, the differences between our
algorithm and coherent BVH traversal [WBS07] (IVL im-
plementation of which is described in [KWN∗13]) are:

• multiple traversal passes, as described in Section 4.2

• dynamically expanding extents of every BVH node by σ ,
the support radius specified by the user.

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

paper 268 / Fast RBF Volume Ray Casting on CPU and MIC 7

• in a leaf, for each particle, we determine the uniform

minimum and maximum samples overlapping any ray,
then iterate over them adding to Phi_buffer

• when BVH traversal completes (and for each pass), DVR
integration is performed on these buffered samples.

5.5. Shading
For most RBFs, it is straightforward to compute partial
derivatives ∇Φ analytically at the same time that φ is com-
puted. In the case of our Gaussian, this is particularly trivial:

∇Φ(x) =−2Φ(x)(x−xi) (4)

Computing analytical gradients for RBFs incurs little cost, in
contrast to the high expense of central differences gradients
for structured volume rendering in bnsView [KWN∗13]. We
do, however, need to store the gradient in the sample buffer,
which requires quadrupling the size of our sample buffer (4
floats instead of one). On the CPU and MIC, this has rela-
tively low impact (2%) on performance. Performing diffuse
and Phong shading per sample incurs greater cost, but over-
all costs only about roughly 5–10% more than unlit DVR.

5.6. Multi-material selection and classification
An advantage of direct RBF volume rendering the ability
to construct multi-field volume data from a single source
of particles. One can classify separate field using separate
transfer functions, and blend them as separate samples at
the same position. This flexibility enables us to understand
which basis functions are responsible for which regions of
one original scalar field, allowing for classification of dif-
ferent atoms and molecules (in computational chemistry)
or halos (cosmology, astrophysics). Examples are shown in
Figure 5. In the “tryptophan” example we have assigned
separate transfer functions to a molecule (blue tryptophan),
and atoms (white carbon lipids, and orange oxygen at their
tips). This lets users “classify” molecules more effectively
than using standard 1D transfer functions. In a structured
volume framework, e.g. [RKN∗13] this sort of classifica-
tion would require construction, storage and rendering of
separate precomputed volumes. Similarly, dynamic proxies
(e.g. [FAW10]) require additional storage for each field ren-
dered. Since our internal buffer is small (per-thread), this ad-
ditional cost is not prohibitive, even for 4 or more fields. We
find that a buffer with (64 / M) samples per ray, for M fields,
works well on both CPU and MIC.

6. Results
To evaluate our implementation, we conducted the following
benchmarks using a 10242 frame buffer on a visualization
node of Stampede with dual 8-core (16 cores total) 2.7 GHz
Intel R©Xeon

TM
E5-2680 with 32 GB RAM, an Intel R©Xeon

Phi
TM

SE10P with 61 cores at 1.1 GHz with 8 GB RAM,
and an NVIDIA K20 (Kepler) GPU with 6 GB RAM. All
computations were carried out in single-precision floating
point. On the CPU, we used the 8-float AVX instruction set.

6.1. Overall performance and quality
In Figure 5, we examine eight datasets ranging in memory
footprint from 250K to 2.6 GB. Statistics on these data and
BVH are given in Table 1. To explore the potential uses of
our algorithm, and in particular selection (Sec. 5.6) we opted
to benchmark scenes using high- quality multi-field transfer
functions that require high sample rates but do not guarantee
interactive performance. Generally, performance falls in the
1-20 fps range on the MIC and .5-5 fps range on the CPU.
As in [KTW∗11], performance depends more on the number
of volume samples than on the number of particles in the
screen. The smallest (zeolite) and largest (CubeP3M) data
sets are only a factor of 5 apart in close-up frame rate, despite
4 orders of magnitude difference in number of particles.
From a quality perspective, RBF volume rendering enables
filter quality at least as good as cubic B-spline reconstruc-
tion of structured data [SH05], at a cost similar to (lit) struc-
tured volume rendering on CPU or MIC. As always with
volume rendering, the sampling rate and correct parameters
required to render without artifacts depend on the data and
transfer function. Taking into account the multifield classi-
fication options and lower memory and preprocess require-
ments, we claim this method is worth the performance hit
over structured volume rendering. Morever, even at a rela-
tively fine resolution (1 voxel per Angstrom) there are clear
differences between structured and particle DVR (Figure 1).

