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Abstract In medicine and the life sciences, volume data are frequently entropic,
containing numerous features at different scales as well as significant noise from
the scan source. Conventional transfer function approaches for direct volume ren-
dering have difficulty handling such data, resulting in poor classification or under-
sampled rendering. Peak finding addresses issues in classifying noisy data by ex-
plicitly solving for isosurfaces at desired peaks in a transfer function. As a result,
one can achieve better classification and visualization with fewer samples and corre-
spondingly higher performance. This paper applies peak finding to several medical
and biological data sets, particularly examining its potential in directly rendering
unfiltered and unsegmented data.

1 Introduction

Direct volume rendering (DVR) is a ubiquitous method for visualizing 3D raster
data, including medical and biological scan data. Volume data in the life sciences
are often noisy and contain features at numerous different scales. This poses diffi-
culties for many classification schemes and automatic transfer function generators.
While gradient-based 2D transfer functions [8] deliver clear improvements, they can
be difficult to create and manipulate compared to 1D approaches. As a result, high-
quality DVR classification methods are often abandoned in favor of more approxi-
mate methods such as unshaded grayscale maximum-intensity projection (MIP), or
simple isosurface rendering.
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Fig. 1 Zoomed-out zebrafish optic tract rendered with peak finding (top) and preintegration (bot-
tom), at 3.0 and 3.4 fps, respectively with a 1440x720 frame buffer.

Similarly, when rendering discrete isosurfaces within a volume, the preferred method
is often to specify the isosurfaces explicitly, or even extract them separately as ge-
ometry, rather than to embed them directly in a transfer function. While it handles
the most glaring artifacts resulted from point-sampled postclassification, preinte-
grated classification [4] must still sample adequately with respect to the Nyquist
frequency of the data, and omits features when it does not.

Peak finding [10] is a recently-proposed classification scheme that bridges DVR
classification and discrete isosurfacing. Rather than sampling uniformly along the
ray, peak finding explicitly solves for peaks in the transfer function at their corre-
sponding isovalues in the data field. By sampling and shading directly at these peaks,
this method achieves better results than postclassification or preintegration when a
transfer function is sufficiently sharp, particularly in the case of Dirac peaks. More
significantly, in the case of entropic data, peak finding can successfully identify fea-
tures at peaks that are omitted by standard methods, even when the chosen transfer
function is modest. While the original paper detailing the peak finding algorithm
revealed the general appeal of this method in handling noisy data, it only examined
one biological data set.

This paper investigates the merits of peak-finding in noisy medical and biological
volume data. In particular, we are interested in the application of peak finding as
an exploratory classification early on in the data analysis pipeline, especially in
visualizing unsegmented and unfiltered data directly from scan source. While peak
finding is clearly useful in some scenarios, we are careful not to oversell its merits.
The goal of this work is to reveal the strengths as well as limitations of peak-finding
as an exploratory classification technique.

2 Related Work
Levoy [13] employed ray casting in the first implementation of direct volume render-
ing. The advent of z-buffer hardware and built-in texture interpolation units allowed
for interactive performance with slice-based rasterization approaches [2, 3]. While
slower per-sample than slicing, volume ray casting methods are feasible on pro-
grammable GPU hardware [11, 22] and currently represent the state-of-the-art [21].
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Isosurface rendering has conventionally been accomplished via mesh extraction
using marching cubes [14] or more sophisticated offline methods [24]. Volume-
isosurface ray casting methods were first conceived by by Sramek [26]. Parker et
al. [20] implemented a tile-based parallel ray tracer and achieved interactive render-
ing of isosurfaces from large structured volumes, employing a hierarchical grid as
a min-max acceleration structure and an analytical cubic root solving technique for
trilinear patches. Hadwiger et al. [6] combined rasterization of min-max blocks with
adaptive sampling and a secant method solver to ray cast discrete isosurfaces on the
GPU. Peak finding [10] is inspired by this approach in that it uses discrete sampling
to isolate roots.

