Quaternion Algebra and Calculus

David Eberly
Magic Software, Inc.
http://www.magic-software.com

Created: March 2, 1999
Modified: September 27, 2002

This document provides a mathematical summary of quaternion algebra and calculus and how they relate to rotations and interpolation of rotations. The ideas are based on the article [1].

1 Quaternion Algebra

A quaternion is given by $q=w+x i+y j+z k$ where w, x, y, and z are real numbers. Define $q_{n}=$ $w_{n}+x_{n} i+y_{n} j+z_{n} k(n=0,1)$. Addition and subtraction of quaternions is defined by

$$
\begin{align*}
q_{0} \pm q_{1} & =\left(w_{0}+x_{0} i+y_{0} j+z_{0} k\right) \pm\left(w_{1}+x_{1} i+y_{1} j+z_{1} k\right) \tag{1}\\
& =\left(w_{0} \pm w_{1}\right)+\left(x_{0} \pm x_{1}\right) i+\left(y_{0} \pm y_{1}\right) j+\left(z_{0} \pm z_{1}\right) k
\end{align*}
$$

Multiplication for the primitive elements i, j, and k is defined by $i^{2}=j^{2}=k^{2}=-1, i j=-j i=k$, $j k=-k j=i$, and $k i=-i k=j$. Multiplication of quaternions is defined by

$$
\begin{align*}
q_{0} q_{1}= & \left(w_{0}+x_{0} i+y_{0} j+z_{0} k\right)\left(w_{1}+x_{1} i+y_{1} j+z_{1} k\right) \\
= & \left(w_{0} w_{1}-x_{0} x_{1}-y_{0} y_{1}-z_{0} z_{1}\right)+ \\
& \left(w_{0} x_{1}+x_{0} w_{1}+y_{0} z_{1}-z_{0} y_{1}\right) i+ \tag{2}\\
& \left(w_{0} y_{1}-x_{0} z_{1}+y_{0} w_{1}+z_{0} x_{1}\right) j+ \\
& \left(w_{0} z_{1}+x_{0} y_{1}-y_{0} x_{1}+z_{0} w_{1}\right) k .
\end{align*}
$$

Multiplication is not commutative in that the products $q_{0} q_{1}$ and $q_{1} q_{0}$ are not necessarily equal.
The conjugate of a quaternion is defined by

$$
\begin{equation*}
q^{*}=(w+x i+y j+z k)^{*}=w-x i-y j-z k . \tag{3}
\end{equation*}
$$

The conjugate of a product of quaternions satisfies the properties $\left(p^{*}\right)^{*}=p$ and $(p q)^{*}=q^{*} p^{*}$.
The norm of a quaternion is defined by

$$
\begin{equation*}
N(q)=N(w+x i+y j+z k)=w^{2}+x^{2}+y^{2}+z^{2} \tag{4}
\end{equation*}
$$

The norm is a real-valued function and the norm of a product of quaternions satisfies the properties $N\left(q^{*}\right)=$ $N(q)$ and $N(p q)=N(p) N(q)$.
The multiplicative inverse of a quaternion q is denoted q^{-1} and has the property $q q^{-1}=q^{-1} q=1$. It is constructed as

$$
\begin{equation*}
q^{-1}=q^{*} / N(q) \tag{5}
\end{equation*}
$$

where the division of a quaternion by a real-valued scalar is just componentwise division. The inverse operation satisfies the properties $\left(p^{-1}\right)^{-1}=p$ and $(p q)^{-1}=q^{-1} p^{-1}$.

