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ABSTRACT

For neuro-biologists to understand the working of the central nervous system,

they need to reconstruct the underlying neural circuitry. The neural circuit, which

consists of the neuron cells and synapses in a 3D volume of tissue are scanned

slice-by-slice at very high magnifications using an Electron microscope. From

the electron microscopy images, the neurons and their connections(synapses) are

identified to layout the connections of the neural circuitry.

One of the necessary tasks in this process is to segment the individual neurons

in the images of the sliced volume. To effectively carryout this segmentation

we need to delineate the cell membranes of the neurons. For this purpose, we

propose a supervised learning approach to detect the cell membranes. The classifier

was trained using decision stumps boosted using AdaBoost, on local and context

features. The features were selected to highlight the curve like characteristics

of cell membranes. It is also shown that using features from context positions

allows for more information to be utilized in the classification. Together with

the nonlinear discrimination ability of the AdaBoost classifier there are clearly

noticeable improvements over previously used methods. We also detail several

experiments conducted for identification of synapse structures in the microscopy

images.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Neuro-scientists are currently developing new imaging techniques to better un-

derstand the complex structure of the central nervous system. In particular, re-

searchers are making efforts to map the connectivity of large volumes of individual

neurons in order to understand how signals are communicated across processes.

Mapping the connectivity of large volumes help in identification of network mo-

tifs [2]. The most extensive study undertaken thus far uses electron microscopy

to create detailed diagrams of neuronal structure [3] and connectivity [4, 5]. The

most well known example of neural circuit reconstruction is of the 302 neurons

in the C. elegans worm. Even though this is one of the simplest organisms with

a nervous system, the manual reconstruction process took ten years [5]. Human

interpretation of data over large volumes of neural anatomy is so labor intensive

that very little ground truth exists. For this reason, image processing and machine

learning algorithms are needed to automate the process and allow analysis of large

datasets by neural circuit reconstruction.

Serial-section transmission electron microscopy (TEM) is the preferred data

acquisition technology for capturing images of large sections of neuronal tissue.

Images from TEM span a wide field of view, capturing processes that may wander

through a specimen and have an in-plane resolution useful for identifying cellular

features such as synapses. These structures are critical in understanding neuron

activity and function. Images from serial-section TEM are captured by cutting a

section from the specimen and suspending it over an electron beam which passes

through the section creating a projection which is captured as a digital image. See
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figure 3.2(a) for an example serial-section TEM image corresponding to a cross-

section of the nematode C. elegans with a resolution of 6nm×6nm×33nm.

1.1.1 Previous work

An accurate mapping of neuron features begins with the segmentation of the

neuron boundaries. Jurrus et al. [1] uses these boundaries to extract the three

dimensional connectivity present in similar image volumes. In their method, a

contrast enhancing filter followed by a directional diffusion filter is applied to the

raw images to enhance and connect cellular membranes. The images are then

thresholded and neuron cell bodies are identified using a watershed segmentation

method. This method fails when membranes are weak or there are too many intra-

cellular features. This indicates that more adaptive algorithms need to be developed

to segment these structures. For this reason, machine learning algorithms have been

shown as a successful alternative for identifying membranes in TEM data. In related

work, Jain et al. [6] uses a multilayer convolution neural network to classify pixels as

membrane and non-membrane. However, the stain used on the specimen highlights

cell boundaries, attenuating intracellular structures, simplifying the segmentation

task. Another successful application of learning applied to TEM is the use of a

perceptron trained with a set of predefined image features [7]. However, extensive

post processing is required to close the detected cell membranes and remove internal

cellular structures.

1.1.2 Our work

Our method described in this thesis improves upon previous work by utilizing

context information for discrimination of membrane pixels from the non-membrane

pixels. By including the features of neighboring pixels as inputs to the classifier, the

classifier can utilize the context to deal with membrane disconnectivities. The fea-

tures were designed to improve the classification accuracy of elongated structures,

like the membranes. The non-linear decision boundary is learnt by a classifier

trained under the AdaBoost framework.

We also attempted identification of the synapses in the images. Region based
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attributes were used to quantify the shape of the regions. A framework capable

of detecting rare events effectively was used to detect synapses since synapses are

sparsely distributed across the image mosaic.

The following section gives the overview of the entire thesis.

1.2 Outline

The remaining chapters of this thesis is organized as follows:

• Chapter 2 provides background material for the rest of the thesis. Section 2.1

gives a brief overview of neural circuitry, TEM and image acquisition using TEM

are described in section 2.2. Section 2.3, Section 2.4 give a brief introduction to

decision stumps and AdaBoost. Lastly in section 2.5 we discuss about our classifier’s

performance on artificial datasets and it’s limitations.

• Chapter 3 is divided into two major sections. Section 3.2 and section 3.3

are dedicated to cell membrane detection and synspase detection respectively. Sec-

tion 3.1 describes about the pre-processing of images before setting up the classifica-

tion experiment. Sections 3.2.1 and 3.3.1 describe the features used by the classifier.

The last sub-sections (section 3.2.2 and section 3.3.2) explains the machine learning

classifier setup in detail.