A large body of volume rendering literature deals with transfer functions, both in
how to construct them and employ them in classification. To limit artifacts when
sampling high-frequency features of a transfer function, the best existing approaches
are preintegration [4,15,23] and analytical integration of specially constructed trans-
fer functions [9]. Hadwiger et al. [5] analyze the transfer function for discontinuities
to generate a pre-compressed visibility function employed in volumetric shadow
mapping. Our approach is similar except that we search for local maxima, and use
these directly in enhancing classification.

Higher-order filters have previously been the subject of study for structured [17,19]
and unstructured [12] volumes. In our higher-order reconstructions, we employ a
method similar to [25], in which a 4-point stencil filter is efficiently reconstructed
on the GPU using two linearly interpolated fetches. We also experiment with more
rigorous filters which are processed offline, namely the anisotropic diffusion filter
proposed by Weikert [27].

3 Background
In direct volume rendering, irradiance I is computed as a discrete approximation of
the radiative light transport equation through a continuous scalar field. On a segment
of a ray, this is given by

I(a,b) =
∫ b

a
ρE( f (s))ρα( f (s))e−

∫ s
a ρα ( f (t))dtds (1)

where ρE is the emmissive (color) term and ρα is the opacity term of the transfer
function; a,b are the segment endpoints, and f (t) = f (O + tD) = f (R(t)) is the
scalar field function evaluated at a distance t along the ray. Computing this integral
entails approximating it with discrete samples. With uniformly spaced sampling, we
break up the ray into equally spaced segments and approximate the opacity integral
as a Riemann Sum,

e−
∫ s

a ρα ( f (t))dt =
n

∏
i=0

e−∆ t ρα ( f (i ∆ t)) =
n

∏
i=0

(1−αi) (2)
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where ∆ t is the uniform sampling step, n = (s−a)/∆ t, and

αi ≈ 1− e−∆ t ρα ( f (i ∆ t)) (3)

By discretizing the integral on [a,b] in Equation 1 as a summation, we have the
following discrete approximation for I,

I ≈
n

∑
i=0

ρE(i)
i−1

∏
j=0

(1−α j) (4)

where ρE(i) = ρE( f (i ∆ t)) is given by the transfer function. Evaluating the transfer
function after reconstruction is known as postclassification. While it is equally pos-
sible to classify before filtering, preclassification results in worse reconstruction of
the convolved scalar field and is unnecessary on current hardware.

3.1 Classification methods
Postclassification (Figure 2(a)) usually delivers adequate sampling when the transfer
function and data field are both sufficiently smooth. To accomplish this, one gener-
ally requires a sampling rate beneath the Nyquist limit of this convolved signal. In
rendering high-frequency features, and particularly discrete isosurfaces, postclassi-
fication with a uniform step size will invariably fail. Theoretically, an isosurface is a
subset of a DVR transfer function, consisting of a discrete Dirac impulse at that iso-
value. To visualize this surface in a volume renderer, one must sample that impulse
with an infinite (continuous) sampling rate. In practice, it is generally sufficient to
specify fuzzy isosurfaces, sacrificing some classification precision in the interest of
visual aesthetics.

Engel et al. [4] note that we can effectively sample at the minimum of either the
transfer function or the data frequency. Preintegrated transfer functions build upon
this notion by integrating separately over transfer function and scalar field domains
(Figure 2(b)). This allows isosurface-like features to be rendered more accurately
using a lower sampling rate. However, preintegration still assumes the scalar field
is sampled adequately. When the data itself is noisy, it is often impractical to sam-
ple at the Nyquist limit of the data for reasons of performance. As a result, both
postclassification and preintegration can fail to reconstruct high-frequency features
of interest when undersampling the scalar field. Moreover, preintegration assumes
a piecewise integration over the transfer function domain between two samples,
which does not correspond to the actual scalar field value along the ray, particu-
larly when the source data is entropic. Although interpolating between endpoints
can remove obvious shading artifacts [15], preintegration can still fail to reproduce
features when the data domain is undersampled.

Peak finding [10] performs a similar function as preintegration, but employs stan-
dard point-sampled postclassification when the transfer function frequency is low,
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and an explicit isosurface root-solving technique when the transfer function contains
a peak on a given range. This consists of a precomputation step to identify peaks in
the transfer function, and a root-solving method to solve for them during ray cast-
ing. As a result, sharp features in the transfer function are always approximated by
discrete isosurfaces, which a ray will either hit or miss. In this sense, peak finding
can be seen as a modification to postclassification, but using an adaptive sampling
mechanism to identify sharp features as necessary (Figure 2(c)).