6.2. Comparisons with Nanovol on the GPU and
structured DVR

In Table 2, we benchmark our RBF method using the trans-
fer functions from [KWN∗13], and compare performance of
RBF DVR to structured volume rendering in bnsView and
both structured and RBF DVR in Nanovol [RKN∗13]. Nano-
vol is a GPU raycaster implemented in the OpenGL shading
language (GLSL). It employs a uniform grid for acceleration
and RBF reconstruction, which is different from the algo-
rithm we have chosen. Nonetheless, it was the only available
GPU implementation we had access to, and the best compar-
ison we can make while noting its limitations. Although we
could not match parameters in our RBF systems perfectly,
using similar transfer functions and the same camera param-
eters our algorithm outperforms the grid-based RBF recon-
struction in Nanovol on the GPU, on average by 10x. While
we believe it would be possible to improve on the Nanovol
GPU RBF implementation, fast RBF volume rendering has
historically proven challenging on GPU’s.
Also from Table 2, comparing our method to structured DVR
(with lighting, of 1-voxel-per-Angstrom data), RBF volume
rendering is slower on MIC (1.5x) but not significantly so.
The performance gap is less significant for larger data, with
RBF volume rendering actually outperforming structured
volumes rendering. On the CPU, likely due to lack of gather,
RBF DVR is in fact consistently faster than structured DVR
by 2x. Although the MIC is 2x – 5x faster than the 16-
core SandyBridge CPU, bnsView is still highly usable on the
CPU – we were able to run all test scenes except CubeP3M

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

8 paper 268 / Fast RBF Volume Ray Casting on CPU and MIC

Dataset zeolite trypt. nanobowl ns.90k ns.740k SiO2 ANP3 CubeP3M
num. particles 3494 6830 21K 92K 742K 4.8M 14.7M 81.4M

data size per timestep (MB) .13 .33 0.8 3 40 160 950 2624
geometry size (MB) .25 .49 0.7 6 52 130 504 3133

BVH size (MB) .16 .339 0.5 4 34 160 430 2056
BVH build time* (s) .0256 .057 0.081 0.91 7.5 50 128 541

Table 1: Data sets in Figure 5, size and preprocess statistics. *Build times are on one thread of Stampede.

Figure 4: Reference scenes rendered with a fixed dt of 0.5, using a standard 1D heatmap transfer function, with lighting
enabled. The left and right five images are far and close reference scenes, respectively. Refer to frame rates in Table 2.

Dataset nanobowl ns.90k ns.740k SiO2 ANP3
structured* bnsView - MIC 36 / 22 12.4 / 14.8 9.98 / 14.1 20.3 / 10.7 1.18 / 14.1

bnsView - CPU 6.15 / 4.02 2.42 / 2.97 1.57 / 2.46 4.51 / 2.02 .35 / 1.91
nanovol - GPU 41 / 32.5 19.5 / 26 6 / 10.7 19.6 / 20.9 2.50 / 17.3

RBF bnsView - MIC 9.7 / 6.9 8.8 / 10.2 6.25 / 7.66 6.44 / 5.30 2.85 / 3.91
bnsView - CPU 3.65 / 2.53 3.8 / 4.0 2.93 / 3.58 2.27 / 2.03 1.06 / 1.07
nanovol - GPU 2.42 / 3.10 0.71 / .65 0.48 / 0.31 1.03 / 0.303 0.83 / 1.0

RBF / structured (MIC) .27x / .31x .71x / .68x .62x / .54x .31x / .50x 2.4x / .28x
RBF / structured (CPU) .60x / .63x 1.57x / 1.34x 1.86x / 1.45x .5x / 1x 3x / .56x

bnsView (MIC) / nanovol (GPU) – RBF 4x / 2.2x 12.4x / 15.7x 13x / 24.7x 6.4x / 17.5x 3.43x / 3.91x
Table 2: Frame rates (far/close) of reference scenes benchmarked in bnsView and Nanovol, using the reference transfer func-
tions from [KWN∗13] and a fixed step size of dt=0.5. (*Structured numbers from [KWN∗13]).

semi-interactively at 5122 resolution on a 4-core IvyBridge
laptop.