• Chapter 4 presents a detailed evaluation of the proposed methods of cell

membrane detection and synapse detection. Section 4.1 discusses the cell membrane

detection classifier training and testing on a C. elegans worm dataset. Whereas the

synapse detection algorithm is run over a rabbit retina dataset. It is discussed in

section 4.2.

• Chapter 5 concludes the thesis and discusses the contributions of this thesis

(section 5.1) and proposed future work(section 5.2).



CHAPTER 2

BACKGROUND

This chapter provides the necessary background information about the data used

in the experiments. It also gives the basic information necessary to understand the

experiment setup.

2.1 Neural circuitry

(a) C. elegans worm neural tissue (b) Rabbit retina neural tissue

Figure 2.1. Neural tissue slices of C. elegans worm and rabbit retina

The nervous systems of animals are made up of numerous neural circuits that

transmit and process the sensory perception signals, motor activity control signals

of these organisms. The neural circuits are a collection of neurons interconnected

to each other communicating through electrochemical reactions and electrical im-

pulses. There are various types of neuronal cells and equally numerous types of in-
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terconnections between them. The complexity of the neural circuit is dependent on

the types of neurons and their interconnectivity. The communication between these

neurons are through synapses which through the electrically excitable membranes

of neurons propagate the electrical signals. The physical structure of the neural

circuit can be observed using high magnification electron microscopes. Sample

images of neural circuits of C. elegans and rabbit mouse retina are shown in the

figure 2.1. In both the images of figure 2.1 we can see cell membranes separating

one neuron from the other.

(a) Synapse 1 (b) Synapse 2 (c) Synapse 3 (d) Synapse 4

Figure 2.2. Neural tissue slices of rabbit retina showing synapses

The images in figure 2.2 show the synapse structures near the cell membranes.

The bulged shape is because of accumulation of vesicles near the region of trans-

mission. This bulged dark region is called the post synaptic density of the synapse.

There are various other types of synapses that result in just darkening of the

membrane structure. There is a type of synapse called as the ”Gap junction”

which are rod like structures spanning across neurons. This synapse structure

shows clumping of the vesicles even in the interior of the neurons.

2.2 Transmission electron microscopy

Transmission electron microscopy(TEM) is a microscopy technique in which a

beam of electrons is transmitted through a very thin sliced specimen (in order of

micrometers or nanometers) interacting with the specimen as they pass through.

This interaction of electrons with the specimen results in an image of the specimen,

which is then magnified and focused onto an imaging devices like a fluorescent
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screen or a photographic film. Modern microscopes have CCD cameras to directly

digitize these high resolution images.

Since electrons are equivalent to electromagnetic waves of very small wavelength,

TEMs are capable of very high resolution (in order of nanometer/pixel) images

compared to light microscopes which operates with electromagnetic waves of much

higher wavelength. This enables the neural tissues to be scanned at very high

magnifications.

2.2.1 Components and working

The TEM is vacuumized system where the electrons travel and interact with

the specimen. One end of the TEM has an electron gun which is the source of the

beam of electrons. The other end of the TEM has the imaging device to capture the

image of the specimen. There are a series of electromagnetic lenses and electrostatic

plates that guide the electron beam through the specimen and focus on the imaging

device. The imaging device provides the observer with the image of the specimen

under observation.

2.2.2 Challenges

The usage of TEM for imaging the neural tissue has the following challenges:

Since the TEM operate at very high magnifications, it can scan only a small area

of the specimen. But the neural tissue spans much more than a few microns thus

a single specimen has to be scanned as multiple tiles. Since electron beams are

equivalent to high energy beams impacting the specimen, it causes non-uniform

heating of the tissue and subsequent distortion of the sample.

2.2.3 Data preparation

The section of neural tissue that is the region of interest is pigmented and frozen.

Then thin specimens are sliced out using a microtome. Once ultrathin specimens

are prepared, as discussed in the Section 2.2.2, the specimens are imaged as tiles.

The ir-tool chain [2] is used to assemble the tiles to a mosaic and further the slices

are registered together to reconstruct the final volume.
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2.3 Decision stumps

The decision stump is a special case of decision tree which is a class of supervised

learning algorithms frequently used in data mining and machine learning.

Sample X

(N attributes)

Is

(X[attributen] > threshold)

Class 1

No

Class 0

Yes

Figure 2.3. Decision Stump

Figure 2.4 and figure 2.3 shows an example of a decision tree and a decision

stump respectively. The algorithm constructs a decision tree with just one decision

node and two classification leaves during training based on a given set of training

samples. It is the weak learner i.e. It cannot give the best classification for

the samples but a rather simple and fast classifier with accuracy at least just

greater than 50% where possible. The following section explains the learning and

classification of samples using decision stumps.