Unlike preintegration, peak finding relies on Descartes’ rule of signs to determine
whether a (root) feature lies between two endpoints of a segment. With preintegra-
tion, the integral of ρ on [a,b] is a piecewise summation of all ρ values between f (a)
and f (b). For this to be accurate, f must vary smoothly between a and b; beyond
general continuity it should be Lipschitz, e.g.

L(a,b) =
|ρ( f (b))−ρ( f (a))|

b−a
< k (5)

where b− a = ∆ t, and this sample rate is chosen according to k. Conversely, peak
finding only requires that the scalar field be monotonic on [a,b] to find and ac-
curately reproduce the high-frequency sample. Clearly, when the data is noisy and
sampled below the Nyquist limit, both conditions can fail. However, monotonicity is
a far weaker requirement than Lipschitz continuity, and the success of peak finding
is due in great part to this difference.

3.2 Peak finding vs. preintegration
Peak finding is attractive in that its algorithm is not significantly different from ei-
ther volume rendering or isosurface ray casting. Both algorithms employ regular
sampling, in the case of DVR to compute the volume rendering integral and in the
case of isosurfacing to isolate roots. Peak finding takes advantage of this and does
both. As a result, this technique can be implemented quickly by extending exist-
ing renderers. Although we propose peak finding in conjunction with differential
sampling, the two techniques are orthogonal. It is equally possible to employ peak
finding in a uniform sampling ray caster, a slice-based volume renderer, or a shear-
warp system. Moreover, as described in Section 4.1, it is simple to extend an exist-
ing preintegration scheme to handle peak finding, with a small modification to the
lookup table construction and classification algorithm.

Overall, peak finding and preintegration are similar, but make different assumptions
about the integral over a given segment. Preintegration assumes this integral can
be accurately approximated by piecewise summation. This works well when the
transfer function and convolved field are smooth, but encounters difficulties when
they are not. Peak finding assumes this integral can be approximated by one or
several discrete impulses. This introduces bias, but is better suited for noisy data
and sharp C0 transfer functions for which standard techniques fail.
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Fig. 2 Postclassification, preintegration and peak finding illustrated.

4 Peak Finding
This section discusses peak finding, which was originally proposed in [10]. We
again note this is not a new contribution, but rather a reiteration of the technique
that will be evaluated in more detail in the remainder of this paper.

Peak finding combines standard postclassification with an explicit ray-isosurface
intersection in high-frequency points of interest at transfer function peaks. Ray-
isosurface intersection consists of solving the reconstruction filter function f (x,y,z)=
υ at an isovalue υ . Substituting the ray equation R(t) = o + dt, we have a one-
dimensional equation in terms of the ray parameter t:

f (x,y,z)−υ = f (R(t))−υ = 0 (6)

In peak finding, we simply need to know the isovalue υ if and where a peak ex-
ists between any two sample values. Then, we can employ a common root-finding
technique to find the t at which to sample.

4.1 Building the peak finding table
The peak finding table is a 2D lookup table as with preintegration. For each dis-
cretized segment, we stores an isovalue υ or (optionally) a set of isovalues υi that
possibly exist within this segment. These values are sorted from the first to last
peak value encountered on a given segment defined by the entry and exit values of
the scalar field function, [ fi, fo]. In cases where ρ is not monotonic on [ fi, fo] and
multiple peaks are encountered, we reverse the order when necessary.

We first build a sorted 1D array of peaks from the transfer function ρα . A peak is
simply defined at a a local maximum. The set of peaks consists of at most half the
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number of actual data points in our piecewise-linear transfer function, but typically
it is far less. Smooth 1D functions such as splines would have relatively fewer peaks,
existing at the critical points of these functions. We, we use piecewise-linear transfer
functions, as we are primarily interested in specifying and handling sharp features.