A simple but useful function is the selection function

$$
\begin{equation*}
W(q)=W(w+x i+y j+z k)=w \tag{6}
\end{equation*}
$$

which selects the "real part" of the quaternion. This function satisfies the property $W(q)=\left(q+q^{*}\right) / 2$.
The quaternion $q=w+x i+y j+z k$ may also be viewed as $q=w+\hat{v}$ where $\hat{v}=x i+y j+z k$. If we identify \hat{v} with the 3 D vector (x, y, z), then quaternion multiplication can be written using vector dot product and cross product (\times) as

$$
\begin{equation*}
\left(w_{0}+\hat{v}_{0}\right)\left(w_{1}+\hat{v}_{1}\right)=\left(w_{0} w_{1}-\hat{v}_{0} \bullet \hat{v}_{1}\right)+w_{0} \hat{v}_{1}+w_{1} \hat{v}_{0}+\hat{v}_{0} \times \hat{v}_{1} \tag{7}
\end{equation*}
$$

In this form it is clear that $q_{0} q_{1}=q_{1} q_{0}$ if and only if $\hat{v}_{0} \times \hat{v}_{1}=0$ (these two vectors are parallel).
A quaternion q may also be viewed as a 4 D vector (w, x, y, z). The dot product of two quaternions is

$$
\begin{equation*}
q_{0} \bullet q_{1}=w_{0} w_{1}+x_{0} x_{1}+y_{0} y_{1}+z_{0} z_{1}=W\left(q_{0} q_{1}^{*}\right) . \tag{8}
\end{equation*}
$$

A unit quaternion is a quaternion q for which $N(q)=1$. The inverse of a unit quaternion and the product of unit quaternions are themselves unit quaternions. A unit quaternion can be represented by

$$
\begin{equation*}
q=\cos \theta+\hat{u} \sin \theta \tag{9}
\end{equation*}
$$

where \hat{u} as a 3 D vector has length 1. However, observe that the quaternion product $\hat{u} \hat{u}=-1$. Note the similarity to unit length complex numbers $\cos \theta+i \sin \theta$. In fact, Euler's identity for complex numbers generalizes to quaternions,

$$
\begin{equation*}
\exp (\hat{u} \theta)=\cos \theta+\hat{u} \sin \theta \tag{10}
\end{equation*}
$$

where the exponential on the left-hand side is evaluated by symbolically substituting $\hat{u} \theta$ into the power series representation for $\exp (x)$ and replacing products $\hat{u} \hat{u}$ by -1 . From this identity it is possible to define the power of a unit quaternion,

$$
\begin{equation*}
q^{t}=(\cos \theta+\hat{u} \sin \theta)^{t}=\exp (\hat{u} t \theta)=\cos (t \theta)+\hat{u} \sin (t \theta) \tag{11}
\end{equation*}
$$

It is also possible to define the logarithm of a unit quaternion,

$$
\begin{equation*}
\log (q)=\log (\cos \theta+\hat{u} \sin \theta)=\log (\exp (\hat{u} \theta))=\hat{u} \theta \tag{12}
\end{equation*}
$$

It is important to note that the noncommutativity of quaternion multiplication disallows the standard identities for exponential and logarithm functions. The quaternions $\exp (p) \exp (q)$ and $\exp (p+q)$ are not necessarily equal. The quaternions $\log (p q)$ and $\log (p)+\log (q)$ are not necessarily equal.

2 Relationship of Quaternions to Rotations

A unit quaternion $q=\cos \theta+\hat{u} \sin \theta$ represents the rotation of the 3 D vector \hat{v} by an angle 2θ about the 3D axis \hat{u}. The rotated vector, represented as a quaternion, is $R(\hat{v})=q \hat{v} q^{*}$. The proof requires showing that $R(\hat{v})$ is a 3 D vector, a length-preserving function of 3 D vectors, a linear transformation, and does not have a reflection component.

To see that $R(\hat{v})$ is a 3 D vector,

$$
\begin{aligned}
W(R(\hat{v})) & =W\left(q \hat{v} q^{*}\right) \\
& =\left[\left(q \hat{v} q^{*}\right)+\left(q \hat{v} q^{*}\right)^{*}\right] / 2 \\
& =\left[q \hat{v} q^{*}+q \hat{v}^{*} q^{*}\right] / 2 \\
& =q\left[\left(\hat{v}+\hat{v}^{*}\right) / 2\right] q^{*} \\
& =q W(\hat{v}) q^{*} \\
& =W(\hat{v}) \\
& =0 .
\end{aligned}
$$