2.3.1 Decision stump learning

Like rest of the supervised learning algorithms the the learning algorithm takes

the following as the input:

1. Attributes

2. Attribute values

3. Sample classification
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Sample X

(N attributes)

Is

(X[attributep] > thresholdp)

Yes

Is

(X[attributen] > thresholdn)
NoYes

Is

(X[attributeq] > thresholdq)

Yes

Is

(X[attributem] > thresholdm)

Is

(X[attributer] > thresholdr)

Class 0

No

Class 1

Yes

Class 0

No

Class 0 Class 1

Class 1

Figure 2.4. Decision Tree

4. Sample weights

The learning algorithm chooses the attribute and a threshold value that gives the

best classification performance and margin for the decision stump as classifier.

2.3.2 Decision stump classification

The classification of a test sample based on the learnt model is trivial. The model

gives the attribute, threshold value and the inequality relation of the attribute value

to the threshold. The evaluation of the inequality equation gives the classification

of the sample.

2.4 AdaBoost

AdaBoost is a type of boosting algorithm. Boosting is an ensemble learning

technique where weak learners such as decision stumps are used as components to

create strong classifiers. The AdaBoost meta-algorithm at each round learns a weak

classifier with accuracy at least greater than 50% for a set of weighted samples. This
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weak classifier adds to the set of weak classifiers learnt in the previous rounds. The

final classification depends on the classification of weak learners in each round.

2.5 Classifier on artificial datasets

The boosted decision stumps were tested for their classification performance on

few artificial datasets before applying to the real image datasets. This was done to

access the performance of the classifier on certain specific nature of these datasets.

The datasets and their unique traits are listed below:

1. Crescent dataset - Linearly non-separable

2. Concentric circles dataset - Linearly non-separable and mean of the classes

are very close to each other if not the same

3. Star dataset - Linearly non-separable and multiple clustering of samples of

same dataset

4. Non-axis aligned dataset - Decision boundary is not aligned to any of the

dimension’s axes

The results of such experiments are discussed in the following sections.

2.5.1 Crescent dataset

The Table 2.1 describes the dataset properties. The Figure 2.5 shows a typical

crescent dataset and Figure 2.6 shows the performance of the classifier at various

rounds of the learning.

Table 2.1. Crescent dataset properties
Attribute Attribute nature
Data dimensionality 2
Number of classes 2
Separability Separable but linearly non-separable
Description The samples of one class are distributed as a crescent. The

mean of the samples are clearly separated.
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Figure 2.6. Classifier Performance at every round

2.5.2 Concentric circles dataset

The Table 2.2 describes the dataset properties. The Figure 2.7 shows a typical

concentric circles dataset and Figure 2.7 shows the performance of the classifier at

various rounds of the learning.

2.5.3 Star dataset

The Table 2.3 describes the dataset properties. The Figure 2.9 shows a typical

star dataset and Figure 2.9 shows the performance of the classifier at various rounds
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Table 2.2. Concentric circles dataset properties
Attribute Attribute nature
Data dimensionality 2
Number of classes 2
Separability Separable but linearly non-separable
Description The samples of one class are distributed within a circle.

The other class is a ring surrounding the other class. The
mean of the samples are very close to each other.
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Figure 2.7. Concentric circles dataset

of the learning.

2.5.4 Non-axis aligned dataset

We have seen that the classifier is able to learn all the above artificial datasets to

100 percent accuracy in training. One of the main disadvantages of using decision

stumps as weak classifiers is that the model cannot learn classifications based on

multiple attributes or it can learn based on distribution of just one attribute. This

statement is corroborated in the following experiment with non-axis aligned dataset.

The Table 2.4 describes the dataset properties. The Figure 2.11 shows a typical

non-axis aligned dataset and Figure 2.12 shows the performance of the classifier

at various rounds of the learning. We can see from Figure 2.12 that the classifier

takes many rounds to learn 2D linear decision boundary. The next Section 2.5.5

compares the classification performance of boosted decision stump classifier with
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Figure 2.8. Classifier Performance at every round

Table 2.3. Star dataset properties
Attribute Attribute nature
Data dimensionality 2
Number of classes 2
Separability Separable but linearly non-separable
Description The samples of one class are distributed as four distinct

clusters with cluster centers on the axis and equidistant
from the origin. The samples of the other classes are
distributed as clusters with centers exactly in between the
clusters of the other class. The mean of the samples are
very close to each other.

other types of classifiers.

2.5.5 Comparison with other classifiers

There are more complex learning algorithms like a perceptron that can learn

these kind of distinct linear decision boundaries in just one round of learning.

Support vector machines(SVM) are capable of projecting the data into infinite

dimension using the kernel trick and learn non-linear decision boundaries. Here

we have conducted experiments with SVMs which are capable of learning decision

boundaries with maximum margin. The test results of few such algorithms are

shown in the following table.