The lookup table construction then proceeds as follows: for a range of values [i, j]
corresponding to lookup entries from our volume f (t), f (t). If i < j, we search
our transfer function for the next peak point (or in the case of multiple peaks, next
4 points) such that the opacity ρα(υ) > i and ρα(υ) ≤ j. If i > j, we search in
descending order for peaks with ρα(υ)≤ i and ρα(υ) > j. When necessary, a seg-
ment spanning multiple peaks will reverse the sorting order to register all possible
peaks within that segment. This process is again similar to preintegration, except
that separate discrete peak values are stored instead of a single integral approxima-
tion. In each table entry, we store the domain isovalue(s) υ corresponding to each
peak. When no peak exists, we use a flag outside of the range of scalar values in
the volume. Building the lookup table is relatively undemanding, and proceeds in
O(N2) time, similarly to the improved algorithm of [15] for preintegration. In prac-
tice, building a peak-finding table is roughly twice as fast as building a preintegrated
table at the same resolution due to the lack of floating point division. More impor-
tantly, in most cases a coarser discretization (128 or 256 bins) is sufficient for peak
finding, whereas preintegration would require a larger table (512-1024 bins) for
comparable quality when rendering near-discrete isosurfaces, limiting interactivity
when changing the transfer function.

4.2 Classification
In the main ray casting loop (for example in a fragment shader), we can perform
peak finding between samples in the place of a preintegrated lookup. We first query
the peak finding table from a 2D texture to determine whether or not there is a
peak. If the peak exists, we subtract that isovalue from the entry and exit values,
and employ Descartes’ rule of signs. If this test succeeds, we assume the segment
contains a root. Bracketed by t, t, we use three iterations of a secant method (also
employed by [6, 16]) to solve the root:

t1 = t0− f (t0)
t1− t0

f (t1)− f (t0)
(7)

When the secant method completes, we have an estimate for the root t along the ray
segment. We now sample at this position and perform postclassification. However,
sampling at the peak requires two subtle choices. First, we do not evaluate our field
f (R(t)), but rather assume that the value at this point is our desired isovalue. This
works because we are solving for the root position, not its value; moreover for sharp
transfer functions it is crucial in avoiding Moire patterns. Second, we do not not
scale ρα by the segment distance ∆ t (in Equation 3) but instead use a constant
∆ t = 1. Although this may seem counterintuitive, the scaled extinction coefficient
is itself a correction mechanism for the inherently discrete approximation of the
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volume rendering integral. Lastly, one can choose either to solve for a single peak
or up to 4 multiple peaks, depending on their spacing within the volume. In practice,
multiple peaks are seldom necessary, and we do not use them in the examples in this
evaluation.

4.3 Implementation
As in the original peak finding paper [10], our implementation consists of a straight-
forward GLSL shader in OpenGL. The 1D transfer function is given as a set of
points {v,{r,g,b,a}}, then processed into a fairly wide (8K elements) 1D texture,
allowing for rapid access on the GPU and generally sufficient transfer function pre-
cision ∆ f > 1e−4.

For space skipping, we employ a uniform macrocell grid. This is generated directly
from the transfer function on the CPU, stored in a 3D texture on the GPU, and
then traversed directly within the shader via a 3DDDA algorithm [1]. We use a
simple measure of local gradient to adapt the step size within each macrocell. In
this scheme, each macrocell computes a metric based on the ratio of the maximum
standard deviation of its voxels to that of the entire volume, and uses this as a rough
multiplier for the frequency:

m =
√
dVar( fcell)e/dVar( fvol)e (8)

As this corresponds to frequency, its inverse can be used to vary the sampling step
size ∆ t. In practice we wish this to be a positive integer, and a multiplier M =
2m−1 +1 delivers good results.

For dynamic higher-order filtering, we implemented a tricubic B-spline filter us-
ing the method of [25], with the BC smoothing (B = 2,C = 1) kernel of [18]. We
optionally employ this for both sampling and root solving processes.