To see that $R(\hat{v})$ is length-preserving,

$$
\begin{aligned}
N(R(\hat{v})) & =N\left(q \hat{v} q^{*}\right) \\
& =N(q) N(\hat{v}) N\left(q^{*}\right) \\
& =N(q) N(\hat{v}) N(q) \\
& =N(\hat{v}) .
\end{aligned}
$$

To see that $R(\hat{v})$ is a linear transformation, let a be a real-valued scalar and let \hat{v} and \hat{w} be 3D vectors; then

$$
\begin{aligned}
R(a \hat{v}+\hat{w}) & =q(a \hat{v}+\hat{w}) q^{*} \\
& =\left(q a \hat{v} q^{*}\right)+\left(q \hat{w} q^{*}\right) \\
& =a\left(q \hat{v} q^{*}\right)+\left(q \hat{w} q^{*}\right) \\
& =a R(\hat{v})+R(\hat{w}),
\end{aligned}
$$

thereby showing that the transform of a linear combination of vectors is the linear combination of the transforms.

The previous three properties show that $R(\hat{v})$ is an orthonormal transformation. Such transformations include rotations and reflections. Consider R as a function of q for a fixed vector \hat{v}. That is, $R(q)=q \hat{v} q^{*}$. This function is a continuous function of q. For each q it is a linear transformation with determinant $D(q)$, so the determinant itself is a continuous function of q. Thus, $\lim _{q \rightarrow 1} R(q)=R(1)=I$, the identity function (the limit is taken along any path of quaternions which approach the quaternion 1) and $\lim _{q \rightarrow 1} D(q)=D(1)=1$. By continuity, $D(q)$ is identically 1 and $R(q)$ does not have a reflection component.

Now we prove that the unit rotation axis is the 3 D vector \hat{u} and the rotation angle is 2θ. To see that \hat{u} is a unit rotation axis we need only show that \hat{u} is unchanged by the rotation. Recall that $\hat{u}^{2}=\hat{u} \hat{u}=-1$. This
implies that $\hat{u}^{3}=-\hat{u}$. Now

$$
\begin{aligned}
R(\hat{u}) & =q \hat{u} q^{*} \\
& =(\cos \theta+\hat{u} \sin \theta) \hat{u}(\cos \theta-\hat{u} \sin \theta) \\
& =(\cos \theta)^{2} \hat{u}-(\sin \theta)^{2} \hat{u}^{3} \\
& =(\cos \theta)^{2} \hat{u}-(\sin \theta)^{2}(-\hat{u}) \\
& =\hat{u} .
\end{aligned}
$$

To see that the rotation angle is 2θ, let \hat{u}, \hat{v}, and \hat{w} be a right-handed set of orthonormal vectors. That is, the vectors are all unit length; $\hat{u} \bullet \hat{v}=\hat{u} \bullet \hat{w}=\hat{v} \bullet \hat{w}=0$; and $\hat{u} \times \hat{v}=\hat{w}, \hat{v} \times \hat{w}=\hat{u}$, and $\hat{w} \times \hat{u}=\hat{v}$. The vector \hat{v} is rotated by an angle ϕ to the vector $q \hat{v} q^{*}$, so $\hat{v} \bullet\left(q \hat{v} q^{*}\right)=\cos (\phi)$. Using equation (8) and $\hat{v}^{*}=-\hat{v}$, and $\hat{p}^{2}=-1$ for unit quaternions with zero real part,

$$
\begin{aligned}
\cos (\phi) & =\hat{v} \bullet\left(q \hat{v} q^{*}\right) \\
& =W\left(\hat{v}^{*} q \hat{v} q^{*}\right) \\
& =W[-\hat{v}(\cos \theta+\hat{u} \sin \theta) \hat{v}(\cos \theta-\hat{u} \sin \theta)] \\
& =W[(-\hat{v} \cos \theta-\hat{v} \hat{u} \sin \theta)(\hat{v} \cos \theta-\hat{v} \hat{u} \sin \theta)] \\
& =W\left[-\hat{v}^{2}(\cos \theta)^{2}+\hat{v}^{2} \hat{u} \sin \theta \cos \theta-\hat{v} \hat{v} \hat{v} \sin \theta \cos \theta+(\hat{v} \hat{u})^{2}(\sin \theta)^{2}\right] \\
& =W\left[(\cos \theta)^{2}-(\sin \theta)^{2}-(\hat{u}+\hat{v} \hat{u} \hat{v}) \sin \theta \cos \theta\right]
\end{aligned}
$$