The problem with these models are that their training time increases a lot with
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Figure 2.10. Classifier Performance at every round

the increase in dimensionality and number of samples of the training dataset. We

tried training the SVM classifiers on microscopy datasets on subset of its samples

and it didn’t yield the same classification performance as the boosted decision

stumps trained on the whole dataset. Thus we chose the decision stump based

classifier for our problem.
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Table 2.4. Non-axis aligned dataset properties
Attribute Attribute nature
Data dimensionality 2
Number of classes 2
Separability Linearly non-separable
Description The samples of both classes are Gaussian distributions

with variance along one direction much larger than the
other variance in direction in the perpendicular direction.
The two classes are separated by a linear decision boundary
that is not parallel to any of the axis. The mean of the
samples are well separated from each other.
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Figure 2.11. Non-axis aligned dataset
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Figure 2.12. Classifier Performance at every round
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Table 2.5. Comparison of classifiers
Classifier Boosting

rounds
AdaBoost and decision
stump

≥6

AdaBoost and percep-
tron

1

AdaBoost and SVM with
linear kernel

1

AdaBoost and SVM with
RBF kernel

1



CHAPTER 3

METHODS
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Figure 3.1. Block diagram of the proposed methods in the overall reconstruction
pipeline

This chapter describes the proposed methods for Membrane detection and Synapse

detection in detail. Figure 3.1 provides an overview of the fundamental steps. Ini-

tially, the contrast of the gray scale images are normalized using CLAHE [8]. Then

the feature values for the individual pixels of the enhanced images are generated.

Using the ground truth markup of cell membranes and synapses for these images,

a supervised learning experiment is setup. The decision stumps (weak classifiers)

are boosted [9] for several rounds until a high accuracy classifier is obtained in

case of the membrane detection experiment. In case of synapse detection, the same

classifier is used in a cascaded architecture. The following sections review these

steps in greater detail.

3.1 Image Enhancement

Before the images are used for feature extraction step, a contrast limited adap-

tive histogram equalization (CLAHE) [8] is applied to the raw electron microscopy
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(a) Original Image (b) CLAHE Enhanced Image

Figure 3.2. Comparison between Original and CLAHE enhanced image

images. This method changes the grey value of the pixels depending upon the

pixel values of neighboring pixels in the image thus improving the local contrast.

This improves the contrast of the cell membranes locally against the contents

inside and outside the neuron cell, and also fixes overall brightness variability

between images [1]. The decrease in variability greatly helps the classifier since

it reduces the difference between training images, between training and testing

images. An example of such CLAHE enhancement is shown in figure 3.2. The

CLAHE algorithm is shown in Algorithm 1.

3.2 Cell Membrane Detection

3.2.1 Features

Four features were computed for each pixel in the image: the pixel intensity,

and eigenvalues and orientation of the first eigenvector of the Gaussian smoothed

Hessian matrix. The gray value of the pixel is utilized since membranes are usually

dark and therefore is useful for segmentation, as verified in previous works [1, 6, 7].

The other three features are properties derived from the Gaussian smoothed Hessian

matrix,
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Algorithm 1 CLAHE

I ← Image to be enhanced
O ← Enhanced Image
W ← Moving window
s← Maximum contrast limit
(n, n)← Height and width of W
Pad image I with (n− 1)/2 pixels on all sides
for For every pixel p in I do

Construct window W around pixel p
pW ← PDF of grey values of pixels in W
cW ← CDF of grey values of pixels in W such that the max difference between
consecutive bins in s
Op ← cW (pixelp)

end for

H(x, y) = Gσ ∗

[
∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2

]
, (3.1)

where I is the (CLAHE enhanced) image, and Gσ is the Gaussian blurring ker-

nel with standard deviation σ. The Hessian matrix was used in the context of

filtering [10] and segmenting [7] electron microscopy images. Since membranes are

elongated structures the eigenvalues of the smoothened Hessian matrix represent

the anisotropic nature of the region around the pixel. The eigenvalue of the

principal eigenvector of the Hessian is proportional to the gradient orthogonal to

the membrane and the smaller eigenvalue is proportional to the gradient along

the cell membrane. The ability of this feature to measure the anisotropic nature

of the shape can be seen when we compare the eigenvalues of ellipses of different

eccentricities.

The eigenvalues of ellipse of different eccentricities are shown in the table 3.1.

As we see the eigenvalue of the principal eigenvector increases with increase in

eccentricity of the ellipse as expected. Thus when the ratio of the major axis to

the minor axis is near one, the shape is more circular and the blob region is more

likely to represent a vesicle than a membrane.

The fourth feature is the orientation of the principal eigenvector at that point.

The inclusion of the this feature gains significance during learning of the classifier
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Table 3.1. Eigenvalue of ellipses of different parameters
Ellipse Parameters Ratio of eigenvalues

Major axis = 20, Minor
axis = 20

1:1

Major axis = 20, Minor
axis = 40

2:1

Major axis = 100, Minor
axis = 10

10:1

because the neighboring pixels features are also considered.

The feature vector for every pixel in the image consists of the feature values

of that pixel and of its neighbors. The neighborhood is defined by a star shaped

stencil with its 8 arms forking out every 45 degrees (figure 3.3). We show in the

results section that the neighboring pixel features adds relevant information for the

classification. The context helps to identify membranes at regions were there are

minor discontinuities, as it allows for the classifier to utilize the context information

to “interpolate” the cell membrane. In this regard, the orientation feature plays

an important role by imposing a smoothness constraint on the curvature of the

membrane.
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Figure 3.3. Stencil neighborhood.