5 Results
Results were gathered on an NVIDIA 285 GTX at resolutions around 1 MP
(1024x1024). Unless otherwise stated, we disabled differential sampling [10]. While
this results in roughly 1.5x-3x worse performance at equivalent quality, we wished
to evaluate peak finding alone, without this additional control variable. As a result
of this, and of most images requiring over 300 samples per ray for adequate sam-
pling, rendering these data sets is noninteractive (though generally explorable, over
1 fps) for most images in this paper, even on the NVIDIA 285 GTX. We stress that
differential sampling is a practical technique to improve performance at little cost
in visual accuracy. Peak finding can also be implemented in a slicer framework,
which could resulting in improved performance when differential sampling is not
employed. Unfortunately, aggressive rasterization-based culling mechanisms would
be of little use for these data sets, as there is little exploitable empty space. More-
over, the goal of this paper (and peak finding in general) is to show better exploratory
classification rather than ensure interactivity.
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Fig. 3 Axons and glial cells in a zebrafish optic tract acquired through confocal microscopy. Top
left to bottom right: postclassification, preintegration, semi-transparent peak isosurfaces, and peak
finding. These images rendered at 1.9, 1.7, 2.6 and 2.0 fps, respectively at 1024x1024.

We consider three data sets in this paper that we believe are fairly representative of
biological and medical volume data. The first is a moderately large (910x512x910)
segmented data set of a zebrafish optic tract acquired through scanning electron mi-
croscopy [7]. The next is a highly noisy volume containing a zebrafish embryo, also
acquired through microscopy. Finally, we consider a brain MRI before and after seg-
mentation. Most of these datasets benefit from moderately sharp (though not Dirac)
transfer functions when performing 1D classification; in most cases peak finding
aids in highlighting sharp surface features, though not necessarily in correcting other
artifacts stemming from scan, segmentation or reconstruction deficiencies.
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5.1 Zebrafish Optic Tract
In Figure 3, we consider a close-up of the zebrafish optic tract with postclassifi-
cation, preintegration, isosurfacing only, and peak finding. This scene is similar to
that in the original peak finding paper [10] but with a more revealing transfer func-
tion, and with results considered in greater detail. The transfer function consists of
a moderately sharp peak, as shown in the teaser (Figure 1). Both postclassification
and preintegration significantly undersample the sharp feature corresponding to the
axons. While increasing the sampling rate can ultimately alleviate this problem, it
is computationally prohibitive; with preintegration we needed roughly 12 times as
high as sampling rate to achieve comparable feature reconstruction, resulting in a
frame rate of 0.1 fps for these images.

Not all surface features are omitted by standard DVR when sampling below the
data Nyquist limit. Indeed, large membranes such as the feature in the upper-left
corner are successfully reproduced by standard methods. However, features defined
beneath the sampling frequency are generally omitted. For moderately large data
such as the zebrafish, this in fact encompasses most features the user would be in-
terested in, i.e. axons and glial cells. Finally, while rendering of discrete isosurfaces
at the transfer function peaks is useful, it tells us nothing about the density of the
interstitial media. Rendering with peak finding has the advantage of improved depth
perception, and more flexible classification.

5.2 Filtered vs. unfiltered
To evaluate peak finding on filtered data, we consider zebrafish embryo data also
acquired through electron microscopy. Though smaller, it is noisier than the optic
tract and more difficult to classify. One goal in analyzing this data is to identify
distinct cells and their boundaries as they undergo mitosis. Even with a smoothing
filter, it is difficult to analyze this data without more sophisticated segementation or
analysis. With peak finding, our goal is simply to better visualize cell boundaries
where they might exist.

5.2.1 Dynamic filtering
We use a strong smoothing filter from the BC family (B = 2,C = 1), which consists
of an blend between tri-cubic Catmull-Rom (interpolation) and B-spline (smooth-
ing) bases. More details are discussed by Mitchell [18].

Figure 4 illustrates the difference between standard trilinear interpolation and tricu-
bic BC filtering. In all cases, peak finding helps us find a particularly sharp boundary
near the cell membrane, which helps visually separate cell interiors from the out-
side glial fluid. The original data is sufficiently noisy that it is difficult to discern
cells with both standard DVR and semi-transparent isosurfacing. With peak finding,
it is still difficult to interpret, but specifying a sharp feature at the cell membrane
provides better intuition. Combining this with clipping planes yields reasonable
first-glance classification, without needing to classify data offline or employ more
complicated 2D transfer functions.
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Fig. 4 Zebrafish embryo with trilinear (left), dynamic B-spline (right) filtering, using preintegra-
tion (top), isosurfacing (middle) and peak finding (bottom).