Now $\hat{v} \hat{u}=-\hat{v} \bullet \hat{u}+\hat{v} \times \hat{u}=\hat{v} \times \hat{u}=-\hat{w}$ and $\hat{v} \hat{u} \hat{v}=-\hat{w} \hat{v}=\hat{w} \bullet \hat{v}-\hat{w} \times \hat{v}=\hat{u}$. Consequently,

$$
\begin{aligned}
\cos (\phi) & =W\left[(\cos \theta)^{2}-(\sin \theta)^{2}-(\hat{u}+\hat{v} \hat{u} \hat{v}) \sin \theta \cos \theta\right] \\
& =W\left[(\cos \theta)^{2}-(\sin \theta)^{2}-\hat{u}(2 \sin \theta \cos \theta)\right] \\
& =(\cos \theta)^{2}-(\sin \theta)^{2} \\
& =\cos (2 \theta)
\end{aligned}
$$

and the rotation angle is $\phi=2 \theta$.
It is important to note that the quaternions q and $-q$ represent the same rotation since $(-q) \hat{v}(-q)^{*}=q \hat{v} q^{*}$. While either quaternion will do, the interpolation methods require choosing one over the other.

3 Quaternion Calculus

The only support we need for quaternion interpolation is to differentiate unit quaternion functions raised to a real-valued power. These formulas are identical to those derived in a standard calculus course, but the order of multiplication must be observed.

The derivative of the function q^{t} where q is a constant unit quaternion is

$$
\begin{equation*}
\frac{d}{d t} q^{t}=q^{t} \log (q) \tag{13}
\end{equation*}
$$

where \log is the function defined earlier by $\log (\cos \theta+\hat{u} \sin \theta)=\hat{u} \theta$. The power can be a function itself,

$$
\begin{equation*}
\frac{d}{d t} q^{f(t)}=f^{\prime}(t) q^{f(t)} \log (q) \tag{14}
\end{equation*}
$$

The most general case is when q itself depends on t and the power is any differentiable function of t,

$$
\begin{equation*}
\frac{d}{d t}(q(t))^{f(t)}=f^{\prime}(t)(q(t))^{f(t)} \log (q)+f(t)(q(t))^{f(t)-1} q^{\prime}(t) \tag{15}
\end{equation*}
$$

4 Spherical Linear Interpolation

The previous version of the document had a construction for spherical linear interpolation of two quaternions q_{0} and q_{1} treated as unit length vectors in 4 -dimensional space, the angle θ between them acute. The idea was that $q(t)=c_{0}(t) q_{0}+c_{1}(t) q_{1}$ where $c_{0}(t)$ and $c_{1}(t)$ are real-valued functions for $0 \leq t \leq 1$ with $c_{0}(0)=1, c_{1}(0)=0, c_{0}(1)=0$, and $c_{1}(1)=1$. The quantity $q(t)$ is required to be a unit vector, so $1=q(t) \bullet q(t)=c_{0}(t)^{2}+2 \cos (\theta) c_{0}(t) c_{1}(t)+c_{1}(t)^{2}$. This is the equation of an ellipse that I factored using methods of analytic geometry to obtain formulas for $c_{0}(t)$ and $c_{1}(t)$.