7. Conclusion
We have presented a new algorithm for efficient RBF vol-
ume rendering on CPU and MIC architectures. It performs
competitively with the best-known GPU approaches, enables
better image quality at lower memory and preprocessing
costs, and is not significantly slower (and sometimes faster)
than structured volume rendering. Moreover, we were able
to achieve interactive or close performance for volume ren-
dering our largest data sets (up to 82M particles) without
relying on level of detail methods or subsampling. Multi-
material selection (Section 5.6) is a major advantage of this
technique, and in particular could draw chemistry users that
have not previously considered volume rendering as part of
their workflow.
In the near term, we see our system being deployed for in-
transit visualization on supercomputers such as Stampede.
MIC is a new architecture that not all codes can yet lever-
age; this presents opportunities for co-visualization and co-
analysis software that can make effective use of the resource.
We have already used this method for remote in-transit vi-
sualization of molecular dynamics computations (the tryp-
tophan model in Figure 5) in process-parallel, running and
visualizing 50 simulations at the same time as an ensemble.
Live visualization paradigms such as this could help compu-
tational steering. Generally, we hope to continue our work
in portable C++-based SPMD frameworks such as IVL and

ISPC, and develop codes that benefit a wide variety of HPC
users on predominately CPU architectures.
In future work, we wish to improve our currently
non-parallel BVH build. The Intel Embree 2.0 frame-
work [WBW13] offers fast on-the-fly builders [Áfr12] in a
ray tracing framework similar to ours. In addition, we would
like to extend our technique in data-distributed parallel, ad-
dress larger data than would be effective on a single node.
Lastly, we are interested in applications of the multi-atom
classification techniques we have begun to explore in this
paper.

References

[ACP08] ALTAY G., CROFT R. A., PELUPESSY I.: Sphray: a
smoothed particle hydrodynamics ray tracer for radiative transfer.
Monthly Notices of the Royal Astronomical Society 386, 4 (2008),
1931–1946. 3

[Áfr12] ÁFRA A. T.: Incoherent ray tracing without acceleration
structures. In Eurographics (Short Papers) (2012), pp. 97–100. 8

[BPL∗12] BROWNLEE C., PATCHETT J., LO L.-T., DEMARLE
D., MITCHELL C., AHRENS J., HANSEN C. D.: A study of ray
tracing large-scale scientific data in two widely used parallel vi-
sualization applications. In Eurographics Symposium on Parallel
Graphics and Visualization (2012), The Eurographics Associa-
tion, pp. 51–60. 4

[BSP06] BIGLER J., STEPHENS A., PARKER S. G.: Design for
parallel interactive ray tracing systems. In Interactive Ray Trac-
ing 2006 (2006), pp. 187–196. 4, 6

[CRZP04] CHEN W., REN L., ZWICKER M., PFISTER H.:

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

paper 268 / Fast RBF Volume Ray Casting on CPU and MIC 9

Hardware-accelerated adaptive ewa volume splatting. In Pro-
ceedings of the conference on Visualization’04 (2004), IEEE
Computer Society, pp. 67–74. 3

[DCH88] DREBIN R. A., CARPENTER L., HANRAHAN P.: Vol-
ume rendering. In ACM Siggraph Computer Graphics (1988),
vol. 22, ACM, pp. 65–74. 2

[DRGI08] DOLAG K., REINECKE M., GHELLER C., IMBODEN
S.: Splotch: visualizing cosmological simulations. New Journal
of Physics 10, 12 (2008), 125006. 3

[FAW10] FRAEDRICH R., AUER S., WESTERMANN R.: Effi-
cient high-quality volume rendering of sph data. Visualization
and Computer Graphics, IEEE Transactions on 16, 6 (2010),
1533–1540. 1, 2, 3, 4, 5, 7

[FSW09] FRAEDRICH R., SCHNEIDER J., WESTERMANN R.:
Exploring the millennium run-scalable rendering of large-scale
cosmological datasets. Visualization and Computer Graphics,
IEEE Transactions on 15, 6 (2009), 1251–1258. 3

[GBM∗12] GROTTEL S., BECK P., MULLER C., REINA G.,
ROTH J., TREBIN H.-R., ERTL T.: Visualization of electrostatic
dipoles in molecular dynamics of metal oxides. IEEE TVCG 18,
12 (2012), 2061–2068. 3