3.2.2 Classifier

We propose to utilize a classifier trained with AdaBoost [9] since such a classifier

can model a nonlinear decision boundary. AdaBoost is a meta-algorithm that

builds the classifier from “weak” classifiers, such as a decision stump. At each

round, AdaBoost adds a weak classifier to the set of weak classifiers by training

for best classification performance according to samples weights. The sample

weights are varied depending on the classification result of the previous round, by

increasing the weights of incorrectly classified samples and decreasing the weights

of correctly classified samples. The final classifier is a weighted sum of the weak

classifiers according to their accuracy in the training rounds. It has been observed

in previous experiments that the obtained classifiers generally do not over fit to

training data [11]. The algorithm for AdaBoost is given in Algorithm 2.

In this paper, decision stumps are used for the weak classifier. Decision stumps

are the simplest form of binary decision trees with just one decision node. The deci-

sion stump makes the classification decision based on just the value of a particular

feature with respect to a threshold. Given the feature set, desired classification

and prior of the samples, the threshold for a particular feature can be chosen

based on the probability distribution functions of membrane and non-membrane

classes over the feature values without making any underlying assumption about

the distribution of the feature. This gives the stump of best accuracy compared to

the ones built using other metrics like information gain. The AdaBoost mechanism

along with the decision stump classifier acts as a feature selection mechanism [11].
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Algorithm 2 AdaBoost

X ← Samples
Y ← Classification
N ← Number of samples
D ← Number of dimensions
T ← Number of rounds of boosting
W1(n)← 1

N
, where n = 1 . . . N {Initializing weight distribution of samples}

for t = 1 . . . T do
ht ← Train weak learner using weight distribution Wt

εt ←
N∑
n=1

Wt(n)[yn 6= ht(xn)]{Calculate weighted error rate}

αt ← 1
2
ln1−εt

εt

Wt+1(n)← Wt(n)eαtynht(xn){Calculate new weight distribution}
Wt+1(n)← Wt+1(n)

N∑
n=1

Wt+1(n)

{Normalize weights}

end for

Final boosted classifier H(x)← sign(
T∑
t=1

αtht(x))

Algorithm 3 shown the algorithm for building the decision stump with maximum

classification performance. The algorithm is modified to get maximum performance

by vectorizing the operations. This algorithm also takes care of maximizing the

margin for the decision boundary.

The various functions specified in the algorithm are specified in the following

figures:

1. fpos, PDF of class 1 samples← Class 1 function of figure 3.4(a)

2. fneg, PDF of class 0 samples← Class 0 function of figure 3.4(a)

3. cpos, CDF of class 1 samples← Class 1 function of figure 3.4(b)

4. cneg, CDF of class 0 samples← Class 0 function of figure 3.4(b)

5. ipos, CDF of class 1 samples normalized over the entire sample set← Class 1

function of figure 3.4(c)
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Algorithm 3 Decision stump learning (Vectorized)

X ← Samples
Y ← Classification
N ← Number of samples
D ← Number of dimensions
W ← Weight distribution of samples
for d = 1 . . . D do

[Xdsorted, sortIndices]← sort(Xd){Sort attribute values of one dimension}
fpos ← PDF of sample of class 1 weighted by distribution W
fneg ← PDF of sample of class 0 weighted by distribution W
cpos ← CDF of sample of class 1 weighted by distribution W
cneg ← CDF of sample of class 0 weighted by distribution W
ipos ← cpos
ineg ← max(cneg)− cneg
for t = Every value of Xd do
Accuracy1(t)← ipos(t) + [max(ineg)− ineg(t)]{Accuracy of Decision stump 1
at all values of t}
Accuracy2(t)← ineg(t) + [max(ipos)− ipos(t)]{Accuracy of Decision stump 2
at all values of t}

end for
Accuracy(d)← max(max(Accuracy1),max(Accuracy2))
Threshold(d)← Threshold corresponding to Accuracy(d)
Inequality(d)← Inequality corresponding to Accuracy(d)

end for
Accuracymax ← max(Accuracy)
hThreshold ← Threshold corresponding to Accuracymax
hAttribute ← Attribute d corresponding to Accuracymax
hinequality ← Inequality corresponding to Accuracymax

6. ineg, CDF of class 0 samples normalized over the entire sample set← Class 0

function of figure 3.4(c)

7. Accuracy1, Accuracy of decision stump where the inequality is attribute

valuegethreshold ← Accuracy 1 function of figure 3.4(d)

8. Accuracy2, Accuracy of decision stump where the inequality is attribute

valueltthreshold ← Accuracy 2 function of figure 3.4(d)



23

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

class 1
class 0

(a) Probability distribution of the two classes
0 2 4 6 8 10 12 14 16 18 20

0

5

10

15

 

 

class 1
class 0

(b) Cumulative Probability distribution of the
two classes

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
function 1
function 2

(c) Intermediate functions in the algorithm
0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
Accuracy 1
Accuracy 2