A simpler construction uses only trigonometry and solving two equations in two unknowns. As t uniformly varies between 0 and 1 , the values $q(t)$ are required to uniformly vary along the circular arc from q_{0} to q_{1}. That is, the angle between $q(t)$ and q_{0} is $\cos (t \theta)$ and the angle between $q(t)$ and q_{1} is $\cos ((1-t) \theta)$. Dotting the equation for $q(t)$ with q_{0} yields

$$
\cos (t \theta)=c_{0}(t)+\cos (\theta) c_{1}(t)
$$

and dotting the equation with q_{1} yields

$$
\cos ((1-t) \theta)=\cos (\theta) c_{0}(t)+c_{1}(t)
$$

These are two equations in the two unknowns c_{0} and c_{1}. The solution for c_{0} is

$$
c_{0}(t)=\frac{\cos (t \theta)-\cos (\theta) \cos ((1-t) \theta)}{1-\cos ^{2}(\theta)}=\frac{\sin ((1-t) \theta)}{\sin (\theta)} .
$$

The last equality is obtained by applying double-angle formulas for sine and cosine. By symmetry, $c_{1}(t)=$ $c_{0}(1-t)$. Or solve the equations for

$$
c_{1}(t)=\frac{\cos ((1-t) \theta)-\cos (\theta) \cos (t \theta)}{1-\cos ^{2}(\theta)}=\frac{\sin (t \theta)}{\sin (\theta)}
$$

The spherical linear interpolation, abbreviated as slerp, is defined by

$$
\begin{equation*}
\operatorname{Slerp}\left(t ; q_{0}, q_{1}\right)=\frac{q_{0} \sin ((1-t) \theta)+q_{1} \sin (t \theta)}{\sin \theta} \tag{16}
\end{equation*}
$$

for $0 \leq t \leq 1$.
Although q_{1} and $-q_{1}$ represent the same rotation, the values of $\operatorname{Slerp}\left(t ; q_{0}, q_{1}\right)$ and $\operatorname{Slerp}\left(t ; q_{0},-q_{1}\right)$ are not the same. It is customary to choose the $\operatorname{sign} \sigma$ on q_{1} so that $q_{0} \bullet\left(\sigma q_{1}\right) \geq 0$ (the angle between q_{0} and σq_{1} is acute). This choice avoids extra spinning caused by the interpolated rotations.

For unit quaternions, slerp can be written as

$$
\begin{equation*}
\operatorname{Slerp}\left(t ; q_{0}, q_{1}\right)=q_{0}\left(q_{0}^{-1} q_{1}\right)^{t} \tag{17}
\end{equation*}
$$

The idea is that $q_{1}=q_{0}\left(q_{0}^{-1} q_{1}\right)$. The term $q_{0}^{-1} q_{1}=\cos \theta+\hat{u} \sin \theta$ where θ is the angle between q_{0} and q_{1}. The time parameter can be introduced into the angle so that the adjustment of q_{0} varies uniformly with over the great arc between q_{0} and q_{1}. That is, $q(t)=q_{0}[\cos (t \theta)+\hat{u} \sin (t \theta)]=q_{0}[\cos \theta+\hat{u} \sin \theta]^{t}=q_{0}\left(q_{0}^{-1} q_{1}\right)^{t}$.

The derivative of slerp in the form of equation (17) is a simple application of equation (13),

$$
\begin{equation*}
\operatorname{Slerp}^{\prime}\left(t ; q_{0}, q_{1}\right)=q_{0}\left(q_{0}^{-1} q_{1}\right)^{t} \log \left(q_{0}^{-1} q_{1}\right) \tag{18}
\end{equation*}
$$

5 Spherical Cubic Interpolation

Cubic interpolation of quaternions can be achieved using a method described in [2] which has the flavor of bilinear interpolation on a quadrilateral. The evaluation uses an iteration of three slerps and is simliar to the de Casteljau algorithm (see [3]). Imagine four quaternions p, a, b, and q as the ordered vertices of a quadrilateral. Interpolate c along the "edge" from p to q using slerp. Interpolate d along the "edge" from a to b. Now interpolate the edge interpolations c and d to get the final result e. The end result is denoted squad and is given by

$$
\begin{equation*}
\operatorname{Squad}(t ; p, a, b, q)=\operatorname{Slerp}(2 t(1-t) ; \operatorname{Slerp}(t ; p, q), \operatorname{Slerp}(t ; a, b)) \tag{19}
\end{equation*}
$$