[GIK∗07] GRIBBLE C. P., IZE T., KENSLER A., WALD I.,
PARKER S. G.: A coherent grid traversal approach to visualiz-
ing particle-based simulation data. Visualization and Computer
Graphics, IEEE Transactions on 13, 4 (2007), 758–768. 3

[JBL∗06] JANG Y., BOTCHEN R. P., LAUSER A., EBERT D. S.,
GAITHER K. P., ERTL T.: Enhancing the interactive visualiza-
tion of procedurally encoded multifield data with ellipsoidal basis
functions. In Computer Graphics Forum (2006), vol. 25, Wiley
Online Library, pp. 587–596. 2

[JFSP10] JANG Y., FUCHS R., SCHINDLER B., PEIKERT R.:
Volumetric evaluation of meshless data from smoothed particle
hydrodynamics simulations. In Proceedings of the 8th IEEE/EG
international conference on Volume Graphics (2010), Eurograph-
ics Association, pp. 45–52. 2, 4

[JV09] JANG Y., VARETTO U.: Interactive volume rendering of
functional representations in quantum chemistry. Visualization
and Computer Graphics, IEEE Transactions on 15, 6 (2009),
1579–5186. 2

[JWH∗04] JANG Y., WEILER M., HOPF M., HUANG J., EBERT
D., GAITHER K., ERTL T.: Interactively visualizing procedu-
rally encoded scalar fields. In VisSym (2004), pp. 35–44. 2, 4

[KAH07] KÄHLER R., ABEL T., HEGE H.-C.: Simultaneous
gpu-assisted raycasting of unstructured point sets and volumetric
grid data. In Proceedings of the Sixth Eurographics/Ieee VGTC
conference on Volume Graphics (2007), Eurographics Associa-
tion, pp. 49–56. 3

[Kaj86] KAJIYA J. T.: The rendering equation. In ACM SIG-
GRAPH Computer Graphics (1986), vol. 20, pp. 143–150. 3

[KCL∗13] KNOLL A., CHAN M., LAU K., LUI B., GREELEY
J., CURTISS L., HERELD M., PAPKA M.: Uncertainty classi-
fication and visualization of molecular interfaces. International
Journal of Uncertainty Quantification 3, 2 (2013), 157–169. 3

[KTW∗11] KNOLL A., THELEN S., WALD I., HANSEN C. D.,
HAGEN H., PAPKA M. E.: Full-resolution interactive CPU vol-
ume rendering with coherent BVH traversal. In Pacific Visual-
ization Symposium (PacificVis) (2011), pp. 3–10. 4, 7

[KWN∗13] KNOLL A., WALD I., NAVRÁTIL P. A., PAPKA
M. E., GAITHER K. P.: Ray tracing and volume rendering large
molecular data on multi-core and many-core architectures. In
Proceedings of the 8th International Workshop on Ultrascale Vi-
sualization (2013), ACM, p. 5. 2, 4, 6, 7, 8

[LGM∗08] LEDERGERBER C., GUENNEBAUD G., MEYER M.,
BACHER M., PFISTER H.: Volume MLS ray casting. IEEE
TVCG 14, 6 (2008), 1372–1379. 2

[LHW12] LEISSA R., HACK S., WALD I.: Extending a c-like
language for portable SIMD programming. In Proceedings of
the 17th ACM SIGPLAN symposium on Principles and Practice
of Parallel Programming (2012), ACM, pp. 65–74. 2, 4, 6

[Mon92] MONAGHAN J. J.: Smoothed particle hydrodynamics.
Ann R Astronomy and Astrophysics 30 (1992), 543–574. 2

[NJB07] NAVRÁTIL P. A., JOHNSON J. L., BROMM V.: Visual-
ization of cosmological particle-based datasets. IEEE TVCG 13,
6 (2007), 1712–1718. 3

[NLKH12] NELSON B., LIU E., KIRBY R. M., HAIMES R.:
Elvis: A system for the accurate and interactive visualization of
high-order finite element solutions. Visualization and Computer
Graphics, IEEE Transactions on 18, 12 (2012), 2325–2334. 2

[PM12] PHARR M., MARK W.: ispc: A SPMD compiler for high-
performance CPU programming. Proceedings of Innovative Par-
allel Computing (InPar) (2012). 4, 6