(d) Accuracies of the two stumps at the at-
tribute value

Figure 3.4. Plot of different functions in the decision stump learning algorithm



24

3.3 Synapse Detection

3.3.1 Features

The features used in this setup are properties of regions of interest extracted

from the enhanced image. The enhanced image is thresholded and the thresholded

regions are used as masks to extract regions of interest. Due huge size of the image,

calculation of features for each and every pixel of the image would be very time

consuming in both the training and testing phases. Thus the image is first down

sampled so that we have a reasonable training dataset size. Even then, the number

of data points were huge. By visual examination, it was seen that the synapses

are darker structures. Thus an optimum grey threshold value is learnt such that

the thresholded regions are around the synapse location or its vicinity. For all the

connected component regions extracted from the thresholded region the following

features are calculated:

1. 7 Rotation, translation and scale invariant moments

2. 30 bin cumulative histogram bin values

3. Area of the region

These features are explained in detail in the following sections.

Scale and Rotation invariant moments

The raw moment of any discrete region is given by the following equation

Mij =
∑
x

∑
y

xiyjI(x, y) (3.2)

In our case since we are calculating moments for regions of various sizes we

normalize them by dividing any moment by the following value.

∑
x

∑
y

I(x, y) (3.3)

We chose the centroid of the region as the point around with the moments are

calculated. The centroid of the region is given by the following equation
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{x̄, ȳ} = {M10/M00,M01/M00} (3.4)

To introduce translation invariance all the moments are calculated around the

centroid of the region as follows

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qI(x, y) (3.5)

For calculating the 7 scale, rotation moments we need to calculate the central

moments upto an order of 3. They are given by the following equations:

µ00 = M00 (3.6)

µ01 = 0 (3.7)

µ10 = 0 (3.8)

µ11 = M11 − x̄M01 = M11 − x̄M01 (3.9)

µ20 = M20 − x̄M10 (3.10)

µ02 = M02 − ȳM01 (3.11)

µ21 = M21 − 2x̄M11 − ȳM20 + 2x̄2M01 (3.12)

µ12 = M12 − 2ȳM11 − x̄M02 + 2ȳ2M10 (3.13)

µ30 = M30 − 3x̄M20 + 2x̄2M10 (3.14)

µ03 = M03 − 3x̄M02 + 2x̄2M01 (3.15)

The scale invariant moments ηij can be constructed from the central moments

by dividing by the properly scaled 0th moments as shown below.

ηij =
µij

µ
1+( i+j

2
)

00

(3.16)

The scale invariant seven moments used as input features for the classifier are

given by the equations given below. These moments are also called Hu invariant

moments.
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I1 = η20 + η02 (3.17)

I2 = (η20 − η02)
2 + (2η11)

2 (3.18)

I3 = (η30 − 3η12)
2 + (3η21 − η03)

2 (3.19)

I4 = (η30 + η12)
2 + (η21 + η03)

2 (3.20)

I5 =
(
η30 − 3η12)(η30 + η12)[(η30 + η12)

2 − 3(η21 + η03)
2
]

+
(
3η21 − η03)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2
]

(3.21)

I6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η30)

2] + 4η11(η30 + η12)(η21 + η03) (3.22)

I7 =
(
3η21 − η03)(η30 + η12)[(η30 + η12)

2 − 3(η21 + η03)
2
]

+
(
η30 − 3η12)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2
]

(3.23)

Circular regions of interest are extracted around the center of the component.

The about described Hu invariant features are calculated for these circular regions.

Cumulative histogram & Area features

The grey values of the region are rescaled to a normalized scale between the

grey scale minimum to threshold value. Thus rescaled range is divided into 30

equally sized bins and a cumulative histogram is estimated. The 30 values of the

30 bins are used as additional input features. The entire extracted region is used

for estimating the bin values rather than using just the circular region used in

calculation of moment features. Since the regions are extracted my masking with a

threshold the range of grey scale is from zero (minimum grey value) to the threshold

value instead on the entire range of grey values.

The Area of the region is number of pixels in the extracted region.

3.3.2 Classifier

In this problem we have a unbalanced training dataset.i.e. the number of ex-

amples of synapse regions are far less than the number of examples of non-synapses

regions. In the testing phase also we observe that detection of synapses is like finding
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a needle in a haystack problem. Thus we use a cascading architecture which works

well with other kinds of such rare event detection problem like the face detection

in photographs [12]. In this architecture, results of several high prediction rate

classifiers are cascaded. The output of the the final classifier of the cascade gives

the prediction for synapses with few false negatives. The architecture is shown in

figure 3.5. As shown in the figure the every classifier is an ensemble of weighted

decision stumps. The final boosted classifiers prediction is based on equation 3.24.

Class = sgn(
N∑
n=0

wnHn(x)− threshold) (3.24)

From the equation 3.24 we can infer that the classification of a sample by

the ensemble can be varied by adjusting the threshold. This property is used a

every node of the ensemble, such that by varying the threshold for the ensemble

we improve the prediction rate ( 100%). For the first stage of the cascade, all
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the positive examples and an equal number of negative examples are chosen as

the training set. The ensemble is trained till a point where adding more weak

classifier doesn’t improve the prediction rate of the ensemble. Then the threshold

of the ensemble is varied such that ensemble has a very high prediction rate. After

adjusting the threshold, the ensemble will predict few samples as non-synapses,

these sample will will not be again used for training in the further level of cascade.