For unit quaternions we can use equation (17) to obtain a similar formula for squad,

$$
\begin{equation*}
\operatorname{Squad}(t ; p, a, b, q)=\operatorname{Slerp}(t ; p, q)\left(\operatorname{Slerp}(t ; p, q)^{-1} \operatorname{Slerp}(t ; a, b)\right)^{2 t(1-t)} \tag{20}
\end{equation*}
$$

The derivative of squad in equation (20) is achieved by applying equations $(13,14,15)$. To simplify the notation, define $U(t)=\operatorname{Slerp}(t ; p, q), V(t)=\operatorname{Slerp}(t ; q, b)$, and $W(t)=U(t)^{-1} V(t)$ so that $\operatorname{Squad}(t ; p, a, b, q)=$ $\operatorname{Slerp}(2 t(1-t) ; U(t), V(t))=U(t) W(t)^{2 t(1-t)}$. Now $U^{\prime}=U \log \left(p^{-1} q\right), V^{\prime}=V \log \left(a^{-1} b\right), W^{\prime}=U^{-1} V^{\prime}-$ $U^{-2} U^{\prime} V$, and

$$
\begin{align*}
\operatorname{Squad}^{\prime}(t ; p, q, a, b) & =\frac{d}{d t}\left[U W^{2 t(1-t)}\right] \\
& =U \frac{d}{d t}\left[W^{2 t(1-t)}\right]+U^{\prime}\left[W^{2 t(1-t)}\right] \tag{21}\\
& =U\left[(2-4 t) W^{2 t(1-t)} \log (W)+2 t(1-t) W^{2 t(1-t)-1} W^{\prime}\right]+U^{\prime}\left[W^{2 t(1-t)}\right]
\end{align*}
$$

For spline interpolation using squad we will need to evaluate the derivative of squad at $t=0$ and $t=1$. The values of U and V and their derivatives at the endpoints are $U(0)=p, U^{\prime}(0)=p \log \left(p^{-1} q\right), U(1)=q$, $U^{\prime}(1)=q \log \left(p^{-1} q\right), V(0)=a, V^{\prime}(0)=a \log \left(a^{-1} b\right), V(1)=b, V^{\prime}(1)=b \log \left(a^{-1} b\right)$. The derivatives of squad at the endpoints are

$$
\begin{align*}
\operatorname{Squad}^{\prime}(0 ; p, a, b, q) & =p\left[\log \left(p^{-1} q\right)+2 \log \left(p^{-1} a\right)\right] \\
\operatorname{Squad}^{\prime}(1 ; p, a, b, q) & =q\left[\log \left(p^{-1} q\right)-2 \log \left(q^{-1} b\right)\right] \tag{22}
\end{align*}
$$

6 Spline Interpolation of Quaternions

Given a sequence of N unit quaternions $\left\{q_{n}\right\}_{n=0}^{N-1}$, we want to build a spline which interpolates those quaternions subject to the conditions that the spline pass through the control points and that the derivatives are continuous. The idea is to choose intermediate quaternions a_{n} and b_{n} to allow control of the derivatives at the endpoints of the spline segments. More precisely, let $S_{n}(t)=\operatorname{Squad}\left(t ; q_{n}, a_{n}, b_{n+1}, q_{n+1}\right)$ be the spline segments. By definition of squad it is easily shown that

$$
S_{n-1}(1)=q_{n}=S_{n}(0)
$$

To obtain continuous derivatives at the endpoints we need to match the derivatives of two consecutive spline segments,

$$
S_{n-1}^{\prime}(1)=S_{n}^{\prime}(0)
$$

It can be shown from equation (22) that

$$
S_{n-1}^{\prime}(1)=q_{n}\left[\log \left(q_{n-1}^{-1} q_{n}\right)-2 \log \left(q_{n}^{-1} b_{n}\right)\right]
$$

and

$$
S_{n}^{\prime}(0)=q_{n}\left[\log \left(q_{n}^{-1} q_{n+1}\right)+2 \log \left(q_{n}^{-1} a_{n}\right)\right] .
$$