One advantage of peak finding is that when dynamic higher-order filters are used
to reconstruct data, the root-solving technique can use those as well, effectively al-
lowing for direct raycasting of higher-order isosurfaces within the DVR framework.
Conversely, employing a smoothing filter can improve the entropy of the original
scalar field function, effectively making ρ( f ) more Lipschitz and lessening the need
for peak finding. In most cases, peak finding remains useful nonetheless, as strong
smoothing reconstructions can remove features from the data before they become
renderable with standard techniques at lower frequencies.

5.2.2 Static (preprocessed) filtering
An wider assortment of reconstructions, such as Kalman filters [7] or anisotropic
diffusion filtering [27] can be afforded via offline filtering of the volume data. These
are often employed as a first step for highly noisy data such as the zebrafish embryo.
Unfortunately, we cannot use this filter kernel in DVR sampling or peak finding be-
tween discrete voxels. In the example in Figure 5, where data is processed with an
anisotropic diffusion filter, the scalar field is smoothed to the point that conventional
classification techniques begin to work. Unlike in the previous example (Figure 4), it
is possible to distinguish cell boundaries with preintegration, and peak finding helps
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Fig. 5 Embryo dataset preprocessed offline with an anisotropic diffusion filter, with peak finding
(top), postclassification (bottom left) and semitransparent isosurfacing (bottom right).

subtly, if at all. It is interesting to note that with high sampling rates and turbulent
(though not excessively noisy) data such as the example in Figure 5, peak finding
optical effects similar to subsurface scattering, despite only employing straight pri-
mary rays. This arguably helps accentuate boundaries.

5.3 Limitations of Peak Finding
When beginning this evaluation, we were hopeful that peak finding would provide
useful insights towards two difficult problems in visualization: directly rendering
unsegmented volumes, and handling anisotropic gaps in data scanned slice-by-slice.
Unfortunately, these pose issues beyond the realm of surface reconstruction from a
given filter, and are not addressed by peak finding.

5.3.1 Unsegmented volume data
We applied preintegration and peak finding to an MRI scan of a brain before and af-
ter segmentation (Figure 6). Unfortunately, peak finding if anything exhibits worse
results than standard DVR, due to the worse occlusion of boundary features. Con-
sidering this problem more carefully, it is clear why peak finding is not helpful:
segmentation is really an art of identifying connected 3-manifolds and labelling
them correctly, rather than simply identifying fine 2-manifold boundaries (which
peak-finding successfully does).
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Fig. 6 Top: unsegmented MRI scan. Neither preintegration (left) nor peak finding (right) result in
useful visualization of boundaries. Bottom: in some cases, preintegration fails to reconstruct sharp
boundaries that peak finding detects.

Fig. 7 Anisotropic gaps in the volume data, with peak finding (top) and preintegration (bottom).
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5.3.2 Anisotropic Gaps
Individual slices can often be ommitted in CT or microscopy acquisition, leaving
conspicuous gaps in the volume. Ideally, it would be useful to reconstruct features
between these gaps. For small gaps, we considered using peak finding and a higher-
order smoothing filter to simply interpolate values across neighboring voxels. How-
ever, peak finding only accentuates these omissions, as shown in Figure 7. This is
not necessarily undesirable; and in a sense is to be expected. It is again worth noting
that peak finding does not repair artifacts inherent to the original scalar field.

6 Discussion
Peak finding is a simple classification technique that delivers concrete advantages
to biological and medical visualization, as well as any visualization of noisy data
with sharp 2-manifold boundaries. When rendering sharp transfer functions and re-
constructing surfaces, it poses significant advantages over preintegration, which has
been conventionally used for this purpose. While not a replacement for advanced
surface reconstruction or poor segmentation, it is a useful exploratory tool for sci-
entific visualization.

The classifications used in this paper were all 1D transfer functions. It is important
to note that many of the abilities of peak finding can be achieved with 2D gradient-
magnitude classification at even lower sampling rates. However, it is theoretically
possible to perform multidimensional peak finding, therefore a comparison of mul-
tidimensional classification methods should consider both methods. We are greatly
interested in pursuing such an evaluation as future work.
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