At the next stage of the cascade, we take all the samples predicted as synapses in

previous stage and add a set negative samples such that the training set is balanced.

And the classifier is trained just like the previous stage. The cascade is trained till

we run out of training examples or the rate of rejection negative examples drops

down.

3.3.3 Orientation estimation

Once the synapses regions are detected by the cascaded classifier, we estimate

the orientation of the synapses so that the predicted synapses can be aesthetically

viewed on the markup viewer. The original image is down sampled to 25% of

it’s size and blurred using perona-malik smoothening. This takes care that the

blurring occurs within the synapse alone and doesn’t blur the entire the entire

area. A circular region around the synapse is extracted and thresholded at the

median grey value. From this thresholded image, the orientation of the synapse is

calculated as follows.

The orientation of principal axis of the binary image patch can be calculated

from the covariance matrix constructed from the 2nd order central moments as

follows.

The covariance matrix is given by

cov[I(x, y)] =

[
µ′20 µ′11

µ′11 µ′02

]
, (3.25)

where

µ′20 =
µ20

µ00

=
M20

M00

− x̄2 (3.26)

µ′02 =
µ02

µ00

=
M02

M00

− ȳ2 (3.27)
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µ′11 =
µ11

µ00

=
M11

M00

− x̄ȳ (3.28)

The orientation of the image patch is given by the angle of the principal eigen-

vector. The angle of the principal eigenvector is given by

Θ =
1

2
arctan(

2µ′11

µ′20 − µ′02

) (3.29)

The orientation of the principal axis corresponds to the orientation of the

membrane. Thus the orientation of the synapses corresponds to the the minor

eigenvector which is orthogonal to the principal eigenvector on the 2D plane. Thus

the orientation of the synapses is given by,

Θsynapse = Θ± 90◦ (3.30)



CHAPTER 4

RESULTS

4.1 Cell Membrane Detection

The proposed method for cell membrane detection was tested on a C. elegans

dataset. The entire volume is made of 149 slices of 662×697 gray scale images. Out

of this stack, 5 image slices where chosen at random from the first 50 slices and the

accuracy of the method was assessed using 5-fold cross-validation. In each case, the

training was done using four of the five images and tested on the image that was left

out of training. The ratio of membrane/non-membrane pixels is unbalanced in the

order of 1:10 and thus affect the performance of the classifier. The classifier trained

with a balanced dataset (1:1 ratio) had the best accuracy compared to classifiers

trained with various ratios of positive (membrane) and negative (non-membrane)

samples, with results shown for this case. The negative samples were chosen at

random.

The feature vectors were generated as described in chapter 3, with a 7 × 7

neighborhood and Gaussian standard deviation σ = 5. At any location, these

parameters yielded 100 features (25 points in the neighborhood × 4 features for

every pixel). Initially, the decision stumps were boosted for 10000 rounds and the

area under the ROC (averaged over the 5 folds) computed after each round. We

can observe from figure 4.3 that the area under the ROC curve flattens out after

around 3000 rounds of boosting. The corresponding ROCs are shown in figure 4.2,

and the test images results in figure 4.4, 4.5, 4.6, 4.7, 4.8.

Figure 4.2 clearly shows that the use of neighborhood context combined with

proposed feature set yields significantly better results than thresholding of the

diffusion filter image [1]. Moreover, comparing with the results without context
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Figure 4.1. Semilog plot of number of boosting rounds versus the area under the
ROC curve for that boosting round.

information underlines the importance of using neighborhood for membrane detec-

tion.
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Figure 4.4. Membrane detection results of the fold-1 test images in the 5-fold
cross-validation: original images (left), and detected membranes (right).
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Figure 4.5. Membrane detection results of the fold-2 test images in the 5-fold
cross-validation: original images (left), and detected membranes (right).
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Figure 4.6. Membrane detection results of the fold-3 test images in the 5-fold
cross-validation: original images (left), and detected membranes (right).
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Figure 4.7. Membrane detection results of the fold-4 test images in the 5-fold
cross-validation: original images (left), and detected membranes (right).
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Figure 4.8. Membrane detection results of the fold-5 test images in the 5-fold
cross-validation: original images (left), and detected membranes (right).
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4.2 Synapse Detection

The proposed method for synapse detection was tested on a single slice cross-

section of a rabbit retina dataset. The image is scanned under a 5000x magnifi-

cation. One pixel in the digital image represents 2.18 nm at this magnification.

The full resolution image was 16720 × 16750 pixel sized grey scale image. The

image was first down sampled 4 times, to a size of 4180 × 4188 pixels. The

accuracy of the proposed method was assessed using 4-fold cross-validation. The

image was divided into 4 quadrants and in each fold, the training was done on

3 quadrants and tested on the third quadrant. In the entire image, the ratio of

synapse regions/non-synapses region was in the order of 1:100.