The derivative continuity equation provides one equation in the two unknowns a_{n} and b_{n}, so we have one degree of freedom. As suggested in [1], a good choice for the derivative at the control point uses an average T_{n} of "tangents", so $S_{n-1}^{\prime}(1)=q_{n} T_{n}=S_{n}^{\prime}(0)$ where

$$
\begin{equation*}
T_{n}=\frac{\log \left(q_{n}^{-1} q_{n+1}\right)+\log \left(q_{n-1}^{-1} q_{n}\right)}{2} . \tag{23}
\end{equation*}
$$

We now have two equations to determine a_{n} and b_{n}. Some algebra will show that

$$
\begin{equation*}
a_{n}=b_{n}=q_{n} \exp \left(-\frac{\log \left(q_{n}^{-1} q_{n+1}\right)+\log \left(q_{n}^{-1} q_{n-1}\right)}{4}\right) \tag{24}
\end{equation*}
$$

Thus, $S_{n}(t)=\operatorname{Squad}\left(t ; q_{n}, a_{n}, a_{n+1}, q_{n+1}\right)$.
Example. To illustrate the cubic nature of the interpolation, consider a sequence of quaternions whose general term is $q_{n}=\exp \left(i \theta_{n}\right)$. This is a sequence of complex numbers whose products do commute and for which the usual properties of exponents and logarithms do apply. The intermediate terms are

$$
a_{n}=\exp \left(-i\left(\theta_{n+1}-6 \theta_{n}+\theta_{n-1}\right) / 4\right)
$$

Also,

$$
\operatorname{Slerp}\left(t, q_{n}, q_{n+1}\right)=\exp \left(i\left((1-t) \theta_{n}+t \theta_{n+1}\right)\right)
$$

and

$$
\operatorname{Slerp}\left(t, a_{n}, a_{n+1}\right)=\exp \left(-i\left((1-t)\left(\theta_{n+1}-6 \theta_{n}+\theta_{n-1}\right)+t\left(\theta_{n+2}-6 \theta_{n+1}+\theta_{n}\right)\right) / 4\right)
$$

Finally,

$$
\begin{aligned}
\operatorname{Squad}\left(t, q_{n}, a_{n}, a_{n+1}, q_{n+1}\right)= & \exp \left([1-2 t(1-t)]\left[(1-t) \theta_{n}+t \theta_{n+1}\right]\right. \\
& \left.-[2 t(1-t) / 4]\left[(1-t)\left(\theta_{n+1}-6 \theta_{n}+\theta_{n-1}\right)+t\left(\theta_{n+2}-6 \theta_{n+1}+\theta_{n}\right)\right]\right) .
\end{aligned}
$$

The angular cubic interpolation is

$$
\phi(t)=-\frac{1}{2} t^{2}(1-t) \theta_{n+2}+\frac{1}{2} t\left(2+2(1-t)-3(1-t)^{2}\right) \theta_{n+1}+\frac{1}{2}(1-t)\left(2+2 t-3 t^{2}\right) \theta_{n}-\frac{1}{2} t(1-t)^{2} \theta_{n-1} .
$$

It can be shown that $\phi(0)=\theta_{n}, \phi(1)=\theta_{n+1}, \phi^{\prime}(0)=\left(\theta_{n+1}-\theta_{n-1}\right) / 2$, and $\phi^{\prime}(1)=\left(\theta_{n+2}-\theta_{n}\right) / 2$. The derivatives at the end points are centralized differences, the average of left and right derivatives as expected.

References

[1] Ken Shoemake, Animating rotation with quaternion calculus, ACM SIGGRAPH 1987, Course Notes 10, Computer Animation: 3-D Motion, Specification, and Control.
[2] W. Boehm, On cubics: a survey, Computer Graphics and Image Processing, vol. 19, pp. 201-226, 1982
[3] Gerald Farin, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, Inc., San Diego CA, 1990