[Pri07] PRICE D. J.: Splash: An interactive visualisation tool for
smoothed particle hydrodynamics simulations. Publications of
the Astronomical Society of Australia 24, 3 (2007), 159–173. 3

[RKN∗13] REDA K., KNOLL A., NOMURA K., PAPKA M.,
JOHNSON A., LEIGH J.: Visualizing large-scale atomistic simu-
lations in ultra-high resolution immersive environments. In IEEE
LDAV (to appear) (2013). 1, 2, 4, 5, 7

[Sam90] SAMET H.: The design and analysis of spatial data
structures, vol. 199. Addison-Wesley Reading, MA, 1990. 4

[SH05] SIGG C., HADWIGER M.: Fast third-order texture filter-
ing. GPU gems 2 (2005), 313–329. 7

[SHUS10] STONE J., HARDY D., UFIMTSEV I., SCHULTEN K.:
GPU-accelerated molecular modeling coming of age. Journal of
Molecular Graphics and Modeling 29, 2 (2010), 116–125. 3

[TOP13] TOP500.ORG: Architecture Share, November 2013. 1

[TSO∗11] TURK M. J., SMITH B. D., OISHI J. S., SKORY S.,
SKILLMAN S. W., ABEL T., NORMAN M. L.: yt: A multi-code
analysis toolkit for astrophysical simulation data. The Astrophys-
ical Journal Supplement Series 192, 1 (2011), 9. 3

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Transactions on Graphics (TOG) 26, 1 (2007), 6. 4, 6

[WBW13] WOOP S., BENTHIN C., WALD I.: Intel embree 2.0:
Photorealistic ray tracing kernels, http://embree.github.io. 4, 6, 8

[WFKH07] WALD I., FRIEDRICH H., KNOLL A., HANSEN
C. D.: Interactive isosurface ray tracing of time-varying tetra-
hedral volumes. Visualization and Computer Graphics, IEEE
Transactions on 13, 6 (2007), 1727–1734. 4

[WMW86] WYVILL G., MCPHEETERS C., WYVILL B.: Data
structure for soft objects. The Visual Computer 2, 4 (1986), 227–
234. 3

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER
M.: Interactive Rendering with Coherent Ray Tracing. Com-
puter Graphics Forum (Proceedings of EUROGRAPHICS) 20, 3
(2001), 153–164. 4

[ZPvBG01a] ZWICKER M., PFISTER H., VAN BAAR J., GROSS
M.: Ewa volume splatting. In Visualization, 2001. VIS’01. Pro-
ceedings (2001), IEEE, pp. 29–538. 3

[ZPVBG01b] ZWICKER M., PFISTER H., VAN BAAR J., GROSS
M.: Surface splatting. In Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques (2001),
ACM, pp. 371–378. 3

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

10 paper 268 / Fast RBF Volume Ray Casting on CPU and MIC

zeolite (3.5K) tryptophan (6.8K) nanobowl (21K) nanosphere (90K)

(dt=.125, σ=2) (dt=.25, σ=2) (dt=.125, σ=2) (dt=.125, σ=2)
MIC/CPU fps 8.93 / 2.30 15.9 / 5.96 10.8 / 4.0 4.6 / 1.66

(dt=.0625, σ=3) (dt=.125, σ=3) (dt=.125, σ=2.87) (dt=.0625, σ=2)
MIC/CPU fps 2.50 / 0.736 6.96 / 2.49 3.13 / 1.02 3.06 / 0.93

nanosphere (740K) SiO2 (5M) ANP3 (14M) CubeP3M (82M)

(dt=.125, σ=2) (dt=1, σ=3.1) (dt=1, σ=3.5) (dt=1, σ=1.8)
MIC/CPU fps 5.38 / 2.22 9.61 / 3.86 2.80 / 0.97 1.11 / 0.202

(dt=.25, σ=2) (dt=.25, σ=2) (dt=.125, σ=3.1) (dt=.5, σ=2.25)
MIC/CPU fps 6.50 / 2.74 4.85 / 1.68 2.18 / 0.70 0.420 / 0.109

Figure 5: Results on MIC (SE10P) and CPU (dual Xeon E5-2680) at 1 MP (10242).

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