Initial problem was the reduction in the number of testing samples in a image

so as to reduce the testing time. The masking of thresholded regions provided the

initial dataset reduction. The next problem was to choose a representative point

around which the region attributes will be calculated. Many ways of choosing the

representative point were tried. Few significant ones are listed below:

1. Centroid of the binary thresholded region was chosen.

2. Weighted Centroid was chosen, where the weight of individual pixel was

directly proportional to the darkness of the pixels in the CLAHE image.

3. SIFT key points, which are representative of corners and peaks were calculated

for the regions of interest. Based on darkness of each key point in a particular

region, a representative point was chosen.

4. The SIFT key points were allowed to converge towards the darkest pixels in

the region and the converged point was chosen.

In all the above methods, only a lesser percentage of the representative points

were near the actual marked up synapses thus the region around the synapses

wasn’t even in the test dataset. For the few representative points that were near the

synapses, few were classified as non-synapses regions since the features calculated

didn’t have the required separability in this dataset. Because of the above said
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reasons, the classifier either had unreliable detection rate necessitating more user

guidance to identify the synapses.



CHAPTER 5

CONCLUSION

5.1 Contribution

The proposed method utilizes neighborhood context information to improve the

accuracy of membrane detection. Along with the nonlinear discrimination ability

of the AdaBoost classifier and the Hessian feature set, this results in improved

membrane detection compared to previous methods. Thus one can expect a more

robust segmentation of the individual neurons.

5.2 Future Work

Even though the classifier does a good work in classification of the membranes,

the classifier fails to discern certain structures like vesicles from membranes, which

may result in over-segmentation of individual neurons. Utilizing additional features

that discriminate these regions from membranes may prevent these false positives.

Moreover, recent work suggests that cascading the classifier predictions and addi-

tional feature set onto another classifier may help connecting up discontinuities in

membranes and avoid thereby avoid under segmentation [13]. Future work would

address these problems in membrane detection to improve the segmentation accu-

racy of the individual neurons. The segmentation of one slice of the volume could

be used for in a more robust segmentation of successive slices where membranes

are weak. As far as the problem of detection of synapses, new features that can

quantify the shape of the region have to be developed. The feature has to account

for the variablity of the synapse shapes because of their types.



APPENDIX A

MOSAICING OF EM IMAGES USING GPU

The ir-assemble in the ir-tool chain currently takes almost a day to assemble a

mosaic of 1000 tiles. Each tile is 4080× 4080 pixels in size. The ir-assemble takes

the grid.mosaic file as input and writes the mosaic image file. The grid.mosaic has

the following attributes in the file:

1. Number of tiles in mosaic (Nt)

2. Pixel spacing (S)

3. Flag for image mask (M)

4. List of Grid transformations (T )

(a) Image name (In)

(b) Number of points on the grid (Ng)

(c) Transformed grid points (Pgn)

(d) Number of grid points along each row (Nr)

(e) Number of grid points along each column (Nc)

(f) Image height (Ih)

(g) Image width (Iw)

The grid.mosaic file is read to a structure and the transformed grid points are

arranged in a row-major order starting from the bottom left corner to the right top

corner as shown in the figure A.1.

Then we use Delaunay triangulation to calculate the triangulation for the trans-

formed points. The triangulation of the transformed points is show in figure A.2.
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Figure A.1. Grid Points listed in row major order in the grid.mosaic file
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Figure A.2. Delaunay triangulation of grid points

The untransformed control points are calculated from the Ih, Iw, Nr and Nc. Once

the triangulations are done it is possible to calculate the location of any transformed

point in the untransformed grid on the tile. From the location of the point in

untransformed grid we will be able to calculate the grey value of the point in the

mosaic by simple bilinear interpolation. This way the grey value for every pixel in

the mosaic is calculated.

Thus the delaunay triangulation and the bilinear interpolation done in parallel

gives the speed up for the mosaicing.



APPENDIX B

SYNAPSE VIEWER

Figure B.1. Synapse Viewer

Synapse Viewer is cross platform viewer of image data and markups. This

software is built on Nokia Qt/C++. It works for sub-sampled datasets. The

features of the software are described below:

• The 2D image data in JPEG, PNG, BMP formats can be browsed in the

image viewer.
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• Scaling:The image viewer has controls to scale down the data and view the

entire image within the window. The scaling can be achieved using the scaling

bar or by clicking the zoom in or zoom out widgets. The image can be scaled

in steps 10% of the original size.

• scrolling: The image can be scrolled by simple click and drag operation on the

image.

• Synapse markup overlay: The application can read an XML file listing the

position and orientation of synapses. Multiple markup files can be opened

up. This feature is useful when comparing the ground truth and predicted

datasets. The viewer has the ability to change the color, transperancy and

visibility of a particular synapse group.

• Membrane markup overlay: The application can show overlay of predicted

membranes. Multiple membrane overlays can be seen simultaneously.

The Figure B.1 shows a snapshot of the synapse viewer.
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